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Abstract:



Neutrosophic [image: ]-structures with applications in [image: ]-algebras is discussed. The notions of a neutrosophic [image: ]-subalgebra and a (closed) neutrosophic [image: ]-ideal in a [image: ]-algebra are introduced, and several related properties are investigated. Characterizations of a neutrosophic [image: ]-subalgebra and a neutrosophic [image: ]-ideal are considered, and relations between a neutrosophic [image: ]-subalgebra and a neutrosophic [image: ]-ideal are stated. Conditions for a neutrosophic [image: ]-ideal to be a closed neutrosophic [image: ]-ideal are provided.
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1. Introduction


[image: ]-algebras entered into mathematics in 1966 through the work of Imai and Iséki [1], and they have been applied to many branches of mathematics, such as group theory, functional analysis, probability theory and topology. Such algebras generalize Boolean rings as well as Boolean D-posets ([image: ]-algebras). Additionally, Iséki introduced the notion of a [image: ]-algebra, which is a generalization of a [image: ]-algebra (see [2]).



A (crisp) set A in a universe X can be defined in the form of its characteristic function [image: ] yielding the value 1 for elements belonging to the set A and the value 0 for elements excluded from the set [image: ] So far, most of the generalizations of the crisp set have been conducted on the unit interval [image: ], and they are consistent with the asymmetry observation. In other words, the generalization of the crisp set to fuzzy sets relied on spreading positive information that fit the crisp point [image: ] into the interval [image: ] Because no negative meaning of information is suggested, we now feel a need to deal with negative information. To do so, we also feel a need to supply a mathematical tool. To attain such an object, Jun et al. [3] introduced a new function, called a negative-valued function, and constructed [image: ]-structures. Zadeh [4] introduced the degree of membership/truth (t) in 1965 and defined the fuzzy set. As a generalization of fuzzy sets, Atanassov [5] introduced the degree of nonmembership/falsehood (f) in 1986 and defined the intuitionistic fuzzy set. Smarandache introduced the degree of indeterminacy/neutrality (i) as an independent component in 1995 (published in 1998) and defined the neutrosophic set on three components:


[image: ]











For more details, refer to the following site:




http://fs.gallup.unm.edu/FlorentinSmarandache.htm





In this paper, we discuss a neutrosophic [image: ]-structure with an application to [image: ]-algebras. We introduce the notions of a neutrosophic [image: ]-subalgebra and a (closed) neutrosophic [image: ]-ideal in a [image: ]-algebra, and investigate related properties. We consider characterizations of a neutrosophic [image: ]-subalgebra and a neutrosophic [image: ]-ideal. We discuss relations between a neutrosophic [image: ]-subalgebra and a neutrosophic [image: ]-ideal. We provide conditions for a neutrosophic [image: ]-ideal to be a closed neutrosophic [image: ]-ideal.




2. Preliminaries


We let [image: ] be the class of all algebras with type [image: ]. A BCI-algebra refers to a system [image: ] in which the following axioms hold:

	(I)

	
[image: ],




	(II)

	
[image: ],




	(III)

	
[image: ],




	(IV)

	
[image: ].






for all [image: ] If a BCI-algebra X satisfies [image: ] for all [image: ] then we say that X is a BCK-algebra. We can define a partial ordering ⪯ by


[image: ]











In a BCK/BCI-algebra X, the following hold:


[image: ]



(1)






[image: ]



(2)







A non-empty subset S of a [image: ]-algebra X is called a subalgebra of X if [image: ] for all [image: ]



A subset I of a [image: ]-algebra X is called an ideal of X if it satisfies the following:

	(I1)

	
[image: ],




	(I2)

	
[image: ][image: ].









We refer the reader to the books [6,7] for further information regarding BCK/BCI-algebras.



For any family [image: ] of real numbers, we define


[image: ]










[image: ]











We denote by [image: ] the collection of functions from a set X to [image: ] We say that an element of [image: ] is a negative-valued function from X to [image: ] (briefly, [image: ]-function on X). An [image: ]-structure refers to an ordered pair [image: ] of X and an [image: ]-function f on X (see [3]). In what follows, we let X denote the nonempty universe of discourse unless otherwise specified.



A neutrosophic [image: ]-structure over X (see [8]) is defined to be the structure:


[image: ]



(3)




where [image: ], [image: ] and [image: ] are [image: ]-functions on X, which are called the negative truth membership function, the negative indeterminacy membership function and the negative falsity membership function, respectively, on X.



We note that every neutrosophic [image: ]-structure [image: ] over X satisfies the condition:


[image: ]












3. Application in [image: ]-Algebras


In this section, we take a [image: ]-algebra X as the universe of discourse unless otherwise specified.



Definition 1.

A neutrosophic [image: ]-structure [image: ]over X is called a neutrosophic [image: ]-subalgebra of X if the following condition is valid:


[image: ]



(4)









Example 1.

Consider a [image: ]-algebra [image: ]with the following Cayley table.



	*
	[image: ]
	[image: ]
	[image: ]
	[image: ]



	θ
	θ
	θ
	θ
	θ



	a
	a
	θ
	θ
	a



	b
	b
	a
	θ
	b



	c
	c
	c
	c
	θ










The neutrosophic [image: ]-structure


[image: ]








over X is a neutrosophic [image: ]-subalgebra of X.



Let [image: ] be a neutrosophic [image: ]-structure over X and let [image: ] be such that [image: ]. Consider the following sets:


[image: ]











The set


[image: ]








is called the [image: ]-level set of [image: ]. Note that


[image: ]











Theorem 1.

Let [image: ]be a neutrosophic [image: ]-structure over X and let [image: ]be such that [image: ]. If [image: ]is a neutrosophic [image: ]-subalgebra of X, then the nonempty [image: ]-level set of [image: ]is a subalgebra of X.





Proof. 

Let [image: ] be such that [image: ] and [image: ]. If [image: ], then [image: ], [image: ], [image: ], [image: ], [image: ] and [image: ]. It follows from Equation (4) that



[image: ],



[image: ], and



[image: ].



Hence, [image: ], and therefore [image: ] is a subalgebra of X. ☐





Theorem 2.

Let [image: ]be a neutrosophic [image: ]-structure over X and assume that [image: ], [image: ]and [image: ]are subalgebras of X for all [image: ]with [image: ]. Then [image: ]is a neutrosophic [image: ]-subalgebra of X.





Proof. 

Assume that there exist [image: ] such that [image: ]. Then [image: ] for some [image: ]. Hence [image: ] but [image: ], which is a contradiction. Thus


[image: ]








for all [image: ]. If [image: ] for some [image: ], then


[image: ]








where [image: ]. Thus [image: ] and [image: ], which is a contradiction. Therefore


[image: ]








for all [image: ]. Now, suppose that there exist [image: ] and [image: ] such that


[image: ]











Then [image: ] and [image: ], which is a contradiction. Hence


[image: ]








for all [image: ]. Therefore [image: ] is a neutrosophic [image: ]-subalgebra of X. ☐





Because [image: ] is a completely distributive lattice with respect to the usual ordering, we have the following theorem.



Theorem 3.

If [image: ]is a family of neutrosophic [image: ]-subalgebras of X, then [image: ]forms a complete distributive lattice.





Proposition 1.

If a neutrosophic [image: ]-structure [image: ]over X is a neutrosophic [image: ]-subalgebra of X, then [image: ], [image: ]and [image: ]for all [image: ].





Proof. 

Straightforward. ☐





Theorem 4.

Let [image: ]be a neutrosophic [image: ]-subalgebra of X. If there exists a sequence [image: ]in X such that [image: ], [image: ]and [image: ], then [image: ], [image: ]and [image: ].





Proof. 

By Proposition 1, we have [image: ], [image: ] and [image: ] for all [image: ]. Hence [image: ], [image: ] and [image: ] for every positive integer n. It follows that


[image: ]











Hence [image: ], [image: ] and [image: ]. ☐





Proposition 2.

If every neutrosophic [image: ]-subalgebra [image: ]of X satisfies:


[image: ]



(5)




for all [image: ], then [image: ]is constant.





Proof. 

Using Equations (1) and (5), we have [image: ], [image: ] and [image: ] for all [image: ]. It follows from Proposition 1 that [image: ], [image: ] and [image: ] for all [image: ]. Therefore [image: ] is constant. ☐





Definition 2.

A neutrosophic [image: ]-structure [image: ]over X is called a neutrosophic [image: ]-ideal of X if the following assertion is valid:


[image: ]



(6)









Example 2.

The neutrosophic [image: ]-structure [image: ]over X in Example 1 is a neutrosophic [image: ]-ideal of X.





Example 3.

Consider a [image: ]-algebra [image: ]where [image: ]is a [image: ]-algebra and [image: ]is the adjoint [image: ]-algebra of the additive group [image: ]of integers (see [6]). Let [image: ]be a neutrosophic [image: ]-structure over X given by


[image: ]








where [image: ]and [image: ]. Then [image: ]is a neutrosophic [image: ]-ideal of X.





Proposition 3.

Every neutrosophic [image: ]-ideal [image: ]of X satisfies the following assertions:


[image: ]



(7)









Proof. 

Let [image: ] be such that [image: ]. Then [image: ], and so



[image: ]



[image: ]



[image: ]



This completes the proof. ☐





Proposition 4.

Let [image: ]be a neutrosophic [image: ]-ideal of X. Then

	(1)

	
[image: ]




	(2)

	
[image: ]




	(3)

	
[image: ]






for all [image: ].





Proof. 

Note that


[image: ]



(8)




for all [image: ]. Assume that [image: ], [image: ] and [image: ] for all [image: ]. It follows from Equation (2) and Proposition 3 that


[image: ]










[image: ]








and


[image: ]








for all [image: ].



Conversely, suppose


[image: ]



(9)




for all [image: ]. If we substitute z for y in Equation (9), then


[image: ]








for all [image: ] by using (III) and Equation (1). ☐





Theorem 5.

Let [image: ]be a neutrosophic [image: ]-structure over X and let [image: ]be such that [image: ]. If [image: ]is a neutrosophic [image: ]-ideal of X, then the nonempty [image: ]-level set of [image: ]is an ideal of X.





Proof. 

Assume that [image: ] for [image: ] with [image: ]. Clearly, [image: ]. Let [image: ] be such that [image: ] and [image: ]. Then [image: ], [image: ], [image: ], [image: ], [image: ] and [image: ]. It follows from Equation (6) that


[image: ]








so that [image: ]. Therefore [image: ] is an ideal of X. ☐





Theorem 6.

Let [image: ]be a neutrosophic [image: ]-structure over X and assume that [image: ], [image: ]and [image: ]are ideals of X for all [image: ]with [image: ]. Then [image: ]is a neutrosophic [image: ]-ideal of X.





Proof. 

If there exist [image: ] such that [image: ], [image: ] and [image: ], respectively, then [image: ], [image: ] and [image: ] for some [image: ] and [image: ]. Then [image: ], [image: ] and [image: ]. This is a contradiction. Hence, [image: ], [image: ] and [image: ] for all [image: ]. Assume that there exist [image: ] such that [image: ], [image: ] and [image: ]. Then there exist [image: ] and [image: ] such that


[image: ]











It follows that [image: ], [image: ], [image: ], [image: ], [image: ] and [image: ]. However, [image: ], [image: ] and [image: ]. This is a contradiction, and so


[image: ]








for all [image: ]. Therefore [image: ] is a neutrosophic [image: ]-ideal of X. ☐





Proposition 5.

For any neutrosophic [image: ]-ideal [image: ]of X, we have


[image: ]



(10)









Proof. 

Let [image: ] be such that [image: ]. Then [image: ], and so


[image: ]











It follows that


[image: ]











This completes the proof. ☐





Theorem 7.

In a [image: ]-algebra, every neutrosophic [image: ]-ideal is a neutrosophic [image: ]-subalgebra.





Proof. 

Let [image: ] be a neutrosophic [image: ]-ideal of a [image: ]-algebra X. For any [image: ], we have


[image: ]










[image: ]








and


[image: ]











Hence [image: ] is a neutrosophic [image: ]-subalgebra of a [image: ]-algebra X. ☐





The converse of Theorem 7 may not be true in general, as seen in the following example.



Example 4.

Consider a [image: ]-algebra [image: ]with the following Cayley table.



	*
	[image: ]
	1
	2
	3
	4



	θ
	θ
	θ
	θ
	θ
	θ



	1
	1
	θ
	θ
	θ
	θ



	2
	2
	1
	θ
	1
	θ



	3
	3
	3
	3
	θ
	θ



	4
	4
	4
	4
	3
	θ








Let [image: ]be a neutrosophic [image: ]-structure over X, which is given as follows:


[image: ]











Then [image: ]is a neutrosophic [image: ]-subalgebra of X, but it is not a neutrosophic [image: ]-ideal of X as [image: ], [image: ], or [image: ].





Theorem 7 is not valid in a [image: ]-algebra; that is, if X is a [image: ]-algebra, then there is a neutrosophic [image: ]-ideal that is not a neutrosophic [image: ]-subalgebra, as seen in the following example.



Example 5.

Consider the neutrosophic [image: ]-ideal [image: ]of X in Example 3. If we take [image: ]and [image: ]in [image: ], then [image: ]. Hence


[image: ]











Therefore [image: ]is not a neutrosophic [image: ]-subalgebra of X.





For any elements [image: ], [image: ], [image: ], we consider sets:


[image: ]











Clearly, [image: ], [image: ] and [image: ].



Theorem 8.

Let [image: ], [image: ]and [image: ]be any elements of X. If [image: ]is a neutrosophic [image: ]-ideal of X, then [image: ], [image: ]and [image: ]are ideals of X.





Proof. 

Clearly, [image: ], [image: ] and [image: ]. Let [image: ] be such that [image: ] and [image: ]. Then


[image: ]











It follows from Equation (6) that


[image: ]











Hence [image: ], and therefore [image: ], [image: ] and [image: ] are ideals of X. ☐





Theorem 9.

Let [image: ], [image: ], [image: ]and let [image: ]be a neutrosophic [image: ]-structure over X. Then

	(1)

	
If [image: ], [image: ] and [image: ]are ideals of X, then the following assertion is valid:


[image: ]



(11)








	(2)

	
If [image: ]satisfies Equation (11) and


[image: ]



(12)




then [image: ], [image: ]and [image: ]are ideals of X for all [image: ], [image: ]and [image: ].











Proof. 

(1) Assume that [image: ], [image: ] and [image: ] are ideals of X for [image: ], [image: ], [image: ]. Let [image: ] be such that [image: ], [image: ] and [image: ]. Then [image: ] and [image: ], where [image: ]. It follows from (I2) that [image: ] for [image: ]. Hence [image: ], [image: ] and [image: ].



(2) Let [image: ], [image: ] and [image: ] and suppose that [image: ] satisfies Equations (11) and (12). Clearly, [image: ] by Equation (12). Let [image: ] be such that [image: ] and [image: ]. Then


[image: ]








which implies that [image: ], [image: ], and [image: ]. It follows from Equation (11) that [image: ], [image: ] and [image: ]. Thus, [image: ], and therefore [image: ], [image: ] and [image: ] are ideals of X.☐





Definition 3.

A neutrosophic [image: ]-ideal [image: ]of X is said to be closed if it is a neutrosophic [image: ]-subalgebra of X.





Example 6.

Consider a [image: ]-algebra [image: ]with the following Cayley table.



	*
	[image: ]
	1
	[image: ]
	[image: ]
	[image: ]



	θ
	θ
	θ
	a
	b
	c



	1
	1
	θ
	a
	b
	c



	a
	a
	a
	θ
	c
	b



	b
	b
	b
	c
	θ
	a



	c
	c
	c
	b
	a
	θ








Let [image: ]be a neutrosophic [image: ]-structure over X which is given as follows:


[image: ]











Then [image: ]is a closed neutrosophic [image: ]-ideal of X.





Theorem 10.

Let X be a [image: ]-algebra, For any [image: ]and [image: ]with [image: ], [image: ]and [image: ], let [image: ]be a neutrosophic [image: ]-structure over X given as follows:


[image: ]








where [image: ]. Then [image: ]is a closed neutrosophic [image: ]-ideal of X.





Proof. 

Because [image: ], we have [image: ], [image: ] and [image: ] for all [image: ]. Let [image: ]. If [image: ], then


[image: ]











Suppose that [image: ]. If [image: ] then [image: ], and if [image: ] then [image: ]. In either case, we have


[image: ]











For any [image: ], if any one of x and y does not belong to [image: ], then


[image: ]











If [image: ], then [image: ]. Hence


[image: ]











Therefore [image: ] is a closed neutrosophic [image: ]-ideal of X.  ☐





Proposition 6.

Every closed neutrosophic [image: ]-ideal [image: ]of a [image: ]-algebra X satisfies the following condition:


[image: ]



(13)









Proof. 

Straightforward. ☐





We provide conditions for a neutrosophic [image: ]-ideal to be closed.



Theorem 11.

Let X be a [image: ]-algebra. If [image: ]is a neutrosophic [image: ]-ideal of X that satisfies the condition of Equation (13), then [image: ]is a neutrosophic [image: ]-subalgebra and hence is a closed neutrosophic [image: ]-ideal of X.





Proof. 

Note that [image: ] for all [image: ]. Using Equations (10) and (13), we have


[image: ]











Hence [image: ] is a neutrosophic [image: ]-subalgebra and is therefore a closed neutrosophic [image: ]-ideal of X. ☐
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