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Abstract: This paper develops an offset free tracking model predictive control based on a dynamic
partial least square (PLS) framework. First, state space model is used as the inner model of PLS
to describe the dynamic system, where subspace identification method is used to identify the
inner model. Based on the obtained model, multiple independent model predictive control (MPC)
controllers are designed. Due to the decoupling character of PLS, these controllers are running
separately, which is suitable for distributed control framework. In addition, the increment of inner
model output is considered in the cost function of MPC, which involves integral action in the
controller. Hence, the offset free tracking performance is guaranteed. The results of an industry
background simulation demonstrate the effectiveness of proposed method.
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1. Introduction

Nowadays, industrial production is becoming more complex and larger in scale. There are
usually hundreds or thousands of input and output variables in this class of novel industrial system.
It raises higher requirements for process control technology. With the development of cyber physical
systems, more and more new technologies are applied to the industrial process control, such as
network control [1], wireless technology [2] and embedded technology [3]. These technologies
bring in innovations in the control system, which lead to conventional control theory not being
applicable for the application of these new technologies. Model predictive control (MPC) [4] is
the most widely used advanced control theory. It has three features: predictive model; rolling
optimization, and; feedback correction. Due to the advantages of dealing with multivariable control
and constraints [5], MPC has many successful applications. The process of industrial production
is sometimes nonlinear. MPC designs for nonlinear system is also one of the hot spots of research.
Many research results have formed a special course [6]. Many researchers combine other nonlinear
method with MPC such as nonlinear identification [7], neural network [8] and fuzzy model [9] to deal
with nonlinear control problem. However, with the increase of dimensionality of controlled variables,
the computation load has been greatly increased. MPC is a typical centralized control method, it is not
suitable for combing with new cyber physical system technologies such as those mentioned above.

On the other hand, with the development of computation and storage techniques, it became
possible to obtain huge dimension and large number of industry production operation data. While the
process is often restricted to move in a space of much lower dimension than the data indicate.
Hence, many data reduction methods based on principal component extraction are available. Partial
least square (PLS) is one of these methods, which is used to model the relationship between two
blocks of data. It has been applied to many areas in the past decades, such as quality prediction,
process monitoring and chemometrics [10]. PLS is not only able to extract principle component
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from both the input and output dataset, but also able to determine the direction on which input
and output data has the largest covariance [11]. Considering the advantage of dimension reduction
and automatic decoupling, many researchers have applied PLS to the modeling and control of
dynamic systems. Based on the advantages of PLS, multivariable systems can be decoupled into
multiple single input single output (SISO) subsystems. One can design controllers for each subsystem
separately, which is suitable for the application of distribute control of cyber physical system. Kaspar
and Ray [12,13] proposed a dynamic PLS framework by utilizing the PLS loading matrices to construct
precompensators and postcompensatores. Chen and Cheng [14] proposed another dynamic PLS
framework with the ARX model. Laur
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et al. [15] proposed a PLS-based MPC relevant identification
method. With these dynamic PLS models (DyPLS), many control schemes are applied. Kaspar and Ray
proposed a proportion-integration-differentiation (PID) control scheme under this framework [12],
and Chen and Cheng [14] designed multi-loop adaptive PID controllers based on a modified
decoupling PLS framework. Hu et al. [16,17] proposed a multi-loop internal model controller in
the dynamic PLS framework and achieved better performance for disturbance rejection. LÜ and
Liang [18] proposed a multi-loop constrained MPC scheme.

In practice it is often required to track a reference set-point, and achieve zero offset in the presence
of persistent disturbances and plant-model mismatch. This type of problem is usually considered as
an offset-free problem. To solve this problem, many methods have been proposed so far. One is to
augment the state model with disturbance model, which can account for the presence of disturbance
or for plant-model mismatch (an observer is usually used). Many algorithms have been developed
based on it, for example, references [19–21]. González et al. [22] pointed out that if the observer does
not reach accurately the stationary state, the model predictions are made on a mistaken stationary
model. Another method is to describe the system in the so-called velocity form, see [23,24], where the
state is composed by the state increments and the output error, while the manipulated variable is the
control increment. The velocity form does not require the use of a state estimator and does not require
to compute the steady state target for the plant state and control variables, but no stability results have
been established for MPC algorithms based on the velocity form [23]. Pannocchia et al. [25] point out
that velocity form model is a special case of disturbance model/observer in the offset-free linear MPC
design. A third method is based on the internal model principle. With this method, an integral model
is introduced to the system model, and MPC is designed to guarantee the stable of system and integral
model. Then the effect of the disturbances is cancelled by the MPC optimization and the controlled
variables are tracked at their set-points. This strategy has been followed in [26–29].

This paper focus on the offset free tracking performance of dynamic PLS control framework,
and proposed a novel MPC control strategy. The paper organized as follows. In Section 2, the used
dynamic PLS model and its modification are defined and described. Offset-free MPC in DyPLS is
described. An industrial background simulation is given to demonstrate the merit of the proposed
method. Conclusions are drawn in Section 5.

2. Dynamic PLS Model Description

The origins of PLS are traced to Herman Wold’s original non-linear iterative partial least square
(NIPALS) algorithm [30]. The advantage of PLS lies in that it decomposes the multivariate regression
problem into a series of uncorrelated univariate regression problems, and problems of non-square and
ill-conditioned in the regression can be dealt with [11]. The conventional PLS consists of an outer model
which extracts the latent variables, and an inner model to estimate the algebraic relationship between
the input and output scores [31]. Considering scaled l × m dimension input dataset X and a l × n
dimension output dataset Y, where l, m and n denote the number of sampling, input dimension and
output dimension, respectively. The outer model is built by decomposing matrix X and Y as follows:
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X =
R
∑

r=1
trpT

r + E∗ = TPT + E∗

Y =
R
∑

r=1
urqT

r + F∗ = UQT + F∗
(1)

where R is the number of latent variables (due to the effect of dimensionality reduction of PLS.
R ≤ max(m, n) is met in most cases), pr and qr are the r-th loading vectors of loading matrices P and
Q, respectively; tr and ur are the r-th score vectors of matrices T and U, respectively; and E* and F* are
residual matrices of X and Y, respectively.

In inner model, the score matrices T and U are related by a diagonal matrix B (Equation (2)) which
is obtained by least squares (LS) method.

ur = brtr

U = TB
(2)

where, br =
uT

r tr
tT
r tr

; B = (TTT)−1TTU; U = diag(u1, u2, · · · , uR); T = diag(t1, t2, · · · , tR).
The conventional PLS is suitable for pure algebraic regression. It is not able to cope with dynamic

system such as industry process systems. Researchers have proposed many different DyPLS models
by introducing dynamic structures into PLS to describe the dynamic character, such as time-series
terms [13], dynamic filters [32] or the ARX model [33].

In this paper, state space model is used as PLS inner model to describe the dynamic character.
For the r-th latent variable, inner state space model can be expressed as follows:

xr(k + 1) = Arxr(k) + Brtr(k)
ur(k) = Crxr(k)

(3)

The state space model can be obtained by subspace identification method [34], and the dimension
of parameters Ar, Br, Cr can be determined by model output error method. The structure of dynamic
PLS with state space model is shown in Figure 1, where, Wx and Wy are scaling matrices of X and Y.
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Ray [13]. Based on the DyPLS model proposed in Section 2, this scheme employs the PLS loading 
matrices P and Q as precompensators and postcompensators to connect the actual process. With the 
loading matrices, inputs and outputs of the system are mapped into the latent variable space. 
Controllers designed in the latent variable space use input scores to control output scores. Since the 
multiple input multiple output (MIMO) system is decoupled into multiple single input single output 
(SISO) subsystems in latent variable space, the original MIMO controller problem is decomposed 
into multiple independent SISO control problems. A variety of conventional controls scheme could 
be involved in this control framework [13]. In this framework, each controller in the latent variable 

Figure 1. Structure of dynamic partial least square (DyPLS) models with state space model.

3. Predictive Controller Design

3.1. Dynamic PLS Control Framework

Shown in Figure 2 is the control structure with dynamic PLS model proposed by Kaspar and
Ray [13]. Based on the DyPLS model proposed in Section 2, this scheme employs the PLS loading
matrices P and Q as precompensators and postcompensators to connect the actual process. With the
loading matrices, inputs and outputs of the system are mapped into the latent variable space.
Controllers designed in the latent variable space use input scores to control output scores. Since the
multiple input multiple output (MIMO) system is decoupled into multiple single input single output
(SISO) subsystems in latent variable space, the original MIMO controller problem is decomposed into
multiple independent SISO control problems. A variety of conventional controls scheme could be
involved in this control framework [13]. In this framework, each controller in the latent variable space
responds synchronously to the error between score variable u and its set-point, which is Yset mapped
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into the latent variable space. Generated controller output T is back mapped into origin space and
then is used as the input of the system.
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In Figure 2, Gci(i = 1, · · · , R), Gp and Gd are the transfer function matrices of the controller in
latent variable space, the controlled plant and disturbances, respectively; Q+ is the appropriate inverse
of Q. Yset is the set-point sequence of process; D is the disturbance sequence. ∆ = 1− z−1.

3.2. Equation of Prediction

The r-th inner model Equation (3) can be considered in incremental forms as follows:

∆xr(k + 1) = Ar∆xr(k) + Br∆tr(k)
∆ur(k) = Cr∆xr(k)

(4)

Let Np,r and Nc,r denote prediction horizon and control horizon for the r-th controller, respectively.
Considering Equation (3), the Np,r step ahead prediction of state with Nc,r control step are



x̂r(k + 1|k)
...

x̂r(k + Nc,r|k)
x̂r(k + Nc,r + 1|k)

...
x̂r(k + Np,r|k)


=



Ar
...

ANc,r
r

ANc,r+1
r

...

A
Np,r
r


xr(k) +



Br
...

Nc,r−1
∑

i=0
Ai

rBr

Nc,r

∑
i=0

Ai
rBr

...
Np,r−1

∑
i=0

Ai
rBr


tr(k− 1) +



Br 0
...

. . .
...

Nc,r−1
∑

i=0
Ai

rBr · · · Br

Nc,r

∑
i=0

Ai
rBr · · ·

1
∑

i=0
Ai

rBr

...
...

...
Np,r−1

∑
i=0

Ai
rBr · · ·

Np,r−Nc,r

∑
i=0

Ai
rBr


•

 ∆t̂r(k|k)
...

∆t̂r(k + Nc,r − 1|k)



(5)

Similarly, with Equation (4), the Np,r step ahead prediction of incremental state with Nc,r control
step are



∆x̂r(k + 1|k)
...

∆x̂r(k + Nc,r|k)
∆x̂r(k + Nc,r + 1|k)

...
∆x̂r(k + Np,r|k)


=



Ar
...

ANc,r
r

ANc,r+1
r

...

A
Np,r
r


xr(k) +



Br 0
...

. . .
...

Nc,r−1
∑

i=0
Ai

rBr · · · Br

Nc,r

∑
i=0

Ai
rBr · · ·

1
∑

i=0
Ai

rBr

...
...

...
Np,r−1

∑
i=0

Ai
rBr · · ·

Np,r−Nc,r

∑
i=0

Ai
rBr



 ∆t̂r(k|k)
...

∆t̂r(k + Nc,r − 1|k)

 (6)
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From Equation (5) and considering Equation (3), the estimates of future of inner model output are



ûr(k + 1|k)
...

ûr(k + Nc,r|k)
ûr(k + Nc,r + 1|k)

...
ûr(k + Np,r|k)


=



Cr Ar
...

Cr ANc,r
r

Cr ANc,r+1
r

...

Cr A
Np,r
r


xr(k) +



CrBr
...

Nc,r−1
∑

i=0
Cr Ai

rBr

Nc,r

∑
i=0

Cr Ai
rBr

...
Np,r−1

∑
i=0

Cr Ai
rBr


tr(k− 1) +



CrBr 0
...

. . .
...

Nc,r−1
∑

i=0
Cr Ai

rBr · · · CrBr

Nc,r

∑
i=0

Cr Ai
rBr · · ·

1
∑

i=0
Cr Ai

rBr

...
...

...
Np,r−1

∑
i=0

Cr Ai
rBr · · ·

Np,r−Nc,r

∑
i=0

Cr Ai
rBr


•

 ∆t̂r(k|k)
...

∆t̂r(k + Nc,r − 1|k)



(7)

Equation (7) can be written in matrix notation as follows:

ûr(k) = Φrxr(k) + Ψrur(k) + Γr∆t̂r(k) (8)

where ûr(k) = [ûr(k + 1|k), · · · , ûr(k + Np,r|k)]T, ∆t̂r(k) = [∆t̂r(k|k), · · · , ∆t̂r(k + Nc,r − 1|k)]T,

Φr = [CrAr, · · ·CrA
Np,r
r ]

T
, Ψr = [CrBr, · · · ,

Np,r−1

∑
i=0

CrAi
rBr]

T

, Γr =



CrBr 0
...

...
...

Nc,r−1
∑

i=0
CrAi

rBr · · · CrBr

Nc,r

∑
i=0

CrAi
rBr · · ·

1
∑

i=0
CrAi

rBr

...
...

...
Np,r−1

∑
i=0

CrAi
rBr · · ·

Np,r−Nc,r

∑
i=0

CrAi
rBr


.

Similarly, from Equation (6) and considering Equation (4), the estimates of future of inner model
output are



∆ûr(k + 1|k)
...

∆ûr(k + Nc,r|k)
∆ûr(k + Nc,r + 1|k)

...
∆ûr(k + Np,r|k)


=



Cr Ar
...

Cr ANc,r
r

Cr ANc,r+1
r
...

Cr A
Np,r
r


xr(k) +



CrBr 0
...

. . .
...

Nc,r−1
∑

i=0
Cr Ai

rBr · · · CrBr

Nc,r

∑
i=0

Cr Ai
rBr · · ·

1
∑

i=0
Cr Ai

rBr

...
...

...
Np,r−1

∑
i=0

Cr Ai
rBr · · ·

Np,r−Nc,r

∑
i=0

Cr Ai
rBr



 ∆t̂r(k|k)
...

∆t̂r(k + Nc,r − 1|k)

 (9)

Equation (9) can be written in matrix notation as follows:

∆ûr(k) = Φr∆xr(k) + Γr∆t̂r(k) (10)

where ∆ûr(k) = [∆ûr(k + 1|k), · · · , ∆ûr(k + Np,r|k)]T.

3.3. Offset-Free Control

In order to get offset-free tracking performance, it should give zero value for the error between
set-point and system output as

lim
k→∞

e(k) = lim
k→∞

usetr (k)− ur(k)→ 0 (11)
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According to the final value theorem applied to the control system, it is necessary to provide
at least one integrator action in the control loop. A typical cost function of MPC is the 2-norm form
as follows:

Jr =
Np,r

∑
j=1
‖usetr (k + j)− ûr(k + j|k)‖ 2

Qu
+

Nc,r

∑
j=1
‖∆t̂r(k + j− 1|k)‖2

Qt
(12)

where usetr is the r-th component of uset. Qu and Qt are weighting diagonal matrices. Equation (12)
does not add any integrator action. One can modify Equation (12) as follows:

Jr =
Np,r

∑
j=1
‖usetr (k + j)− ûr(k + j|k)‖2

Qu
+

Nc,r

∑
j=1
‖∆t̂r(k + j− 1|k)‖2

Qt
+

Np,r

∑
j=1
‖∆ûr(k + j|k)‖2

Q∆u
(13)

Equation (13) can be written in matrix notation as follows:

Jr = ‖usetr − ûr(k)‖2
Qu

+ ‖∆t̂r(k)‖2
Qt

+ ‖∆ûr(k)‖2
Q∆u

(14)

The cost function Equation (14) contains integrator action for increments ∆ûr(k). To optimize the
cost function Equation (14), one can get analytical solution of ∆ûr(k) as

∆t̂r(k) = −[ΓT
r (Qu + Q∆u)Γr + Qt]

−1
ΓT

r [(Qu + Q∆u)Φrxr(k)−Q∆uΦrxr(k− 1) + Qu(Ψrur(k)− uset)] (15)

One can calculate the control low with Equation (15) offline, so the proposed method will not
dramatically increase the online calculation burden. Comparing with conventional MPC, there is only
one more polynomial xr(k− 1) in the proposed method.

The structure of proposed controller is shown in Figure 3. It is a distributed form which is similar
as the distributed model predictive control form [35]. Each controller is a SISO controller, hence the
control burden is lower than the conventional MIMO MPC. Hence, this control method is suitable
for multiple controllers be embedded in to different low cost control nodes. In each node, there are
independent mapping matrices Q+W−1

y and W−1
x P. There is another advantage of this structure.

For controllers are operating separately, if one controller is broken down, other controllers can still
make the system having a part control action.
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3.4. Stability Analysis

Suppose the prediction horizon and control horizon of MPC in latent space are equal, and prediction
horizon for different latent variable controllers are also equal. Equation (13) can be reformed as

Jr =
Np

∑
j=1
‖usetr (k + j)− ûr(k + j|k)‖2

Qu
+

Np

∑
j=1
‖∆t̂r(k + j− 1|k)‖2

Qt
+

Np

∑
j=1
‖∆ûr(k + j|k)‖2

Q∆u
(16)
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According to Equations (8) and (13), Equation (16) is a function of state variables and increment
input prediction, as

Jr =
Np

∑
j=1

L(x̂r(k + j|k), ∆t̂r(k + j− 1|k)) (17)

Suppose {∆t̂r(k|k), · · · , ∆t̂r(k + Np − 1|k)} is the optimal sequence of solution Equation (17).
At every time t, ∆t̂r(k|k) is added to control rate at the previous time and acts on the system.
Let J∗r (k) and {x̂∗r (k|k), · · · , x̂∗r (k + Np − 1|k)} denote the optimal performance index and optimal
state corresponding to this control action. If dynamic PLS can fully describe the actual system and
there is no disturbance in system, xr(k + 1) = x̂∗r (k + 1|k). According to Equation (4), one can get
t̂r(k + Np|k) = 0. When x̂r(k + Np|k) = 0, then x̂r(k + Np + 1|k) = 0. Hence, a feasible control sequence
at time t is {∆t̂r(k + 1|k), · · · , ∆t̂r(k + Np − 1|k), 0}. A performance index corresponding to it is

Jr(k + 1) = J∗r (k)− L(x̂r(k + 1|k), ∆t̂r(k|k)) ≤ J∗r (k) (18)

Jr(k + 1) is not less than J∗r (k + 1). Hence

J∗r (k + 1) ≤ J∗r (k)− L(x̂r(k + 1|k), ∆t̂r(k|k)) ≤ J∗r (k) (19)

Hence, the performance index of each controller in latent space is monotonically decreasing.
That is to say that latent output ur(k) is bounded. In other words, when k→ ∞ , J∗r (k + 1) = J∗r (k).
According to Equation (1), the system output in original space is a linear combination of ur(k).
When ur(k) is stable, the original space output is stable.

4. Case Study

The efficiency of the proposed method is demonstrated by carrying out simulation study
on polyethylene reaction, which is described by Embirucu and Fontes [36]. Polyethylene is the
largest synthetic polymer in terms of production, and stirred-tank reactor is a significant part of
it. Ziegler-Natta and Phillips catalysis can be used in this reaction. In these both catalysis, the system
is a typical MIMO system with nine inputs and seven outputs. In this study case, Phillips catalysis is
chosen. And the first three equations are extracted in this simulation, which are described as follows:

(1− 0.9021q−1)y1(k) = (0.9283− 0.8350q−1)x1(k)
(1− 0.9067q−1)y2(k) = (0.8415− 0.7664q−1)x1(k) + (0.6873− 0.6023q−1)x2(k)
(1− 0.8932q−1)y3(k) = (0.8591− 0.7536q−1)x1(k) + (0.8097− 0.7066q−1)x3(k) + 0.0081x4(k)

The description of input and output variables are illustrated in Table 1. This system is a typically
non-square system with four inputs and three outputs.

Table 1. The description of input and output variables.

Symbol Description

input

x1 monomer feed flow
x2 solvent(n-hexane) feed flow
x3 catalyst feed flow
x4 gas recycle/monomer feed ratio

output
y1 production
y2 slurry polymer
y3 catalyst efficiency

In order to build a well-described dynamic PLS model, four input random step signals magnitudes
ranging between −3.5 and 3.5 (shown in Figure 4) are applied to excite the system. In this simulation,
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a white noise with deviation 0.01 and zero mean is added to input data. The system responses are
collected as a part of modeling data (solid line shown in Figure 5). Modeling results are shown in
the Figure 5 with dotted line and marked with “DyPLS”. In the DyPLS model, the number of latent
variables is three, and the number of state variables of the inner model is five. The integral of squared
error between system responses and modeling results of three outputs are 4.2531× 103, 5.5489× 103

and 243.64, respectively. One can see that the DyPLS did not match process well, that is because
some of useful information are ignored due to the iterative modeling mechanism of PLS (according to
Equation (1), there is always F* and E*).
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Figure 5. Output data set and modeling results.

The total simulation horizon for the control comparison is 900. Step signal, ramp signal and
sinusoidal signal are used as the set-point of outputs to simulate the common reference signals in
industry. In this case study, the conventional MPC, conventional MPC in dynamic PLS and the
proposed method are compared together. Control results are shown in Figures 6–11. Shown in
Figures 7, 9 and 11 are the control error between system outputs and set-points of two methods.
In order to evaluate and compare the control performance, the integral of squared error (ISE) between
set-points and system outputs is used, results are shown in Table 2. In this case study, Matlab R2012a is
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used. The configuration of computer is i5 2.6 GHz CPU and 8 GB RAM. Computing time of the three
methods are shown in Table 2. From the simulation results, one can conclude that the proposed method
has less tracking error than the conventional methods. And the computing time of PLS framework is
significantly lower than that of conventional MPC.
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Table 2. Integral of squared error (ISE) and computing time of three methods.

Conventional MPC Conventional MPC in Dynamic PLS Proposed Method

ISE of y1 37.33 6.38 5.70
ISE of y2 52.21 9.26 7.80
ISE of y3 31.98 14.73 9.08

Computing time (ms) 87.23 63.87 64.37

Shown in Figure 12 is the control result for third controller is broken. One can see that even if
a controller is broken, the proposed method can still keep the system output within a certain range.Information 2017, 8, 121  12 of 14 
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5. Conclusions

In this paper, a MPC controller design in the DyPLS framework with an offset-free mechanism
was proposed. First, a state space model-based DyPLS model is identified. Based on the obtained
model, multiple sub-MPCs are designed. With the integral action in the proposed MPC, offset-free
reference tracking performance is guaranteed. With the decoupling character of PLS, the proposed
method can be considered as distributed form. It can reduce the calculation burden and is suitable
for being embedded into distributed control systems such as network control systems. Furthermore,
due to the independently running character of controllers, the proposed method can retain partial
control performance for the system when some controllers are broken down.
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