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Abstract: Linguistic neutrosophic numbers (LNN) is presented by Fang and Ye in 2017, which can 
describe the truth, falsity, and indeterminacy linguistic information independently. In this paper, 
the LNN and the Bonferroni mean operator are merged together to propose a LNN normalized 
weighted Bonferroni mean (LNNNWBM) operator and a LNN normalized weighted geometric 
Bonferroni mean (LNNNWGBM) operator and the properties of these two operators are proved. 
Further, multi-attribute group decision methods are introduced based on the proposed LNNNWBM 
and LNNNWGBM operators, and then an example is provided to demonstrate the application and 
validity of the proposed methods. In addition, in order to consider the effect of the parameters p 
and q on the decision results, different pairs of parameter values are employed to verify the decision 
results. 

Keywords: linguistic neutrosophic numbers (LNN); LNN normalized weighted Bonferroni mean 
(LNNNWBM) operator; LNN normalized weighted geometric Bonferroni mean (LNNNWGBM) 
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1. Introduction 

In dealing with the complex, unknown, and uncertain decision-making problems, a group of 
decision-makers are usually employed to analyze a set of alternatives and to get the optimal result in 
a certain way. Such a decision-making process is called multiple attribute group decision-making 
(MAGDM) problem. When making decisions, decision-makers tend to use words such as “excellent”, 
“good”, and “poor” to express their evaluations for objects. Zadeh proposed a linguistic variable set 
S = {ܵ଴, ଵܵ, ܵଶ, ܵଷ, … ௚ܵ} (g is an even number) to deal with the approximate reasoning problems [1,2]. 
The linguistic variable is an effective tool, it improves the reliability and flexibility of classical decision 
models [3,4]. In recent years, the linguistic variables have been frequently linked to other theories. 
Liu proposed the intuitionistic linguistic set (ILS) composed of linguistic variables and IFS, where the 
first component provides its qualitative evaluation value/linguistic value and the second component 
gives the credibility of its intuitionistic fuzzy value for the given linguistic value [5]. Then, Chen et 
al. proposed the linguistic intuitionistic fuzzy number (LIFN), which is composed of the intuitionistic 
fuzzy number (the basic element in IFS) and the linguistic variable [6]. On the other hand, some 
methods for multiple attribute group decision-making (MAGDM) were proposed based on two-
dimension uncertain linguistic variable [7,8]. Some improved linguistic intuitionistic fuzzy 
aggregation operators and several corresponding applications were given in decision-making [9]. 
Although the IFS theory considers not only T(x), but also F(x), IFS is still not perfect enough because 
it ignores the indeterminate and inconsistent information. Thus, the intuitionistic fuzzy number can 
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only be used for expressing incomplete information, but not for expressing indeterminate and 
inconsistent information. To make up for the insufficiency of the IFS theory, Smarandache put 
forward the neutrosophic set (NS) composed of three parts: truth T(x), falsity F(x), and indeterminacy 
I(x) [10,11]. Wang et al. and Smarandache also proposed the concept of a single-valued neutrosophic 
set (SVNS) satisfying T(x), I(x), F(x) ⊆ [0, 1], 0 ≤ T(x) + F(x) + I(x) ≤ 3 [10–12]. Ye proposed an extended 
TOPSIS (technique for order preference by similarity to an ideal Solution) method for MAGDM based 
on single valued neutrosophic linguistic numbers (SVNLNs), which are basic elements in a single-
valued neutrosophic linguistic set (SVNLS) [13]. Liu and Shi presented some neutrosophic uncertain 
linguistic number Heronian mean operators and their application to MAGDM [14]. Since the 
Bonferroni mean (BM) is a useful operator in decision-making [15], it was extended to hesitant fuzzy 
sets, IFSs, and interval-valued IFSs to propose their some Bonferroni mean operators for decision 
making [16–20]. Then, Fang and Ye proposed the linguistic neutrosophic numbers (LNN) and their 
basic operational laws [21]. LNN consists of the truth, indeterminacy, and falsity linguistic degrees, 
which can be expressed as the form a = <lT, lI, lF>, but the LIFN and SVNLN cannot express such 
linguistic evaluation value. In [21], Fang and Ye also presented a LNN-weighted arithmetic averaging 
(LNNWAA) operator and a LNN-weighted geometric averaging (LNNWGA) operator for MAGDM. 
However, the Bonferroni mean operator is not extended to LNNs so far. Hence, this paper proposes 
a LNN normalized weighted Bonferroni mean (LNNNWBM) operator, a LNN normalized weighted 
geometric Bonferroni mean (LNNNWGBM) operator and their MAGDM methods. Compared with 
the aggregation operators in [14,21], the LNNNWBM and LNNNWGBM operators can calculate the 
final weights by the relation between attribute values, which can make the information aggregation 
more objective and reliable. 

The rest organizations of this paper are as follows. Section 2 describes some basic concepts of 
LNN, the basic operational laws of LNNs, and the basic concepts of BM and the normalized weighted 
BM. Section 3 proposes the LNNNWBM and LNNNWGBM operators and investigates their 
properties. Section 4 establishes MAGDM methods by using the LNNNWBM operator and 
LNNNWGBM operator. Section 5 provides an illustrative example with different values of the 
parameters p and q to demonstrate the application of the proposed methods. Section 6 gives 
conclusions. 

2. Some Concepts of LNNs and BM 

2.1. Linguistic Neutrosophic Numbers and Their Operational Laws 

Definition 1 [21]. Set ܮ = {݈଴, ݈ଵ, ݈ଶ, … , ݈௚} as a language term set, in which g is an even number and g + 1 is 
the particle size of L. If a = 〈்݈, ݈ூ, ݈ி〉 is defined for ்݈, ݈ூ, ݈ி ∈ ,ܶ and ܮ ,ܫ ܨ ∈ [0, g], where ்݈ expresses the 
truth degree, ݈ூ	expresses indeterminacy degree, and	݈ி expresses falsity degree by linguistic terms, then a is 
called an LNN.	 
Definition 2 [21]. Set a = 〈்݈, ݈ூ, ݈ி〉, ܽଵ  = 〈݈ భ், ݈ூభ, ݈ிభ〉, and ܽଶ  = 〈݈ మ், ݈ூమ, ݈ிమ〉 as three LNNs in L, the 
number	ߣ ≥ 0, they have the follow operational laws: 

ܽଵ ⊕	a2 = 〈݈ భ், ݈ூభ, ݈ிభ〉 ⊕ 〈݈ మ், ݈ூమ, ݈ிమ〉 = 〈݈ భ்ା మ்ି೅భ೅మ೒ , ݈಺భ಺మ೒ , ݈ಷభಷమ೒ 〉; (1) ܽଵ ⊗ a2 = 〈݈ భ், ݈ூభ, ݈ிభ〉 ⊗ 〈݈ మ், ݈ூమ, ݈ிమ〉 = 〈݈೅భ೅మ೒ , ݈ூభାூమି಺భ಺మ೒ , ݈ிభାிమିಷభಷమ೒ 	ܽߣ (2) ;〈 = ,்݈〉ߣ	 ݈ூ, ݈ி〉 = 〈݈௚ି௚(ଵି೅೒)ഊ, ݈௚(಺೒)ഊ, ݈௚(ಷ೒)ഊ〉; (3) ܽఒ = 〈்݈, ݈ூ, ݈ி〉ఒ = 〈݈௚(೅೒)ഊ, ݈௚ି௚(ଵି಺೒)ഊ, ݈௚ି௚(ଵିಷ೒)ഊ〉. (4) 

Definition 3 [21]. Set a = 〈்݈, ݈ூ, ݈ி〉 as an LNN in L, then the expectation E(ܽ) and the accuracy H(ܽ) can be 
defined as follows: 
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E(a) = (2g + T − I − F)/3g (5) 

H(a) = (T − F)/g (6) 

Definition 4 [21]. Set ܽଵ = 〈݈ భ், ݈ூభ, ݈ிభ〉 and ܽଶ = 〈݈ మ், ݈ூమ, ݈ிమ〉 as two LNNs, then: 
If E(ܽଵ) > E(ܽଶ), then	ܽଵ ≻ ܽଶ; 
If E(ܽଵ) = E(ܽଶ) then  
If H(ܽଵ) > H(ܽଶ), then	ܽଵ ≻ ܽଶ; 
If H(ܽଵ) = H(ܽଶ), then	ܽଵ ∼ ܽଶ; 
If H(ܽଵ) < H(ܽଶ), then	ܽଵ ≺ ܽଶ. 

2.2. Bonferroni Mean Operators 

Definition 5 [15]. Let (ܽଵ, ܽଶ, … ܽ௡) be a set of non-negative numbers, the function BM: Rn→R. If p, q ≥ 0 
and BM satisfies: 

BMp,q (ܽଵ, ܽଶ, … ܽ௡) = ቆ ଵ௡(௡ିଵ)∑ ܽ௜௣௡௜,௝ୀଵ௝ஷ௜ ௝ܽ௤ቇ భ೛శ೜
 (7) 

then BMp,q is called a BM operator. 

Definition 6 [16]. Let (ܽଵ, ܽଶ, … ܽ௡) be a set of non-negative numbers, the function NWBM: Rn→R, ݓ௜ (i = 
1,2,…,n) be the relative weight of ܽ௜	(i = 1,2,…,n), ݓ௜ ∈ ሾ0,1ሿ, and ∑ ௜௡௜ୀଵݓ = 1. If p, q ≥ 0 and NWBM 
satisfies: 

NWBMp,q (ܽଵ, ܽଶ, … ܽ௡) = ቆ∑ ௪೔௪ೕଵି௪೔ ܽ௜௣௡௜,௝ୀଵ௝ஷ௜ ௝ܽ௤ቇ భ೛శ೜
 (8) 

then NWBMp,q is called a normalized weighted BM operator. 

Definition 7 [17]. Let (ܽଵ, ܽଶ, … ܽ௡) be a set of non-negative numbers, the function GBM: Rn→R. If p, q ≥ 0 
and GBM satisfies: 

GBMp,q (ܽଵ, ܽଶ, …ܽ௡) = ൬ଵ௡∑ ܽ௜௣௡௜ (∏ ௝ܽ௤)௡௝ୀଵ,௝ஷ௜ భ೙షభ൰ భ೛శ೜
 (9) 

then GBMp,q is called a geometric BM operator. 

Definition 8 [18–20]. Let (ܽଵ, ܽଶ, … ܽ௡) be a set of non-negative numbers, the function NWGBM: Rn→R, ݓ௜	(i = 1,2,…,n) be the relative weight of ܽ௜	(i = 1,2,…,n), ݓ௜ ∈ ሾ0,1ሿ, and ∑ ௜௡௜ୀଵݓ = 1. If p, q ≥ 0 and 
NWGBM satisfies: 

NWGBMp,q (ܽଵ, ܽଶ, …ܽ௡) = ଵ௣ା௤⨂௜,௝ୀଵ,௝ஷ௜௡ ݍ⨁௜ܽ݌) ௝ܽ)ೢ೔ೢೕభషೢ೔  (10) 

then NWGBMp,q is called a normalized weighted geometric BM (NWGBM) operator. 

3. Two BM Aggregation Operators of LNNs 

3.1. Normalized Weighted BM Operators of LNNs 

Definition 9. Set ܽ௜ = 〈்݈೔, ݈ூ೔ , ݈ி೔〉 (i = 1,2,…,n) as a collection of LNNs in L, then the LNNNWBM operator 
can be defined as follows: 

LNNNWBMp,q (ܽଵ, ܽଶ, … ܽ௡) = ቆ∑ ௪೔௪ೕଵି௪೔ ܽ௜௣௡௜,௝ୀଵ௝ஷ௜ ௝ܽ௤ቇ భ೛శ೜
 (11) 
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where ݓ௜	is the relative weight of	ܽ௜, ݓ௜ ∈ ሾ0, 1ሿ, and	∑ ௜௡௜ୀଵݓ = 	is the relative weight of	௝ݓ ,1 ௝ܽ, ݓ௝ ∈ ሾ0, 1ሿ, 
and	∑ ௝௡௝ୀଵݓ = 1. 

According to Definitions 2 and 9, we can get the following theorem: 

Theorem 1. Set ܽ௜ = 〈்݈೔, ݈ூ೔ , ݈ி೔〉 (i = 1,2,…,n) as a collection of LNNs in L, then by the Equation (11), the 
aggregation result obtained is still an LNN, and we can get the following aggregation formula: 

LNNNWBMp,q (ܽଵ, ܽଶ, … ܽ௡) = 	ቆ∑ ௪೔௪ೕଵି௪೔ ܽ௜௣௡௜,௝ୀଵ௝ஷ௜ ௝ܽ௤ቇ భ೛శ೜ = 〈݈௚൮ଵି∏ ∏ ቆଵିቀ்೔௚ ቁ೛൬்ೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲
భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିூ೔௚ቁ೛൬ଵିூೕ௚൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲

భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିி೔௚ ቁ೛൬ଵିிೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲
భ೛శ೜〉 (12) 

where ݓ௜	is the relative weight of	ܽ௜, ݓ௜ ∈ ሾ0, 1ሿ, and	∑ ௜௡௜ୀଵݓ = 	is the relative weight of	௝ݓ ,1 ௝ܽ, ݓ௝ ∈ ሾ0, 1ሿ, 
and ∑ ௝௡௝ୀଵݓ = 1. 

Proof 1: 
(1) ܽ௜௣ = 〈݈௚(೅೔೒ )೛, ݈௚ି௚(ଵି಺೔೒)೛, ݈௚ି௚(ଵିಷ೔೒ )೛〉; 
(2) ௝ܽ௤ = 〈݈௚(೅ೕ೒ )೜, ݈௚ି௚(ଵି಺ೕ೒)೜, ݈௚ି௚(ଵିಷೕ೒ )೜〉; 
(3) ܽ௜௣⨂ ௝ܽ௤ = 〈݈௚(்೔௚ )೛௚(்ೕ௚ )೜௚ , ݈௚ି௚ቀଵିூ೔௚ቁ೛ା௚ି௚൬ଵିூೕ௚൰೜ି൬௚ି௚ቀଵିூ೔௚ቁ೛൰ቆ௚ି௚൬ଵିூೕ௚൰೜ቇ௚

, ݈௚ି௚ቀଵିி೔௚ ቁ೛ା௚ି௚൬ଵିிೕ௚ ൰೜ି൬௚ି௚ቀଵିி೔௚ ቁ೛൰ቆ௚ି௚൬ଵିிೕ௚ ൰೜ቇ௚
〉 

=〈݈௚(೅೔೒ )೛(೅ೕ೒ )೜, ݈௚ି௚ቀଵି಺೔೒ቁ೛൬ଵି಺ೕ೒൰೜, ݈௚ି௚ቀଵିಷ೔೒ ቁ೛൬ଵିಷೕ೒ ൰೜〉 
(4) 

௪೔௪ೕଵି௪೔ 	ܽ௜௣⨂ ௝ܽ௤ = 〈݈
௚ି௚ۈۉ

ଵି೒൬೅೔೒ۇ ൰೛ቆ೅ೕ೒ ቇ೜೒ ۋی
ۊ
ೢ೔ೢೕభషೢ೔ , ݈௚ۇۈۉ೒ష೒൬భష

಺೔೒൰೛ቆభష಺ೕ೒ቇ೜೒ ۋی
ۊ
ೢ೔ೢೕభషೢ೔ , ݈௚ۇۈۉ೒ష೒൬భష

ಷ೔೒ ൰೛ቆభషಷೕ೒ ቇ೜೒ ۋی
ۊ
ೢ೔ೢೕభషೢ೔ 〉 

=〈݈௚ି௚ቆଵିቀ೅೔೒ ቁ೛൬೅ೕ೒ ൰೜ቇೢ೔ೢೕభషೢ೔ , ݈௚ቆଵିቀଵି಺೔೒ቁ೛൬ଵି಺ೕ೒൰೜ቇೢ೔ೢೕభషೢ೔ , ݈௚ቆଵିቀଵିಷ೔೒ ቁ೛൬ଵିಷೕ೒ ൰೜ቇೢ೔ೢೕభషೢ೔ 〉 
(5) ⨁௜ୀଵ௡ ⨁௝ୀଵ,௝ஷ௜௡ 	௪೔௪ೕଵି௪೔ 	ܽ௜௣⨂ ௝ܽ௤= 〈݈௚ି௚∏ ∏ ቆଵିቀ்೔௚ ቁ೛൬்ೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ

, ݈௚∏ ∏ ቆଵିቀଵିூ೔௚ቁ೛൬ଵିூೕ௚൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ
, ݈௚∏ ∏ ቆଵିቀଵିி೔௚ ቁ೛൬ଵିிೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ

〉 
(6) (⨁௜ୀଵ௡ ⨁௝ୀଵ,௝ஷ௜௡ 	௪೔௪ೕଵି௪೔ 	ܽ௜௣⨂ ௝ܽ௤) భ೛శ೜= 〈݈௚൮ଵି∏ ∏ ቆଵିቀ்೔௚ቁ೛൬்ೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲ భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିூ೔௚ቁ೛൬ଵିூೕ௚൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲ భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିி೔௚ ቁ೛൬ଵିிೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲ భ೛శ೜〉 
So ቆ∑ ௪೔௪ೕଵି௪೔ ܽ௜௣௡௜,௝ୀଵ௝ஷ௜ ௝ܽ௤ቇ భ೛శ೜ = 

〈݈௚൮ଵି∏ ∏ ቆଵିቀ்೔௚ ቁ೛൬்ೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲
భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିூ೔௚ቁ೛൬ଵିூೕ௚൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲

భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିி೔௚ ቁ೛൬ଵିிೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲
భ೛శ೜〉 

The proof of Theorem 1 is completed. □ 

Theorem 2. (Idempotency). Set ܽ௜ = 〈்݈೔, ݈ூ೔ , ݈ி೔〉 (i = 1,2,…,n) as a collection of LNNs in L, if ܽ௜ = a, then  

LNNNWBMp,q (ܽଵ, ܽଶ, … , ܽ௡) = LNNNWBMp,q (ܽ, ܽ …ܽ) =	a. 

Proof 2: 
Since ܽ௜ = a, i.e., Ti = T; Ii = I; Fi = F for i = 1,2,	…,n, there are the following result: 
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,௣,௤(ܽଵܯܤܹܰܰܰܮ ܽଶ, …ܽ௡) = ,ܽ)	௣,௤ܯܤܹܰܰܰܮ ܽ …ܽ) 	= (	෍ ௝1ݓ௜ݓ − ௜ݓ ܽ௣௡
௜,௝ୀଵ௝ஷ௜

ܽ௤) ଵ௣ା௤ 

=〈݈
௚ۇۉଵିቀଵିቀ೅೒ቁ

೛ቀ೅೒ቁ೜ቁ∑ ∑ ೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ
ۊی

భ೛శ೜, ݈௚ି௚ۇۉଵିቀଵିቀଵି಺೒ቁ೛ቀଵି಺೒ቁ೜ቁ∑ ∑ ೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ
ۊی

భ೛శ೜, ݈௚ି௚ۇۉଵିቀଵିቀଵିಷ೒ቁ೛ቀଵିಷ೒ቁ೜ቁ∑ ∑ ೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ
ۊی

భ೛శ೜〉 
=〈݈௚ቆଵି൬ଵିቀ೅೒ቁ೛శ೜൰ቇ భ೛శ೜, ݈௚ି௚ቆଵି൬ଵିቀଵି಺೒ቁ೛శ೜൰ቇ భ೛శ೜, ݈௚ି௚ቆଵି൬ଵିቀଵିಷ೒ቁ೛శ೜൰ቇ భ೛శ೜〉 
=	〈்݈, ݈ூ, ݈ி〉 = a.  
The proof of Theorem 2 is completed. □ 

Theorem 3. (Monotonicity). Set ܽ௜ = 〈்݈೔, ݈ூ೔ , ݈ி೔〉	and bi = 〈்݈೔ᇲ, ݈ூ೔ᇲ, ݈ி೔ᇲ〉 (i = 1,2,…, n) as two collections of 
LNNs in L, if ௜ܶ ≤ ௜ܶᇱ, ௜ܫ ≥ ,௜ᇱܫ ௜ܨ	݀݊ܽ ≥ 	௜ᇱܨ then ܯܤܹܰܰܰܮ௣,௤(ܽଵ, ܽଶ, …ܽ௡) ,(ܾଵ	௣,௤ܯܤܹܰܰܰܮ≥ ܾଶ, … ܾ௡). 
Proof 3: 

Since	 ௜ܶ ≤ ௜ܶᇱ, ௜ܫ ≥ ௜ܨ	݀݊ܽ	௜ᇱܫ ≥ ௜ᇱ, we can easy obtain: 1ܨ − ቀ்೔௚ቁ௣ ቀ்ೕ௚ ቁ௤ ≥ 1 − ቀ்೔ᇲ௚ ቁ௣ ൬்ೕᇲ௚ ൰௤, 

1 − ∏ ∏ ቀ1 − ቀ்೔௚ቁ௣ ቀ்ೕ௚ ቁ௤ቁೢ೔ೢೕభషೢ೔௡௝ୀଵ௝ஷ௜௡௜ୀଵ ≤ 1 −∏ ∏ ൬1 − ቀ்೔ᇲ௚ ቁ௣ ൬்ೕᇲ௚ ൰௤൰ೢ೔ೢೕభషೢ೔௡௝ୀଵ௝ஷ௜௡௜ୀଵ , 

݃ ൭1 −∏ ∏ ቀ1 − ቀ்೔௚ቁ௣ ቀ்ೕ௚ ቁ௤ቁೢ೔ೢೕభషೢ೔௡௝ୀଵ௝ஷ௜௡௜ୀଵ ൱ భ೛శ೜ ≤ ݃ቌ1 −∏ ∏ ൬1 − ቀ்೔ᇲ௚ ቁ௣ ൬்ೕᇲ௚ ൰௤൰ೢ೔ೢೕభషೢ೔௡௝ୀଵ௝ஷ௜௡௜ୀଵ ቍ భ೛శ೜
. 

Similarly ቀ1 − ூ೔௚ቁ௣ ቀ1 − ூೕ௚ቁ௤ ≤ ቀ1 − ூ೔ᇲ௚ ቁ௣ ൬1 − ூೕᇲ௚ ൰௤, 

1 −ෑෑቆ1− ൬1 − ௜݃൰௣ܫ ൬1 − ௝݃൰௤ቇ௪೔௪ೕଵି௪೔௡ܫ
௝ୀଵ௝ஷ௜

௡
௜ୀଵ ≤ 1 −ෑෑቆ1− ቆ1 − ௜ᇱ݃ቇ௣ܫ ቆ1 − ௝ᇱ݃ቇ௤ቇ௪೔௪ೕଵି௪೔௡ܫ

௝ୀଵ௝ஷ௜
௡
௜ୀଵ , 

ۈۉ݃−݃
1ۇ −ෑෑቆ1− ൬1 − ௜݃൰௣ܫ ൬1 − ௝݃൰௤ቇ௪೔௪ೕଵି௪೔௡ܫ

௝ୀଵ௝ஷ௜
௡
௜ୀଵ ۋی

ۊ ଵ௣ା௤

≥ ۈۉ݃−݃
1ۇ −ෑෑቆ1− ቆ1 − ௜ᇱ݃ቇ௣ܫ ቆ1 − ௝ᇱ݃ቇ௤ቇ௪೔௪ೕଵି௪೔௡ܫ

௝ୀଵ௝ஷ௜
௡
௜ୀଵ ۋی

ۊ ଵ௣ା௤
 

and 
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ۈۉ݃−݃
1ۇ −ෑෑቆ1− ൬1 − ௜݃൰௣ܨ ൬1 − ௝݃൰௤ቇ௪೔௪ೕଵି௪೔௡ܨ

௝ୀଵ௝ஷ௜
௡
௜ୀଵ ۋی

ۊ ଵ௣ା௤

≥ ۈۉ݃−݃
1ۇ −ෑෑቆ1− ቆ1 − ௜ᇱ݃ܨ ቇ௣ ቆ1 − ௝ᇱ݃ܨ ቇ௤ቇ௪೔௪ೕଵି௪೔௡

௝ୀଵ௝ஷ௜
௡
௜ୀଵ ۋی

ۊ ଵ௣ା௤. 
So, ܯܤܹܰܰܰܮ௣,௤(ܽଵ, ܽଶ, …ܽ௡) ≤ ,(ܾଵ	௣,௤ܯܤܹܰܰܰܮ ܾଶ, … ܾ௡)  is true according to Theorem 3. 

Therefore, the proof of Theorem 3 is completed. □ 

Theorem 4. (Boundedness). Set ܽ௜  = 〈்݈೔, ݈ூ೔ , ݈ி೔〉 (i = 1,2,…,n) as a collections of LNNs in L, let ܽି =〈݉݅݊	(்݈೔),݉ܽݔ	(݈ூ೔),݉ܽݔ	(݈ி೔)〉	and ܽା = ିܽ  :then	,〈(ி೔݈)	݊݅݉,(ூ೔݈)	݊݅݉,(೔்݈)	ݔܽ݉〉 ≤ ,௣,௤(ܽଵܯܤܹܰܰܰܮ ܽଶ, …ܽ௡) ≤ ܽା 

Proof 4: 
According Theorem 2, we can obtain: ܽି = ,ିܽ)௣,௤ܤܹܰܰܰܮ ܽି …ܽି) and ܽା = ,௣,௤(ܽାܯܤܹܰܰܰܮ ܽା …ܽା)  
According Theorem3, we can obtain: ܯܤܹܰܰܰܮ௣,௤	(ܽି, ܽି …ܽି) ≤ ,௣,௤(ܽଵܯܤܹܰܰܰܮ ܽଶ, … ܽ௡) ≤ ,(ܽା	௣,௤ܯܤܹܰܰܰܮ ܽା …ܽା). 
Then ܽି ≤ ,௣,௤(ܽଵܯܤܹܰܰܰܮ ܽଶ, …ܽ௡) ≤ ܽା. 
The proof of Theorem 4 is completed. □ 

3.2. Normalized Weighted Geometric BM Operators of LNNs 

Definition 10. Set ܽ௜  = 〈்݈೔, ݈ூ೔ , ݈ி೔〉 (i = 1,2,…,n) as a collection of LNNs in L, then the LNNNWGBM 
operator can be defined as follows: 

LNNNWGBMp,q (ܽଵ, ܽଶ, …ܽ௡) = ଵ௣ା௤⨂௜ୀଵ௡ ⨂௝ୀଵ,௝ஷ௜௡ ݍ⨁௜ܽ݌) ௝ܽ)ೢ೔ೢೕభషೢ೔  (13) 

where ݓ௜	is the relative weight of	ܽ௜ ௜ݓ , ∈ ሾ0,1ሿ, and	∑ ௜௡௜ୀଵݓ = 	is the relative weighted of	௝ݓ ,1 ௝ܽ ௝ݓ , ∈ሾ0,1ሿ, and	∑ ௝௡௝ୀଵݓ = 1. 

According to Definitions 2 and 10, we can get the following theorem: 

Theorem 5. Set ܽ௜ = 〈்݈೔, ݈ூ೔ , ݈ி೔〉 (i = 1,2,…,n) as a collection of LNNs in L, then by the Equation (13) the 
aggregation result obtained is still an LNN, and we can get the following aggregation formula: 

LNNNWGBMp,q (ܽଵ, ܽଶ, …ܽ௡) = 	 ଵ௣ା௤⨂௜ୀଵ௡ ⨂௝ୀଵ,௝ஷ௜௡ ݍ⨁௜ܽ݌) ௝ܽ)ೢ೔ೢೕభషೢ೔ = 〈݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵି்೔௚ቁ೛൬ଵି்ೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲ భ೛శ೜, ݈௚൮ଵି∏ ∏ ቆଵିቀூ೔௚ቁ೛൬ூೕ௚൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲ భ೛శ೜, ݈௚൮ଵି∏ ∏ ቆଵିቀி೔௚ ቁ೛൬ிೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲ (14) 

where ݓ௜	is the relative weight of	ܽ௜ ௜ݓ , ∈ ሾ0,1ሿ, and	∑ ௜௡௜ୀଵݓ = 	is the relative weighted of	௝ݓ ,1 ௝ܽ ௝ݓ , ∈ሾ0,1ሿ, and ∑ ௝௡௝ୀଵݓ = 1. 

The proof of Theorem 5 is similar to that of Theorem 1, so we do not repeat it again. 

Theorem 6. (Idempotency). Set ܽ௜ = 〈்݈೔, ݈ூ೔ , ݈ி೔〉 (i = 1,2,…,n) as a collection of LNNs in L, if ܽ௜ = a, then  

LNNNWGBMp,q (ܽଵ, ܽଶ, …ܽ௡)	= LNNNWGBMp,q (ܽ, ܽ …ܽ) = a 

The proof of Theorem 6 is similar to that of Theorem 2, so we don’t repeat it again. 
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Theorem 7. (Monotonicity). Set ܽ௜ = 〈்݈೔, ݈ூ೔ , ݈ி೔〉and bi = 〈்݈೔ᇲ, ݈ூ೔ᇲ, ݈ி೔ᇲ〉 (i = 1,2,…,n) as two collections of 
LNNs in L, if ௜ܶ ≤ ௜ܶᇱ, ௜ܫ ≥ ௜ܨ	݀݊ܽ	௜ᇱܫ ≥ ,௣,௤(ܽଵܯܤܩܹܰܰܰܮ  :then	௜ᇱܨ ܽଶ, … ܽ௡) ≤ ,(ܾଵ	௣,௤ܯܤܩܹܰܰܰܮ ܾଶ, … ܾ௡) 

The proof of Theorem 7 is similar to that of Theorem 3, so we do not repeat it again. 

Theorem 8. (Boundedness). Set ܽ௜  = 〈்݈೔, ݈ூ೔ , ݈ி೔〉 (i = 1,2,…,n) as a collections of LNNs in L, let ܽି =〈݉݅݊	(்݈೔),݉ܽݔ	(݈ூ೔),݉ܽݔ	(݈ி೔)〉	and ܽା = ିܽ :then	,〈(ி೔݈)	݊݅݉,(ூ೔݈)	݊݅݉,(೔்݈)	ݔܽ݉〉 ≤ ,௣,௤(ܽଵܯܤܩܹܰܰܰܮ ܽଶ, …ܽ௡) ≤ ܽା 

The proof of Theorem 8 is similar to that of Theorem 4, so we do not repeat it again. 

4. MAGDM Methods Based on the LNNNWBM or LNNNWGBM Operator 

In this section, we will use the LNNNWBM or LNNNWGBM operator to deal with the MAGDM 
problems with LNN information. 

In a MAGDM problem, there is a set of several alternatives ܣ = ,ଵܣ} ,ଶܣ … ,  with a set of some	௠}ܣ
attributes	ܥ = ,ଵܥ} …,ଶܥ , ߣ ,௡}. Thenܥ = ൫ߣଵ,ߣଶ, … , ௜ߣ	௡൯்withߣ ≥ 0	and	∑ ௜௡௜ୀଵߣ = 1 are the weights of ܥ௜(݅ = 1,2, … , ݊). Now, there is a set of t experts ܧ = ,ଵܧ} ,ଶܧ … ,  .to evaluate the MAGDM problem	௧}ܧ
Assume that ݓ = ൫ݓଵ,ݓଶ, … ௧൯்ݓ,  with ݓ௝ ≥ 0	 and 	∑ ௝௧௝ୀଵݓ = 1  is the vector of the weights for ܧ௬(ݕ = 1,2, … , (ݐ  and ܮ = {݈ଵ, ݈ଶ, … , ݈௚}	݅ݏ	the	given	 linguistic term set. The assessed value of the 
expert 	௬ܧ	 for ܣ௜  with attribute ܥ௝  is 	ܽ௜௝(௬) =< ்݈೔ೕ௬ , ݈ூ೔ೕ௬ , ݈ி೔ೕ௬ >∈ ݕ)ܣ = 1,2, … , ;ݐ 	݅ = 1,2, … ,݉; ݆ =1,2, … , ݊), ்݈೔ೕ௬ , ݈ூ೔ೕ௬ , ݈ி೔ೕ௬ ∈  ,Then, we can get the neutrosophic linguistic decision evaluation matrix ܴ௬ .ܮ
which is shown in Table 1. 

Table 1. The neutrosophic linguistic decision matrix ܴ௬ of the expert ܧ௬. ࡯૚ … ݈〉 ଵܣ࢔࡯ భ்భ௬ , ݈ூభభ௬ , ݈ிభభ௬ 〉 … 〈݈ భ்೙௬ , ݈ூభ೙௬ , ݈ிభ೙௬ ݈〉 ଶܣ 〈	 మ்భ௬ , ݈ூమభ௬ , ݈ிమభ௬ 〉 … 〈݈ మ்೙௬ , ݈ூమ೙௬ , ݈ிమ೙௬ 〉 … … … ݈〉 ௠ܣ… ೘்భ௬ , ݈ூ೘భ௬ , ݈ி೘భ௬ 〉 … 〈݈ ೘்೙௬ , ݈ூ೘೙௬ , ݈ி೘೙௬ 〉 
Then, based on the LNNNWBM or LNNNWGBM operator, we propose two decision-making 

methods, which are described as the following decision steps: 
Step 1: According to the weight vector ݓ = ൫ݓଵ,ݓଶ, … ௧൯்ݓ, of experts and the LNNNWBM 

operator, we can obtain the integrated matrix R = (ܽ௜௝)௠௡, where the collective LNN ܽ௜௝ can be 
obtained by the following formula: 

ܽ௜௝ = ൫ܽ௜௝ଵܯܤܹܰܰܰܮ , ܽ௜௝ଶ , … , ܽ௜௝௧ ൯ = ෍ۇۉ ௝1ݓ௜ݓ − ௜ݓ ܽ௜௣௧
௜,௝ୀଵ௝ஷ௜ ௝ܽ௤ۊی

ଵ௣ା௤

= 〈݈௚൮ଵି∏ ∏ ቆଵିቀ்೔௚ ቁ೛൬்ೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೟ೕసభೕಯ೔೟೔సభ ൲
భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିூ೔௚ቁ೛൬ଵିூೕ௚൰೜ቇೢ೔ೢೕభషೢ೔೟ೕసభೕಯ೔೟೔సభ ൲

భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିி೔௚ ቁ೛൬ଵିிೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೟ೕసభೕಯ೔೟೔సభ ൲
భ೛శ೜〉 (15) 

Step 2: According to the weight vector ߣ = ൫ߣଵ,ߣଶ, … ,  ௡൯்of attributes and the LNNNWBMߣ
operator or the LNNNWGBM operator, we can obtain the total collective LNN ܽ௜  for ݅)௜ܣ	 =1,2, … ,݉). 
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ܽ௜ = ,௜ଵܽ)ܯܤܹܰܰܰܮ ܽ௜ଶ, … , ܽ௜௡) = ෍ۇۉ ௝1ݓ௜ݓ − ௜ݓ ܽ௜௣௡
௜,௝ୀଵ௝ஷ௜ ௝ܽ௤ۊی

ଵ௣ା௤

= 〈݈௚൮ଵି∏ ∏ ቆଵିቀ்೔௚ ቁ೛൬்ೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲
భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିூ೔௚ቁ೛൬ଵିூೕ௚൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲

భ೛శ೜, ݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵିி೔௚ ቁ೛൬ଵିிೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲
భ೛శ೜〉 (16) 

or: ܽ௜ = ,௜ଵܽ)ܯܤܩܹܰܰܰܮ ܽ௜ଶ, … , ܽ௜௡) = ݌1 + ௜ୀଵ௡⨂ݍ ⨂௝ୀଵ,௝ஷ௜௡ ݍ⨁௜ܽ݌) ௝ܽ)௪೔௪ೕଵି௪೔= 〈݈௚ି௚൮ଵି∏ ∏ ቆଵିቀଵି்೔௚ ቁ೛൬ଵି்ೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲
భ೛శ೜, ݈௚൮ଵି∏ ∏ ቆଵିቀூ೔௚ቁ೛൬ூೕ௚൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲

భ೛శ೜, ݈௚൮ଵି∏ ∏ ቆଵିቀி೔௚ ቁ೛൬ிೕ௚ ൰೜ቇೢ೔ೢೕభషೢ೔೙ೕసభೕಯ೔೙೔సభ ൲
భ೛శ೜〉 (17) 

Step 3: According to the Equation (5) (Equation (6) if necessary), we calculate the expected value 
E(ܽ௜) and the accuracy H(ܽ௜) of the LNN ܣ௜(݅ = 1,2, … ,݉). 

Step 4: According to the value E(ܽ௜) (H(ܽ௜) if necessary), then we can rank the alternatives and 
choose the best one. 

5. Illustrative Examples 

The decision-making problem used in the literature [21] is considered here. There are four 
companies as a set of alternatives	ܣ = ,ଵܣ} ,ଶܣ ,ଷܣ  a food company ,(ଵܣ) ସ}, which are a car companyܣ
 An investment company needs to invest .(ସܣ) and an arm company ,(ଷܣ) a computer company ,(ଶܣ)
the best company, so they invite a set of three experts ܧ = ൛ܧଵ,ܧଶ,ܧଷൟ	to evaluate these four companies. 
The evaluation of the alternatives must satisfy a set of three attributes	ܥ = ,ଵܥ} ,ଶܥ  ଶ}, which are theܥ
risk (C1), the growth (C2), and the environmental impact (C3). The importance of three experts is given 
as a weight vector ݓ	 = (0.37,0.33,0.3)்  and the importance of three attributes is given as 
a	weight	vector	ߣ = (0.35,0.25,0.4)்.		Then, the evaluation criteria are based on the linguistic term set 
L = {݈଴ = extremely	bad, ݈ଵ = very	bad, ݈ଶ = bad, ݈ଷ = slightly	bad, ݈ସ = medium, ݈ହ = slightly	good, ݈଺ =	good, ݈଻ = 	very	good, ଼݈ = 	extremely	good}. Thus, we can establish the LNN decision matrix ܴ௜ (i = 
1, 2, 3), which is listed in Tables 2–4. 

Table 2. The LNN decision matrix ܴଵ of the expert ܧଵ. 

૛࡯ ૚࡯  ,ଵ 〈݈଺ଵܣ૜࡯ ݈ଵଵ, ݈ଶଵ〉 〈݈଻ଵ, ݈ଶଵ, ݈ଵଵ〉 〈݈଺ଵ, ݈ଶଵ, ݈ଶଵ〉 ܣଶ 〈݈଻ଵ, ݈ଵଵ, ݈ଵଵ〉 〈݈଻ଵ, ݈ଷଵ, ݈ଶଵ〉 〈݈଻ଵ, ݈ଶଵ, ݈ଵଵ〉 ܣଷ 〈݈଺ଵ, ݈ଶଵ, ݈ଶଵ〉 〈݈଻ଵ, ݈ଵଵ, ݈ଵଵ〉 〈݈଺ଵ, ݈ଶଵ, ݈ଶଵ〉 ܣସ 〈݈଻ଵ, ݈ଵଵ, ݈ଶଵ〉 〈݈଻ଵ, ݈ଶଵ, ݈ଷଵ〉 〈݈଻ଵ, ݈ଶଵ, ݈ଵଵ〉 
Table 3. The LNN decision matrix ܴଶ of the expert ܧଶ. 

૛࡯ ૚࡯  ,ଵ 〈݈଺ଶܣ૜࡯ ݈ଵଶ, ݈ଶଶ〉 〈݈଺ଶ, ݈ଵଶ, ݈ଵଶ〉 〈݈ସଶ, ݈ଶଶ, ݈ଷଶ〉 ܣଶ 〈݈଻ଶ, ݈ଶଶ, ݈ଷଶ〉 〈݈଺ଶ, ݈ଵଶ, ݈ଵଶ〉 〈݈ସଶ, ݈ଶଶ, ݈ଷଶ〉 ܣଷ 〈݈ହଶ, ݈ଵଶ, ݈ଶଶ〉 〈݈ହଶ, ݈ଵଶ, ݈ଶଶ〉 〈݈ହଶ, ݈ସଶ, ݈ଶଶ〉 ܣସ 〈݈଺ଶ, ݈ଵଶ, ݈ଵଶ〉 〈݈ହଶ, ݈ଵଶ, ݈ଵଶ〉 〈݈ହଶ, ݈ଶଶ, ݈ଷଶ〉 
Table 4. The LNN decision matrix ܴଷ of the expert ܧଷ. 

૛࡯ ૚࡯  ,ଵ 〈݈଻ଷܣ૜࡯ ݈ଷଷ, ݈ସଷ〉 〈݈଻ଷ, ݈ଷଷ, ݈ଷଷ〉 〈݈ହଷ, ݈ଶଷ, ݈ହଷ〉 ܣଶ 〈݈଺ଷ, ݈ଷଷ, ݈ସଷ〉 〈݈ହଷ, ݈ଵଷ, ݈ଶଷ〉 〈݈଺ଷ, ݈ଶଷ, ݈ଷଷ〉 ܣଷ 〈݈଻ଷ, ݈ଶଷ, ݈ସଷ〉 〈݈଺ଷ, ݈ଵଷ, ݈ଶଷ〉 〈݈଻ଷ, ݈ଶଷ, ݈ସଷ〉 ܣସ 〈݈଻ଷ, ݈ଶଷ, ݈ଷଷ〉 〈݈ହଷ, ݈ଶଷ, ݈ଵଷ〉 〈݈଺ଷ, ݈ଵଷ, ݈ଵଷ〉 
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5.1. The Decision-Making Process Based on the LNNNWBM Operator or LNNNWGBM Operator 

Step 1: According to the weight vector ݓ = (0.37,0.33,0.3)் of experts and the LNNNWBM 
operator (set p = 1 and q = 1), we can obtain the integrated matrix R = (ܽ௜௝)௠×௡, which is listed in 
Table 5. 

Table 5. The integrated matrix R. ࡯૚ ࡯૛ ,ଵ 〈݈଺.ଷଵ଻଺ܣ૜࡯ ݈ଵ.ହ଺଼ଶ, ݈ଶ.଺ଵଶଽ〉 〈݈଺.଺଼ଵଽ, ݈ଵ.ଽ଺ସଵ, ݈ଵ.ହ଺଼ଶ〉 〈݈ହ.଴଴ହଽ, ݈ଶ.଴଴଴, ݈ଷ.ଶ଼ଽ଼〉 ܣଶ 〈݈଺.଻଴ସହ, ݈ଵ.ଽସ଻଺, ݈ଶ.଺ଷ଴଼〉 〈݈଺.଴ହଶସ, ݈ଵ.଺଻ଶ଼, ݈ଵ.଺଺ଷ଺〉 〈݈ହ.଻଴ଷଷ, ݈ଶ.଴଴଴, ݈ଶ.ଷ଴଻ସ〉 ܣଷ 〈݈ହ.ଽଽସଷ, ݈ଵ.଺଺ଷ଺, ݈ଶ.଺ଵଶଽ〉 〈݈଺.଴ଶ଺ସ, ݈ଵ.଴଴଴, ݈ଵ.଺ସଷ଴〉 〈݈ହ.ଽଽସଷ, ݈ଶ.଺଺ଵଷ, ݈ଶ.଺ଵଶଽܣସ 〈݈଺.଺଼ଵଽ, ݈ଵ.ଶଽହହ, ݈ଵ.ଽ଺ସଵ〉 〈݈ହ.଺ଽଶ଺, ݈ଵ.଺଺ଷ଺, ݈ଵ.଺଻ଶ଼〉 〈݈଺.଴ଶ଺ସ, ݈ଵ.଺଼ଶସ, ݈ଵ.଺ଵ଻଴
Step 2: According to the weight vector ߣ = (0.35,0.25,0.4)்of attributes and the LNNNWBM 

operator (set p = 1 and q = 1), we can obtain the collective overall LNNs of ܽ௜ for ܣ௜(݅ = 1,2,3,4) as 
follows: ܽଵ = 〈݈ହ.ଽଷଶ଼, ݈ଵ.଼ଷ଼଼, ݈ଶ.ହ଻଼ସ〉, 	ܽଶ = 〈݈଺.ଵସ଼ଽ, ݈ଵ.଼ଽ଴଼, ݈ଶ.ଶଷଽଽ〉, ܽଷ = 〈݈଺.଴଴ଷଶ, ݈ଵ.଼ସଷ଴, ݈ଶ.ଷସଶ଻〉, and ܽସ = 〈݈଺.ଵ଺଻ହ, ݈ଵ.ହସଵଶ, ݈ଵ.଻ହଷ଺〉. 

Step 3: Calculating the expected values of E(ܽ௜) for	ܽ௜(݅ = 1,2,3,4): 
E(ܽଵ) = 0.7298, E(ܽଶ) = 0.7508, E(ܽଷ) = 0.7424, and E(ܽସ) = 0.7864; 

According to the results, we can rank	ܧ(ܽସ) > (ଶܽ)ܧ > (ଷܽ)ܧ >  ସ is theܣ so the company ,(ଵܽ)ܧ
best choice among all the companies. 

On the other hand, we also use the LNNNWGBM operator (set p = 1 and q = 1) to deal with this 
decision-making problem: 

Step 1’: Just as step 1; 
Step 2’: According to the weight vector ߣ = (0.35,0.25,0.4)்of attributes and the LNNNWGBM 

operator (set p = 1 and q = 1), we can obtain the collective overall LNNs of ܽ௜ for ܣ௜(݅ = 1,2,3,4) as 
follows: ܽଵ = 〈݈ହ.ଽଽ଻଴, ݈ଵ.଼ଷଷଷ, ݈ଶ.ହସଷସ〉, ܽଶ = 〈݈଺.ଵ଻ଽ଴, ݈ଵ.଼଼ଽ଻, ݈ଶ.ଶଷଶସ〉, ܽଷ = 〈݈଺.଴଴ଷଶ, ݈ଵ.଻ଽଶ଼, ݈ଶ.ଷଷଷଶ〉, and	ܽସ =〈݈଺.ଵ଼ଶସ, ݈ଵ.ହଷ଺ଶ, ݈ଵ.଻ହ଴଴〉. 

Step 3’: Calculating the expected values of E(ܽ௜) for	ܽ௜(݅ = 1,2,3,4): 
E(ܽଵ) = 0.7342, E(ܽଶ) = 0.7524, E(ܽଷ) = 0.7449, and E(ܽସ) = 0.7873. 

According to the results, the ranking	is	ܧ	(ܽସ) > (ଶܽ)	ܧ > (ଷܽ)	ܧ >  ସ isܣ so the company ,(ଵܽ)	ܧ
the best choice among all the companies. 

5.2. Analysis the Influence of the Parameters p and q on Decision Results 

In order to analyze the effects of different parameters p and q on the decision results, in Steps 1 
and 2, we take the different values of p and q, and all the results are shown in the Tables 6 and 7. 

Table 6. The ranking based on the LNNNWBM operator with the different values of p and q. 

p, q LNNNWBM Operator Ranking
p = 1, q = 0 E(ܽଵ) = 0.7528, E(ܽଶ) = 0.7777, E(ܽଷ) = 0.7613, E(ܽସ) = 0.8060 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ

p = 1, q = 0.5 E(ܽଵ) = 0.7311, E(ܽଶ) = 0.7534, E(ܽଷ) = 0.7435, E(ܽସ) = 0.7886 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
p = 1, q = 2 E(ܽଵ) = 0.7329, E(ܽଶ) = 0.7545, E(ܽଷ) = 0.7453, E(ܽସ) = 0.7897 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
p = 0, q = 1 E(ܽଵ) = 0.7573, E(ܽଶ) = 0.7766, E(ܽଷ) = 0.7656, E(ܽସ) = 0.8046 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ

p = 0.5, q = 1 E(ܽଵ) = 0.7326, E(ܽଶ) = 0.7530, E(ܽଷ) = 0.7449, E(ܽସ) = 0.7879 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
p = 2, q = 1 E(ܽଵ) = 0.7349, E(ܽଶ) = 0.7562, E(ܽଷ) = 0.7463, E(ܽସ) = 0.7902 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
p = 2, q = 2 E(ܽଵ) = 0.7343, E(ܽଶ) = 0.7537, E(ܽଷ) = 0.7458, E(ܽସ) = 0.7884 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
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Table 7. The ranking based on the LNNNWGBM operator with the different values of p and q. 

p, q LNNNWGBM Operator Ranking
p = 1, q = 0 E(ܽଵ) = 0.7397, E(ܽଶ) = 0.7747, E(ܽଷ) = 0.7531, E(ܽସ) = 0.8035 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ

p = 1, q = 0.5 E(ܽଵ) = 0.7342, E(ܽଶ) = 0.7545, E(ܽଷ) = 0.7453, E(ܽସ) = 0.7891 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
p = 1, q = 2 E(ܽଵ) = 0.7343, E(ܽଶ) = 0.7548, E(ܽଷ) = 0.7457, E(ܽସ) = 0.7889 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
p = 0, q = 1 E(ܽଵ) = 0.7437, E(ܽଶ) = 0.7730, E(ܽଷ) = 0.7570, E(ܽସ) = 0.8019 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ

p = 0.5, q = 1 E(ܽଵ) = 0.7356, E(ܽଶ) = 0.7541, E(ܽଷ) = 0.7467, E(ܽସ) = 0.7885 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
p = 2, q = 1 E(ܽଵ) = 0.7330, E(ܽଶ) = 0.7553, E(ܽଷ) = 0.7445, E(ܽସ) = 0.7895 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ
p = 2, q = 2 E(ܽଵ) = 0.7334, E(ܽଶ) = 0.7530, E(ܽଷ) = 0.7441, E(ܽସ) = 0.7877 ସܣ ≻ ଶܣ ≻ ଷܣ ≻ ଵܣ

From above two tables, we can see that when the parameters p and q take different values, the 
sorting results are the same. Therefore, the influence of the two parameters is very little in this 
decision-making problem. 

In the literature [21], the ranking is ࡭૝ ≻ ૛࡭ ≻ ૜࡭ ≻  ૚, just according with the ranking result of࡭
this paper. Compared with the literature [21], the correlation between attributes is considered by the 
LNNNWBM operator and the LNNNWGBM operator for MAGDM, which make the information 
aggregation more objective and reliable. Hence, the proposed MAGDM methods with different p and 
q values are more flexible than the method in [21]. Compared to the literature [14], on the one hand, 
the literature [14] cannot express and deal with the decision-making problems with pure linguistic 
information like LNNs. However, in this paper, the proposed decision-making methods based on the 
LNNNWBM operator and the LNNNWGBM operator provide a new way for decision-makers under 
LNN environment. 

6. Conclusions 

In MADGM, how to tackle the problem of the interdependence between attributes is a 
challenging issue. Thus, MADGM methods based on the LNNNWGBM and LNNNWGBM operators 
for LNNs are proposed in this paper. First, a LNN normalized weight Bonferroni mean (LNNNWBM) 
operator and a LNN normalized weight geometric Bonferroni mean (LNNNWGBM) operator are 
proposed based on the BM operator, and the related properties of these operators are discussed. 
Second, based on the LNNNWBM operator and the LNNNWGBM operator, this paper puts forward 
two methods of MADGM in a LNN setting. Finally, an illustrative example was presented to show 
that these two methods were used for solving the MADGM problem with LNN information. In 
addition, the proposed decision-making methods may affect the decision results based on various 
parameters of p and q in some decision-making problems. 
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