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Abstract: In this paper, we propose a single image dehazing method aiming at addressing the
inherent limitations of the extensively employed dark channel prior (DCP). More concretely, we
introduce the Gaussian mixture model (GMM) to segment the input hazy image into scenes based on
the haze density feature map. With the segmentation results, combined with the proposed sky region
detection method, we can effectively recognize the sky region where the DCP cannot well handle this.
On the basis of sky region detection, we then present an improved global atmospheric light estimation
method to increase the estimation accuracy of the atmospheric light. Further, we present a multi-scale
fusion-based strategy to obtain the transmission map based on DCP, which can significantly reduce
the blocking artifacts of the transmission map. To further rectify the error-prone transmission
within the sky region, an adaptive sky region transmission correction method is also presented.
Finally, due to the segmentation-blindness of GMM, we adopt the guided total variation (GTV) to
tackle this problem while eliminating the extensive texture details contained in the transmission
map. Experimental results verify the power of our method and show its superiority over several
state-of-the-art methods.
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1. Introduction

Due to the atmospheric suspended particles that absorb and scatter the light before reaching the
camera, outdoor images are significantly degraded by bad weather conditions (fog, haze, etc.) and
yield a poor visual effect, including the reduced contrast, faint color and blurred scene details. This is
a major problem for most applications of computational photography and computer vision, such as
satellite imaging, object recognition, intelligent vehicles, etc., since they are primarily designed under
the assumption that the input images have clear visibility. Thus, removing the negative visual effects
and unveiling the true scene, which is often referred to as “dehazing”, is highly desired and has strong
implications. However, dehazing is a challenging ill-posed problem due to the variety of densities,
types and distributions of atmospheric suspended particles, as well as the polarization states of the
ambient incident light [1].

Recently, benefiting from the atmospheric scattering model proposed by Narasimhan and
Nayar [1–3], many single image dehazing methods have been proposed [1–24], and significant progress
has been made. These model-based methods estimate the values of the model coefficients by taking the
hazy image degradation mechanism into consideration and, therefore, eliminate the negative effects
and recover the scene albedo. In general, the success of the model-based methods lies in utilizing
priors/assumptions; however, limitations may appear when the priors/assumptions are invalid under
some specific conditions. For instance, Tan [4] enhances the visibility of hazy images by manipulating
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the contrast based on the assumption that the recovered image has higher contrast than the relevant
plagued image. However, the restored image tends to be over-saturated and inevitably suffers from
block artifacts. Tarel et al. [10] estimate the veil by using combinations of filters and obtain a contrast
enhanced image. Despite the advantage of linear complexity, haze remains where the depth changes
drastically because the median filter involved provides poor edge-preserving performance. Although
Fattal’s method [5] can produce impressive results by assuming that the surface shading is uncorrelated
with the scene transmission within a local patch, this method is invalid for dense haze image since
the assumption is broken in this case. Zhu et al. [6] discover the color attenuation prior (CAP) and
removed haze by creating a linear model for modeling the depth structure. Nevertheless, this method
is proven to be invalid for a dense haze image where the prior is invalid. Similar to Zhu et al.’s method,
Ju et al. [8] establish a linear model for transmission estimation, which enables us to directly obtain
the transmission map, but this method cannot apply to dense haze images due to the insufficient
training samples.

Remarkably, He et al. propose the sound DCP [7], which allows us to directly estimate the rough
transmission based on the atmospheric scattering model. Although this DCP is physically valid in
general and can recover a visually-pleasing image, two main inherent limitations still exist. That is, the
sky regions tend to be over-enhanced, and the global edge-consistency is prone to be inaccurate, as we
note in Section 2.

Consequently, several relevant improvements have been proposed aiming at overcoming these
limitations [12–15,18,19,25–28]. For example, in order to avoid the over-enhancement within the sky
regions, Shi et al. [27] design a rough sky region estimation method to detect the region where the
DCP may fail and adjust the transmission map by comparing the average intensity of the detected
sky region with the value of the global atmospheric light. However, this method has its limitations
when processing dense haze images since it may yield a false interpretation of objects shrouded in
dense haze as sky regions. Li et al. [28] obtain the sky region based on the proposed sky region prior
and color edge detection and create a color normalization method to refine the transmission within
the sky regions. Nevertheless, the exceptional process may not satisfy minor non-sky-region images.
Ju et al. [15] design a sky region identification method using dual thresholds and further correct
the corresponding transmission within the sky regions, but the fixed threshold cannot be applied to
various types of haze images. On the other hand, to refine the transmission, which is obtained via
DCP, the soft matting technique is adopt in [7], whereas the computational efficiency is relatively
low and therefore cannot be applied to real-time processing. Consequently, several filtering-based
methods are proposed to improve the efficiency of the transmission refinement, including the bilateral
filter [19], guided filter [26] and guided joint bilateral filter [12]. Although the efficiency of [12,19,26] is
much higher compared with the soft matting technique, the dehazing effect is unstable since these
filtering-based methods may be parameter sensitive, as discussed in [11].

In this paper, we propose a single image dehazing method aiming at overcoming the inherent
limitations of DCP. Compared with the previous methods, our method has several advantages:
(1) benefitting from the sky region detection method, we can precisely recognize the sky region
and further increase the estimation accuracy of atmospheric light via the proposed global atmospheric
light estimation method; (2) to obtain a more accurate transmission map, we present a multi-scale
transmission map fusion method to blend seamlessly two transmission maps that are estimated via
DCP with different patch sizes and further rectify the error-prone transmission within the sky region
via the proposed adaptive sky region transmission correction method; (3) we adopt the guided total
variation (GTV) model to smooth the edge between the sky region and the adjacent areas aiming at
compensating the segmentation-blindness of GMM; meanwhile, the extensive texture details in the
transmission map can be effectively eliminated.
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2. Related Work

2.1. Atmospheric Scattering Model

When light passes through the hazy atmospheric media, light that reflected from objects is
attenuated and scattered along the path to the sensor. Mathematically, the degradation procedure
can be described via the widely-used atmospheric scattering model [1–3], which can be expressed
as follows:

I(x, y) = L∞ · ρ(x, y) · e−β·d(x,y) + L∞ ·
(

1− e−β·d(x,y)
)

(1)

where (x, y) is the pixel index, I(x, y) is the degraded hazy image, L∞ is the global atmospheric
light, which is an RGB vector that describes the intensity of the scattered light, ρ(x, y) is the scene
albedo, β is the scattering coefficient and d(x, y) is the scene depth. For expression simplicity, we
use J(x, y) = L∞ · ρ(x, y) and t(x, y) = e−β·d(x,y) to represent the corresponding recovered image and
transmission, respectively. Thus, Equation (1) can be rewritten as:

I(x, y) = J(x, y) · t(x, y) + L∞ · (1− t(x, y)) (2)

Generally, the single image dehazing method is an inverse problem that predicts all of the
corresponding unknown coefficients using the input hazy image I(x, y) and further recovers the
image J(x, y).

2.2. Analysis of DCP Limitations

The DCP is proposed by He et al. [7], which is a kind of statistics of extensive haze-free outdoor
images, that is within most local patches (except for the sky region), at least one color channel contains
the pixel whose intensity is extremely low and tends to be zero, and it can be expressed as:

Jdark(x, y) = min
c∈{r,g,b}

(
min

(x′ ,y′)∈Ω(x,y)

(
Jc(x′, y′

)))
→ 0 (3)

where c is the RGB color channel index, Ω(x, y) is a local patch centered at (x, y) and Jc(x, y) and
Jdark(x, y) are the color channel and dark channel that correspond to image J(x, y), respectively.

This prior, combined with the atmospheric scattering model, enables us to directly estimate the
rough transmission for a hazy image. Despite the effectiveness of this prior, the image restored via
DCP is prone to suffer from the over-enhanced sky region, as well as the poor global edge-consistency.
Generally, the reason can be explained as follows: (1) DCP fails for the region where the scene
brightness is similar to the atmospheric light (such as the sky region), since the dark channel that
corresponds to the sky region is obviously higher than zero, and therefore, the transmission will be
inevitably over-estimated if we apply the DCP directly; (2) DCP is a patch-based procedure; thus, the
transmission map that is estimated via DCP may suffer from the poor edge-consistency property, and
this problem will further lead to negative visual effects in the corresponding restored image.

3. Single Image Dehazing Method

In this section, we propose a single image dehazing method aiming at overcoming the inherent
limitations of DCP; the main procedures are illustrated in Figure 1. Inherently inspired by [16,22],
we detect the sky region based on the haze density feature map and scene segmentation technique.
Then, we apply three key steps, including the improved global atmospheric light estimation, the
multi-scale transmission map fusion and the adaptive sky region transmission correction. Next, we
introduce the guided total variation (GTV) to smooth the edge around the sky region and eliminate the
extensive texture details in the transmission map. Finally, with the knowledge of global atmospheric
light and the transmission map, the image can be recovered via the atmospheric scattering model.
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Figure 1. Overview of our method. From the input hazy image, we first detect the sky region based
on the haze density feature map and scene segmentation technique. Then, we apply three key steps,
including the improved global atmospheric light estimation, the multi-scale transmission map fusion
and the adaptive sky region transmission correction. Next, we introduce the guided total variation
(GTV) to further refine the transmission map and recover image via the atmospheric scattering model.

3.1. Sky Region Detection via Scene Segmentation

As discussed by [6,7,11], DCP may be invalid for a sky region where the brightness of the scene
object is inherently similar to the air light. Therefore, inspired by [16,22], we introduce the haze
density feature map [16] and the GMM model [29] to segment a hazy image into scenes and further
recognize the sky region via the proposed sky region detection method. The detailed procedures are
demonstrated as follows.

(a) Haze density feature map:

Considering the fact that the hazy images are subjected to the blurred object details, reduced
contrast and fade surface color, thus it is difficult to directly segment a hazy image into scenes via
scene features extraction. However, according to the atmospheric scattering model, the magnitude of
degradation for a hazy image is proportional to the haze density. That is, the most haze-opaque regions
should have the highest brightness and the most blurred details, and vice versa. Thus, we introduce
the haze density prediction model [16] to describe the haze density feature map as:

S(x, y) = α ·QL(x, y)− β ·QT(x, y)
QL(x, y) = 1

|Ω| · ∑
(x′ ,y′)∈Ω(x,y)

LI(x′, y′)

QT(x, y) = 1
|Ω| · ∑

(x′ ,y′)∈Ω(x,y)
|∇I(x′, y′)|

(4)

where S(x, y) is the haze density feature map; α = 1.126 and β = 0.705 are the regularization
coefficients that are used to adjust the significance of each component; QL(x, y) and QT(x, y) are
the brightness feature index and texture detail feature index of a hazy image I(x, y), respectively;
LI(x, y) and ∇I(x, y) are the brightness component and the gradient component that correspond to a
hazy image I(x, y), respectively; Ω(x, y) is the local patch which is centered at (x, y);, and |Ω| is the
corresponding pixel number within this local patch.

In Figure 2, Figure 2a shows two hazy images and Figure 2b demonstrates the corresponding
haze density feature maps. In can be noticed that the obtained haze density feature map can precisely
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describe the spatial relationship of the haze density distribution and is well consistent with visual
perception of haze density

Information 2017, 8, 57  5 of 19 

 

the brightness feature index and texture detail feature index of a hazy image ( ),x yI , respectively; 

( , )IL x y  and ( , )x y∇I  are the brightness component and the gradient component that correspond 
to a hazy image ( ),x yI , respectively; ( ),x yΩ  is the local patch which is centered at ( ),x y ;, and 

Ω  is the corresponding pixel number within this local patch.  
In Figure 2, Figure 2a shows two hazy images and Figure 2b demonstrates the corresponding 

haze density feature maps. In can be noticed that the obtained haze density feature map can precisely 
describe the spatial relationship of the haze density distribution and is well consistent with visual 
perception of haze density  

(a) 

 

(b) 

 
Figure 2. Hazy images and the corresponding haze density feature maps. (a): hazy images. (b): the 
corresponding haze density feature mapsobtained via Equation (4). 

(b) Scene segmentation:  

On the basis of the haze density feature map ( ),S x y , we need to segment the hazy image into 
scenes, and pixels within a segmented scene should share approximately the same scene feature after 
segmentation. Thus, we convert the scene segmentation into the clustering problem. Considering the 
accuracy requirement and the computational cost, we introduce the Gaussian mixture model  
(GMM) [29] to conduct the segmentation procedure. According to [29,30], the GMM can be described 
via a K Gaussian component mixing model, and the relevant probability density function is  
expressed as: 

( )( ) ( ) ( )( ) ( )( )
1 1

, , | , | ,
K K

k k k
k k

p S x y p k p S x y k N S x yπ μ σ
= =

= =   (5) 

where ( ),S x y  is the obtained haze density feature map and { }, ,k k kπ μ σ  are the mixing proportion, 
mean and variance of the k-th component of GMM, respectively. The relevant log-likelihood function 
of Equation (5) is:  

( )( ){ }
1 1

log ,
w hl l

x y

p S x yλ
= =

=  (6) 

where wl  and hl  are the width and height of S , respectively. We further adopt an  
expectation-maximization (EM) strategy to determine the model parameter { }, ,k k kπ μ σ  aimed at 
maximizing the log-likelihood function. Therefore, the posteriori probability ( ( , ),  )S x y kω  is 
defined as:  

( )( )
( )( )1

, | ,
( ( , ),  )

, | ,
k k k

K

k i ii

N S x y
S x y k

N S x y

π μ σ
ω

π μ σ
=

=


 (7) 

Figure 2. Hazy images and the corresponding haze density feature maps. (a): hazy images. (b): the
corresponding haze density feature mapsobtained via Equation (4).

(b) Scene segmentation:

On the basis of the haze density feature map S(x, y), we need to segment the hazy image
into scenes, and pixels within a segmented scene should share approximately the same scene
feature after segmentation. Thus, we convert the scene segmentation into the clustering problem.
Considering the accuracy requirement and the computational cost, we introduce the Gaussian mixture
model (GMM) [29] to conduct the segmentation procedure. According to [29,30], the GMM can be
described via a K Gaussian component mixing model, and the relevant probability density function is
expressed as:

p(S(x, y)) =
K

∑
k=1

p(k)p(S(x, y)|k) =
K

∑
k=1

πk N(S(x, y)|µk, σk) (5)

where S(x, y) is the obtained haze density feature map and {πk, µk, σk} are the mixing proportion,
mean and variance of the k-th component of GMM, respectively. The relevant log-likelihood function
of Equation (5) is:

λ =
lw

∑
x=1

lh

∑
y=1

log{p(S(x, y))} (6)

where lw and lh are the width and height of S, respectively. We further adopt an
expectation-maximization (EM) strategy to determine the model parameter {πk, µk, σk} aimed
at maximizing the log-likelihood function. Therefore, the posteriori probability ω(S(x, y), k) is
defined as:

ω(S(x, y), k) =
πk N(S(x, y)|µk, σk)

∑K
i=1 πk N(S(x, y)|µi, σi)

(7)
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Then, we compute the model parameter {πk, µk, σk} as:

πk = Nk/res

µk =
1

Nk

lw
∑

x=1

lh
∑

y=1
ω(S(x, y), k)S(x, y)

σk =
1

Nk

lw
∑

x=1

lh
∑

y=1
ω(S(x, y), k)(S(x, y)− µk)(S(x, y)− µk)

T

Nk =
lw
∑

x=1

lh
∑

y=1
ω(S(x, y), k)

(8)

where res = lw · lh denotes the number of pixels of S. This procedure is computed iteratively and
terminates when the likelihood function converges.

Note that, the segmentation accuracy is generally proportional to the value of K according to
Equation (5); nevertheless, the computational cost is another important concern. After repeated testing,
we take K = 3 as a balanced choice for our method. The corresponding scene segmentation results for
Figure 2 are displayed in Figure 3.
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Figure 3. The relevant scene segmentation results for Figure 2. We segment the hazy image into three
scenes and mark them using red, green and blue, respectively. (a): The scene segmentation result for
Figure 2a (left). (b) The scene segmentation result for Figure 2a (right).

(c) Sky region detection:

Now that we have segmented the hazy image into K scenes and the corresponding pixel index
sets are denoted as {∆(k), k ∈ [1, K]}, then we will detect the sky region within these scenes based on
two considerations: (1) by means of the haze density feature map, the sky region (which is the most
haze-opaque region) should have the highest average scene feature value among all of the segmented
scenes; (2) in fact, a few particular outdoor images do not contain the sky scene, which may cause
errors if we simply correct the transmission within the scene with the highest feature value; thus, it is
necessary to detect and exclude this special situation. Consequently, we create the sky region detection
method as follows:

∆sky =

{
∆̂mean

(
S
(
∆̂
))
≥ T1 and |∆(k)|res ≥ T2

∅ else
(9)

where ∆̂ = argmax
k

{
∑(x,y)∈∆(k) S(x,y)

|∆(k)|

}
, k ∈ [1, K] is the candidate sky region, which has the highest

feature value, T1 is the lower boundary of sky region feature and T2 is the lower boundary of the scene
area ratio.

According to our previous work [16], we set T2 = 0.2 as the value of lower boundary of the scene
area ratio. More specifically, we conduct extensive experiments to determine the relatively balanced
selection of the lower boundary of sky region feature T1. We randomly collect 200 hazy images
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from the Internet and obtain the accuracy rate of sky region detection (compared with human-rate
judgement) using different values of the sky region feature lower boundary T1 (0.1–0.9) and provide
the corresponding statistic results in Figure 4. From Figure 4, we can notice that the highest accuracy
rate of sky region detection can be achieved when T1 = 0.6.
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In addition, for the purpose of eliminating the clustering error and the high light noise, we further
utilize the erosion operator of mathematical morphology [31] to refine the scene segmentation result
before we detect the sky region. As shown in Figure 5, we can effectively detect the sky region for
Figure 2 and mark it as white.
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Figure 5. The detected sky region (marked as white area) for Figure 2 using our method. (a): The
detected sky region (marked as white area) for Figure 2a (left). (b) The detected sky region (marked as
white area) for Figure 2a (right).

3.2. Improved Global Atmospheric Light Estimation Method

In existing dehazing methods, the global atmospheric light is either located manually or estimated
using basic procedures that take the brightest pixel of the hazy image [32,33]. In fact, it is error prone
to simply locate the brightest pixel of the hazy image, since it may belong to an interference object
(white/gray objects, high-light, extra light source, etc.).

To increase the precision of global atmospheric light location, several improvements have been
proposed. For instance, He et al. [7] pick the top 0.1% brightest pixels in the dark channel, which is
estimated via DCP and take the pixel with highest intensity among these pixels as the atmospheric
light. Zhu et al. [6] select the top 0.1% brightest pixels in the depth map, which is obtained via the
color attenuation prior (CAP), and take the pixel with the highest intensity among these pixels as the
atmospheric light. However, the accuracy of these methods is highly dependent on the validity of the
priors and, therefore, may fail in some specific cases for which the assumption is broken.
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On the basis of the detected sky region ∆sky or the candidate sky region ∆̂, we can significantly
improve the accuracy of global atmospheric light location since most white or highlight objects will be
effectively excluded [20].

More concretely, we first take the candidate sky region ∆̂ (since the ∆sky may not exist) as the
searching area for the global atmospheric light. Then, we pick the top 1% pixels with the lowest
saturation within the candidate sky region as the candidate global atmospheric light pixels, since
the intensities of the RGB channels corresponding to the global atmospheric light pixel should be
approximately the same according to [18]. Next, we take the brightest pixels among these candidate
global atmospheric light pixels as the global atmospheric light L∞.

We further test the proposed global atmospheric light estimation method and compare with
Namer et al.’s method [33], He et al.’s method [7] and Zhu et al.’s method [6] on a challenging hazy
image (Figure 6). As demonstrated in Figure 6, only our method (in the red box) locates the atmospheric
light successfully, while Namer et al.’s method [33] (in the green box), He et al.’s method [7] (in the
blue box) and Zhu et al.’s method [6] (in the yellow box) all locate the interference object as the
atmospheric light.
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Figure 6. A challenging hazy image for the atmospheric light locating comparison and the recovery
effect comparison of different atmospheric light estimation results. (a) Atmospheric light locating
comparison, the results of [6,7,33] and ours are depicted in boxes with different colors. (b–e) The
recovery effect comparison; the images are recovered using different atmospheric light estimation
results that are obtained via [6,7,33] and ours, respectively.

We further conduct experimental comparison to verify the influence of atmospheric light
estimation. With the different atmospheric light estimation results that are obtained via [6,7,33]
and our method, we obtain the transmission map using the same method (He et al.’s method [7]) for
the sake of fairness and further get the recovered images via the atmospheric scattering model. The
corresponding recovered images are demonstrated in Figure 6b–e, respectively. Through comparison,
we can notice that Figure 6e has better visibility.

3.3. Multi-Scale Transmission Map Fusion Method

According to the atmospheric scattering model (Equation (2)), with the estimated global
atmospheric light, we can directly obtain the rough transmission map tα via DCP (using patch size
15 × 15). However, the DCP is a patch-based procedure in nature, and therefore, the estimated
transmission tα may suffer from a poor edge-consistency property.

For experimental demonstration, we choose another four hazy images (see Figure 7a), then obtain
the corresponding rough transmission maps tα (see Figure 7b) and the relevant recovered images (see
Figure 7c). As we can see, the blocking effects obviously appear in the rough transmission maps tα,
and therefore, the relevant recovered images are all subjected to severe halo artifacts.
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Figure 7. Hazy images, the corresponding rough transmission maps tα and the relevant recovered
images. (a): hazy images. (b): the corresponding rough transmission maps tα. (c): the relevant
recovered images.

If we reduce the patch size when applying the DCP, the edge-consistency property of the
transmission map can be significantly improved. According to this thinking, we can obtain another
rough transmission map tβ using the pixel-level DCP (patch size 1× 1). Nevertheless, the estimation
accuracy of tβ is sacrificed inevitably, since the validity of DCP is determined by the information
sufficiency contained within the local patch. Consequently, serious negative effects (such as large scale
color distortion) appear in the recovered image inevitably.

In Figure 8a, we provide the corresponding transmission maps tβ for Figure 7a. As we can see,
compared with Figure 7b, the edge structure is well maintained in Figure 8a. However, we can also
notice that the global color distortion is obvious in the relevant recovered images (see Figure 8c).
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Consequently, it is impossible to keep the edge-consistency of the transmission map if we merely
adjust the patch size of DCP. Although many transmission map refinement methods (such as the soft
matting technique and the filtering-based methods) have been proposed, these methods are either
time consuming or lacking in stability [11].

Inspired by [34], we propose a fusion-based global transmission refinement method to overcome
this problem. The main concept behind the proposed fusion-based technique is to preserve only the
positive features of the two transmission maps (tα and tβ) and therefore improving the edge structure
of the transmission map.
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By adopting the image pyramid model [35], we decompose the transmission tα into low frequency
component L0

α and the high frequency component
{

Li
α, i ∈ [1, M]

}
. Similarly, the transmission tβ is

decomposed into low frequency component L0
β and the high frequency component

{
Li

β, i ∈ [1, M]
}

.

Then, considering that the pyramid model
{

Li
α, i ∈ [0, M]

}
contains extensive accuracy low frequency

component and the pyramid model
{

Li
β, i ∈ [0, M]

}
consists of substantial accuracy high frequency

component, the fusion strategy should be designed to support these important features; thus, the
bottom level of

{
Li

α, i ∈ [0, M]
}

should has the highest fusion weight, and the fusion weight should
decrease along with the increased level index. Accordingly, the corresponding fusion weight for{

Li
β, i ∈ [0, M]

}
should be set oppositely. Therefore, we create the adaptive multi-scale transmission

fusion method as:  L f usion
i = (1− γi) · Li

α + γi · Li
β, 0 ≤ i ≤ M

γi = 1− 2/
(

1 + exp
(

i
M

))
, 0 ≤ i ≤ M

(10)

where i is the level index of the transmission pyramid model,
{

L f usion
i , i ∈ [0, M]

}
is the obtained

transmission pyramid model after fusion, γi is the corresponding adaptive fusion scale for each level,
and we set M as 11 after repeated testing.

Now that we have the transmission pyramid model
{

L f usion
i , i ∈ [0, M]

}
and we can generate the

final transmission t f usion by reconstructing the
{

L f usion
i , i ∈ [0, M]

}
, that is:

t f usion = rec
(

L f usion
i , i ∈ [0, M]

)
(11)

where rec(·) is the reconstruction function. By means of this fusion method, the edge structure can be
well preserved in the obtained transmission t f usion.

Figure 9 provides two hazy images, the corresponding transmission maps t f usion and the relevant
recovered images. From Figure 9, we can notice that, the blocking artifacts are effectively eliminated in
the transmission maps t f usion, and the recovered images contain relatively few halo artifacts (except
for the sky region). However, the sky regions are obviously over-enhanced due to the inherent
limitations of DCP, as previously mentioned. In addition, the visual quality of the recovered image is
limited, this may be caused by the extensive texture details that are introduced into the t f usion via the
fusion procedure.
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Figure 9. From left to right: two challenging haze images, the corresponding transmission maps
t f usion and the relevant recovered images. (a) Hazy image with small sky region, the corresponding
transmission map t f usion, and the relevant recovered image. (b) Hazy image with large sky region, the
corresponding transmission map t f usion, and the relevant recovered image.

3.4. The Adaptive Sky Region Transmission Correction Method

To correct the transmission within the sky region ∆sky (note that, if no sky region is found via
Equation (9), this procedure will be skipped), we design an adaptive correction method based on
the following consideration: the brightness of sky region is proportional to the haze density; thus,
the magnitude of over-estimation is approximately proportional to the scene feature value S(x, y).
Consequently, the relevant correction magnitude should be adjusted adaptively. Thus, we have:

t′f usion(x, y) = min
(

max
(

S(x, y)
mean(S)

, 1
)
·max

(
t f usion(x, y), t0

)
, 1
)

, (x, y) ∈ ∆sky (12)

where t0 = 0.1 is the lower boundary of transmission according to [15]. We denote the corrected
transmission as t′f usion.

In Figure 10, we demonstrate the corrected transmission maps t′f usion and the corresponding
recovered images for Figure 9. It can be noticed that the proposed method can effectively correct the
transmission within the sky region and therefore avoid the over-enhancement.
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Figure 10. The corrected transmission maps t′f usion for Figure 9, and the corresponding recovered
images. (a) The corrected transmission map t′f usion for the hazy image of Figure 9a, and the
corresponding recovered image. (b) The corrected transmission map t′f usion for the hazy image of
Figure 9b, and the corresponding recovered image.

3.5. The Transmission Map Refinement via GTV

The transmission map t′f usionneeds to be further refined because two problems still remain:
(1) extensive texture details are still contained in t′f usion, which may reduce the visual quality of the
recovered image; (2) due to the segmentation-blindness of GMM and the scene-based sky region
transmission correction method, the edge structure between the sky region and the adjacent areas
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cannot be well preserved. Thus, we adopt the GTV model [11] to further refine the transmission map
t′f usion, and this procedure can be expressed as:

t f inal =
α1

2
· ‖t f inal − t′f usion‖

2
2
+

α2

2
· (W) · ‖∇t f inal‖2

2 +
α3

2
· (1−W) · ‖∇t f inal −∇G‖2

2 (13)

where t f inal is the refined transmission map, W is the weight function and G is the guidance image,
which is defined as t′f usion. According to [11], Equation (13) can be expressed and processed using an
iteration form, and we have α1 = 1.073, α2 = 0.801and α3 = 1.697 as the regularization parameters for
the approximation term, the smoothing term and the edge-preserving term, respectively.

In Figure 11, we show the refined transmission map t f inal for Figure 9. Through comparing with
t′f usion (see Figure 10), we can notice that the excessive texture details can be significantly eliminated,
and the edge structure between the sky region and the adjacent areas is well refined.
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Figure 11. The refined transmission maps t f inal for Figure 9 via the GTV model. Left: The refined
transmission map t f inal for the hazy image of Figure 9a. Right: The refined transmission map t f inal for
the hazy image of Figure 9b.

Finally, according to Equation (2), we can directly obtain the scene albedo ρ(x, y), since all of the
unknown coefficients are determined, including the atmospheric light L∞ and the transmission map
t f inal . Then, the image can be recovered as J(x, y) = L∞ · ρ(x, y).

In Figure 12, we provide the images that are recovered using the refined transmission map t f inal .
It can be noticed that our method can unveil most of the details, recover vivid color information, with
relatively few halo artifacts.
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4. Experimental Results

4.1. Transmission Estimation Comparison

In this paper, we present a multi-scale fusion-based strategy, as well as an adaptive sky region
transmission correction method to obtain the transmission map and introduce the GTV model to
further refine the transmission map. However, to our best knowledge, many transmission estimation
methods have been proposed and have made significant progress. In order to verify the advantages
of our method, we conduct the experimental comparison with several state-of-the-art methods,
including [12,21,26]. We choose two challenging hazy images (a dense haze image without sky
region (Figure 13a) and a hazy image with sky region (Figure 13f) for the experimental comparison.
The relevant comparison results are provided in Figures 13b–e and 13g–j. As we can see from Figure 13,
the transmission maps that are estimated using our method are more consistent with our intuition
than those of [12,26] and are comparable to those of [21].
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4.2. Qualitative Comparison

To verify the robustness and effectiveness of our method, we test it on various types of challenging
hazy images (including both the synthetic image and the real-world image) and conduct qualitative
and quantitative comparisons with several state-of-the-art dehazing methods, such as those by He
et al. [7], Meng et al. [9], Ancuti et al. [36], Yu et al. [25], Tarel et al. [10] and Choi et al. [17]. All of
the methods are implemented in the MATLAB R2014a environment on an Intel Core i5 2.6-GHz PC
with 8 GB RAM. The relevant parameters used in the proposed method are demonstrated in Section 3.
For fair comparison, we set the parameters used in the other six comparison methods according
to [7,9,10,17,25,36].

We compare our method with several state-of-the-art methods on four challenging hazy images,
including a synthetic misty image (Figure 14a), a real-world dense haze image (Figure 15a), a real-world
hazy image with a large sky region (Figure 16a) and a real-world hazy image with large white/gray
regions (Figure 17a). In Figures 14–17, The original hazy images are displayed in Column (a); in
Columns (b)–(g), from left to right, we demonstrate the dehazing results correspond to He et al.’s [7],
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Meng et al.’s [9], Ancuti et al.’s [36], Yu et al.’s [25], Tarel et al.’s [10] and Choi et al.’s method [17] and
our method, respectively.Information 2017, 8, 57  14 of 19 
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Figures 14b, 15b, 16b and 17b show the dehazing results of He et al.’s method [7]. As can be seen,
He et al.’s method can generate fine results without halo artifacts, especially when the hazy images do
not contain the object whose brightness is similar to the air light (see Figures 14b and 15b). However,
owing to the inherent problem of DCP as we discussed, the estimated transmission is thus not reliable
enough in some cases. Therefore, the over-enhancement appears within the sky region in Figure 16b,
and slightly global color distortion can be found in Figure 17b.

Meng et al.’s method [9] improves the behavior of DCP by adding a boundary constraint, thus
the recovered color is more vivid compared with those of He et al.’s method (see Figures 14c and 15c,
and compare with Figures 14b and 15b, respectively). Nevertheless, the ambiguity between the image
color and haze still cannot be tackled fundamentally; thus, the sky region in Figure 16c is severely
over-enhanced, and Figure 17c is subjected to the global color distortion.

In Figures 14d, 15d, 16d and 17d, we provide the dehazing results of Ancuti et al.’s method [36].
As we can see from Figure 15d, the method is not reliable when the hazy images are dark and haze
is dense. This is because the performance of [36] is determined by the accuracy of weight maps and
therefore may fail when severe dark aspects of the preprocessed image dominate. In addition, haze
residual can be found in Figure 14d, as well as Figure 17d.

Yu et al.’s method [25] is another improvement of He et al.’s method [7], and the corresponding
dehazing results are demonstrated in Figures 14e, 15e, 16e and 17e. We can notice that this method
cannot well handle dense haze image (see Figure 15e); both Figures 14e and 16e are dim and suffer
from color distortion; especially, Figure 17e is subjected to serious global color distortion.

The dehazing results of Tarel et al.’s method [10] are shown in Figures 14f, 15f, 16f and 17f.
In Figure 16f, most haze is removed, and the scene objects are well unveiled. However, as shown in
Figure 15f, Tarel et al.’s method is unable to process the dense hazy image. This is because Tarel et al.’s
method utilizes a geometric criterion to decide whether the observed white belongs to the haze or the
scene object; thus, it is unreliable under a dense haze condition. Moreover, as previously mentioned,
halo artifacts appear inevitably around the depth discontinuities (see Figures 14f and 17f) due to the
poor performance of the median filter involved.

In Figures 14g, 15g, 16g and 17g, we provide the dehazing results of Choi et al.’s method [17],
which is designed based on a multi-scale fusion strategy. Although this method achieves visually
compelling results for Figures 14 and 16, it may be unreliable for some particular case since the image
degradation mechanism is not taken into account. As we can see, haze remains significant in Figure 15g,
and the global color distortion is severe in Figure 17g.

In contrast, our method can remove most of the haze and well unveil the scene details, maintain the
overall color fidelity, significantly eliminate the over-enhancement, with relatively few halo artifacts.

4.3. Quantitative Comparison

In order to quantitatively evaluate and rank the state-of-the-art methods and ours with respect
to the structure preserving, visibility enhancement and dehazing effect, we adopt four extensively
employed indicators, including the structural similarity (SSIM), the percentage of new visible edges
e, the contrast restoration quality r and the fog-aware density evaluator (FADE). According to [37],
the indicator SSIM assesses the structural information preserving ability for a dehazing methods. The
indicators e and r are proposed by [38], in which the indicator e measures the ratio of edges that are
newly visible after restoration, and indicator r verifies the average visibility enhancement obtained via
restoration. The indicator FADE is proposed by [17], which is an assessment of haze removal ability.

We compute these four indicators (SSIM, e, r and FADE) on the dehazing results of Figures 14–17
and list the corresponding results in Tables 1–4, respectively. In addition, we give the time consumption
comparison with the five state-of-the-art methods in Table 5. For comparison convenience, we indicate
the top value in bold and the second-highest values in bold and italics.
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Table 1. Comparison of structural similarity (SSIM) for the dehazing results obtained via
different methods.

SSIM He et al.’s [7] Meng et al.’s [9] Ancuti et al.’s [36] Yu et al.’s [25] Tarel et al.’s [10] Choi et al.’s [17] Ours

Figure 14 0.7283 0.3502 0.4503 0.3109 0.3097 0.6123 0.7694
Figure 15 0.5365 0.6203 0.5284 0.5686 0.7307 0.6993 0.3625
Figure 16 0.7491 0.6986 0.3744 0.4900 0.6768 0.7963 0.7638
Figure 17 0.8220 0.7778 0.2211 0.7296 0.8580 0.6413 0.8801

Table 2. Comparison of r for the dehazing results obtained via different methods.

r He et al.’s [7] Meng et al.’s [9] Ancuti et al.’s [36] Yu et al.’s [25] Tarel et al.’s [10] Choi et al.’s [17] Ours

Figure 14 1.6311 4.5341 3.3588 3.4462 3.8793 1.9113 3.9868
Figure 15 3.7015 4.2383 2.9231 2.0669 2.8428 2.2243 5.2784
Figure 16 1.7584 2.7013 1.9429 1.2296 1.8631 1.4586 2.8840
Figure 17 1.5584 1.7493 2.2455 1.4611 1.5466 1.9429 1.6909

Table 3. Comparison of e for the dehazing results obtained via different methods.

e He et al.’s [7] Meng et al.’s [9] Ancuti et al.’s [36] Yu et al.’s [25] Tarel et al.’s [10] Choi et al.’s [17] Ours

Figure 14 2.3328 1.8269 1.4599 2.4607 2.3789 2.4253 2.5318
Figure 15 53.0796 50.0129 20.0974 35.5132 28.6893 20.3140 53.3612
Figure 16 0.0454 0.3872 0.0046 0.1907 0.5697 0.0850 0.2417
Figure 17 0.3377 0.4775 0.3751 0.6067 0.2177 0.3825 0.4171

Table 4. Comparison of fog-aware density evaluator (FADE) for the dehazing results obtained via
different methods.

FADE He et al.’s [7] Meng et al.’s [9] Ancuti et al.’s [36] Yu et al.’s [25] Tarel et al.’s [10] Choi et al.’s [17] Ours

Figure 14 0.3437 0.3589 0.4964 0.2763 0.3158 0.2651 0.2299
Figure 15 0.7070 0.7728 1.2817 0.9385 1.7907 1.2396 0.3767
Figure 16 0.3113 0.2887 0.4049 0.2802 0.4291 0.4792 0.2468
Figure 17 0.2411 0.2190 0.2203 0.1861 0.4108 0.2584 0.2057

Table 5. Comparison of time consumption for the dehazing results obtained via different methods.

Time
Consumption He et al.’s [7] Meng et al.’s [9] Ancuti et al.’s [36] Yu et al.’s [25] Tarel et al.’s [10] Choi et al.’s [17] Ours

Figure 14 1.36 4.02 2.23 1.29 7.60 18.50 0.88
Figure 15 0.94 5.16 2.48 0.82 19.00 24.91 0.79
Figure 16 0.84 2.18 1.69 0.69 1.55 7.13 0.81
Figure 17 0.96 3.33 2.08 0.74 7.38 15.26 0.83

Generally, higher values of SSIM indicate a better structural information preserving property for
a dehazing method; higher values of e and r imply better visual improvement after restoration; and
lower values of FADE indicate less haze residual (which means a better dehazing ability).

In order to obtain the values of indicator SSIM produced by different methods for Figures 14–17,
we adopt the ground truth as the reference image for the synthetic hazy image (Figure 14) and
utilize the input hazy images as the reference image for real-world hazy images (Figures 15–17). The
corresponding values of indicator SSIM are listed in Table 1. From Table 1, we can notice that our
dehazing results achieve the best SSIM for two hazy images (Figures 14 and 17) and the second best
value for Figure 16, which implies the superior structure information preserving ability of the proposed
method. Although the SSIM of our result for Figure 15 is relatively low, the result needs to be balanced.
As we can see, Tarel et al.’s method and Choi et al.’s method achieve the top and second top value for
Figure 15, respectively. However, this may be caused by the haze residual (haze remains obviously in
both of their dehazing results and can be verified via the corresponding FADE values in Table 4) since
we adopt the input hazy images as the reference image for real-world hazy images. In contrast, our
result removes most of the haze and unveils the majority of the scene objects, which can be further
verified via the FADE value from Table 4.
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As shown in Table 2, our dehazing results achieve the top values for two hazy images (Figures 15
and 16) and the second top value for Figure 14, which verify the robustness and effectiveness of our
method for visibility recovering. Despite Meng et al.’s result being higher than ours for Figure 14,
we deduce that it may be caused by the noise amplification. This is because our method can restore
more visible edges for Figure 14 (see Table 3), and the value of e for Meng et al.’s result is much lower
than ours. Besides, the fusion strategy proposed by Ancuti et al. cannot work for Figure 17 (see
Figure 17d), and the top value of r may be caused by the poor edge-consistency property.

According to Table 3, our results yield the top value for Figures 14 and 15. Although our results
only achieve the third best value for Figures 16 and 17, however, the result of e can be increased when
artificial edges become visible; for instance, Meng et al.’s results have the second highest value for
Figure 16, whereas the most serious over-enhancement appears in the sky region of Figure 16c.

As shown in Table 4, our method outperforms other methods for Figures 14–16 and achieves
the second best value for Figure 17, and these results are well consistent with our observation of the
qualitative comparison. This verifies the advantage of our method with respect to haze removal ability.

The time consumption is another important evaluation factor for a dehazing algorithm. In Table 5,
we give the time consumption comparison of the above methods in Figure 14 (616 × 462), Figure 15
(845 × 496), Figure 16 (291 × 345) and Figure 17 (400 × 600). As we can see, Yu et al.’s method [25]
is slightly faster than ours. However, it is a trade-off between effectiveness and efficiency in nature,
since the results of [25] are inferior to our method in terms of both qualitative quality and quantitative
results. Our method is faster than He et al.’s [7,26], Meng et al.’s [9], Ancuti et al.’s [36], Tarel et al.’s [10]
and Choi et al.’s [17]. We attribute this advantage of our method to the proposed fusion-based strategy.

5. Discussion and Conclusions

In this paper, we have presented a simple, but effective single image dehazing method aiming
at overcoming the inherent limitations of DCP. Benefitting from the scene segmentation based on
the haze density feature map, we can effectively detect the sky region, which allows us to improve
the accuracy of atmospheric light estimation. Then, the multi-scale transmission map fusion method
and the adaptive sky region transmission correction method are proposed to obtain the transmission
map with accurate edge structure. The GTV model is adopted to further refine the edge structure
between the sky region and the adjacent area and eliminate the extensive texture details contained
in the transmission map. Experimental results verified the advantage of our method compared with
several state-of-the-art alternatives.

However, our work also shares the common limitation of most model-based single image dehazing
methods. That is, the scattering coefficient β in the atmospheric scattering model is regarded as a
constant, which conflicts with the inhomogeneous atmospheric conditions. In addition, the cluster
number in the scene segmentation procedure and the level number in the fusion procedure need to be
determined adaptively. We leave these problems for our future research.
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