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Abstract: Based on dynamic information collected from different time intervals in some real 

situations, this paper firstly proposes a dynamic single valued neutrosophic multiset (DSVNM) to 

express dynamic information and operational relations of DSVNMs. Then, a correlation coefficient 

between DSVNMs and a weighted correlation coefficient between DSVNMs are presented to 

measure the correlation degrees between DSVNMs, and their properties are investigated. Based on 

the weighted correlation coefficient of DSVNMs, a multiple attribute decision-making method is 

established under a DSVNM environment, in which the evaluation values of alternatives with 

respect to attributes are collected from different time intervals and are represented by the form of 

DSVNMs. The ranking order of alternatives is performed through the weighted correlation 

coefficient between an alternative and the ideal alternative, which is considered by the attribute 

weights and the time weights, and thus the best one(s) can also be determined. Finally, a practical 

example shows the application of the proposed method. 
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1. Introduction 

The theory of neutrosophic sets presented by Smarandache [1] is a powerful technique to 

handle incomplete, indeterminate and inconsistent information in the real world. As the 

generalization of a classic set, fuzzy set [2], intuitionistic fuzzy set [3], and interval-valued 

intuitionistic fuzzy set [4], a neutrosophic set can independently express a truth-membership degree, 

an indeterminacy-membership degree, and a falsity-membership degree. All the factors described 

by the neutrosophic set are very suitable for human thinking due to the imperfection of knowledge 

that humans receive or observe from the external world. For example, consider the given 

proposition “Movie X would be a hit.” In this situation, the human brain certainly cannot generate 

precise answers in terms of yes or no, because indeterminacy is the sector of unawareness of a 

proposition’s value between truth and falsehood. Obviously, the neutrosophic components are very 

suitable for the representation of indeterminate and inconsistent information.  

A neutrosophic set A in a universal set X is characterized by a truth-membership function μA(x), 

an indeterminacy-membership function τA(x) and a falsity-membership function νA(x). The functions 

μA(x), τA(x), νA(x) in X are real standard or nonstandard subsets of ]−0, 1+[, such that μA(x): X → ]−0, 1+[, 

τA(x): X → ]−0, 1+[, and νA(x): X → ]−0, 1+[. Then, the sum of μA(x), τA(x) and νA(x) is no restriction, i.e., 
−0 ≤ sup μA(x) + sup τA(x) + sup νA(x) ≤ 3+. Since the functions μA(x), τA(x) and νA(x) are defined in the 

nonstandard interval ]−0, 1+[, it is difficult to apply the neutrosophic set to science and engineering 

fields. So, we can constrain the functions μA(x), τA(x) and νA(x) in the real standard interval [0, 1] to 

easily apply to real situations. Thus, Wang et al. [5,6] defined a single valued neutrosophic set 
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(SVNS) and an interval neutrosophic set (INS), which are the subclasses of the neutrosophic set. 

SVNSs and INSs are more suitable for the representation of indeterminate and inconsistent 

information in science and engineering applications.  

Recently, neutrosophic sets have become research topics in engineering areas, such as 

decision-making [7–17], clustering analysis [18,19], and image processing [20–22]. By means of 

combining neutrosophic sets with other sets, some extensions of them have been recently developed, 

such as neutrosophic soft sets [23–25], single valued neutrosophic hesitant fuzzy sets [26,27], interval 

neutrosophic hesitant sets [28], interval neutrosophic linguistic sets [29], single valued neutrosophic 

linguistic sets [30]. Moreover, these have been successfully applied in decision-making. Furthermore, 

multi-valued neutrosophic sets for medical diagnosis [31] and decision-making [32,33] were proposed 

under multi-valued neutrosophic environments. Neutrosophic refined sets and bipolar neutrosophic 

refined sets were also developed for solving medical diagnosis problems [34–37]. Normal 

neutrosophic fuzzy numbers were presented to handle multiple attribute decision-making problems 

with normal neutrosophic fuzzy information [38,39]. 

In general, all of the above studies have significantly advanced in the theory and applications of 

various neutrosophic sets. However, the aforementioned neutrosophic information is collected all at 

once, at the same time, which is also called static information. But, as for some complex problems in 

real situations, such as some complex decision-making problems, moving image processing 

problems, complex medical diagnosis problems, and personnel dynamic examination, we have to 

consider these dynamic problems in different time intervals. In these cases, how can we express the 

dynamic problems? One solution is to express dynamic information collected from different time 

intervals by dynamic single valued neutrosophic multisets. To do so, the main aims of this paper are: 

(1) to propose a dynamic single valued neutrosophic multiset (DSVNM) as a better tool for 

expressing dynamic information of dynamic problems; (2) to develop correlation coefficients 

between DSVNMs for measuring the correlation degree between two DSVNMs; and (3) to apply the 

correlation coefficient to multiple attribute decision-making problems with DSVNM information. 

The rest of the article is organized as follows. Section 2 introduces some concepts and basic 

operations of SVNSs and a correlation coefficient between SVNSs. Sections 3 presents a DSVNM and 

its basic operational relations. A correlation coefficient between DSVNMs and a weighted correlation 

coefficient between DSVNMs are proposed and their properties are investigated in Section 4. Section 5 

develops a multiple attribute decision-making method using the weighted correlation coefficient of 

DSVNMs under DSVNM environment. In Section 6, a practical example of a decision-making 

problem concerning investment alternatives is provided to demonstrate the applications of the 

proposed decision-making method under DSVNM environment. Conclusions and further research 

are given in Section 7. 

2. Some Concepts of SVNSs 

Smarandache [1] originally presented the concept of a neutrosophic set from a philosophical 

point of view. To easily use it in real applications, Wang et al. [6] introduced the concept of SVNS as 

a subclass of the neutrosophic set and gave the following definition. 

Definition 1 [6]. Let X be a universal set. A SVNS A in X is characterized by a truth-membership function 

μA(x), an indeterminacy-membership function τA(x) and a falsity-membership function νA(x). Then, a SVNS A 

can be denoted by the following form: 

 XxxxxxA AAA  |)(),(),(,    

where μA(x), τA(x), νA(x)   [0, 1] for each x in X. Therefore, the sum of μA(x), τA(x) and νA(x) satisfies the 

condition 0 ≤ μA(x) + τA(x) + νA(x) ≤ 3. 

For two SVNSs  XxxxxxA AAA  |)(),(),(,   and  XxxxxxB BBB  |)(),(),(,  , 

there are the following relations [6]: 



Information 2017, 8, 41 3 of 9 

 

(1) Complement:  XxxxxxA AAA

c  |)(),(1),(,  ; 

(2) Inclusion: A   B if and only if μA(x) ≤ μB(x), τA(x) ≥ τB(x), νA(x) ≥ νB(x) for any x in X; 

(3) Equality: A = B if and only if A   B and B   A; 

(4) Union:  XxxxxxxxxBA BABABA  |)()(),()(),()(,  ; 

(5) Intersection:  XxxxxxxxxBA BABABA  |)()(),()(),()(,  ; 

(6) Addition:  XxxxxxxxxxxBA BABABABA  |)()(),()(),()()()(,  ; 

(7) Multiplication: 

 XxxxxxxxxxxxxBA BABABABABA  |)()()()(),()()()(),()(,  . 

Then, Ye [8] defined a correlation coefficient between A and B as follows: 
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(1) 

The correlation coefficient between A and B satisfies the following properties [8]: 

(P1) 0 ≤ R(A, B) ≤ 1; 

(P2) R(A, B) = 1 if A = B; 

(P3) R(A, B) = R(B, A). 

3. Dynamic Single Valued Neutrosophic Multiset 

This section proposes a dynamic single valued neutrosophic multiset and its operational relations. 

Definition 2. Let X be a nonempty set with generic elements in X denoted by x, and t = {t1, t2, …, tq} be a time 

sequence. A dynamic single valued neutrosophic multiset (DSVNM) A(t) collected from X and t is 

characterized by a truth-membership time sequence )),(),...,,(),,(( 21 xtxtxt qAAA  , an 

indeterminacy-membership time sequence )),(),...,,(),,(( 21 xtxtxt qAAA  , and a falsity-membership time 

sequence )),(),...,,(),,(( 21 xtxtxt qAAA   such that μA(tk, x): X → R, τA(tk, x): X → R, νA(tk, x): X → R for 

tk   t and x   X, where R is the set of all real numbers in the real unit interval [0, 1]. Then, a DSVNM A(t) 

is denoted by: 



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Obviously, the sum of μA(tk, x), τA(tk, x), νA(tk, x)   [0, 1] satisfies the condition 0 ≤ μA(tk, x) + τA(tk, x) + 

νA(tk, x) ≤ 3 for tk   t and x   X and k = 1, 2, …, q. 

For convenience, a DSVNM A(t) can be denoted by the following simplified form: 

 XxttxtxtxtxtA kkAkAkA  ,|),(),,(),,(,)(    

For example, a DSVNM in the time sequence t = {t1, t2, t3} and a universal set X = {x1, x2} is given as: 

A(t) = {<x1, (0.3, 0.2, 0.5), (0.4, 0.3, 0.5), (0.6, 0.8, 0.9)>, <x2, (0.4, 0.4, 0.3), (0.1, 0.2, 0.1), 

(0.3, 0.5, 0.4)>} 
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Definition 3. Let A(t) = {  x, μA(tk, x), τA(tk, x), νA(tk, x)  |tk   t, x   X} and B(t) = {  x, μB(tk, x), τB(tk, x), 

νB(tk, x)  | tk   t, x   X} be any two DSVNMs in t = {t1, t2, …, tq} and X. Then, there are the following 

relations: 

(1) Inclusion: A(t)   B(t) if and only if μA(tk, x) ≤ μB(tk, x), τA(tk, x) ≥ τB(tk, x), νA(tk, x) ≥ νB(tk, x) for k = 1, 2, 

…, q and x   X; 

(2) Equality: A(t) = B(t) if and only if A(t)   B(t) and B(t)   A(t); 

(3) Complement:   XxttxtxtxtxtA kkAkAkA

c  ,|),(,),(1),,(,)(  ; 

(4) Union: 

 XxttxtxtxtxtxtxtxtBtA kkBkAkBkAkBkA  ,|),(),(),,(),(),,(),(,)()(  ; 

(5) Intersection: 

 XxttxtxtxtxtxtxtxtBtA kkBkAkBkAkBkA  ,|),(),(),,(),(),,(),(,)()(  . 

For convenience, we can use a(t) =  (μ(t1, x), μ(t2, x), …, μ(tq, x)), (τ(t1, x), τ(t2, x), …, τ(tq, x)), (ν(t1, x), 

ν(t2, x), …, ν(tq, x))   to represent a basic element in a DSVNM A(t) and call it a dynamic single valued 

neutrosophic multiset element (DSVNME). 

Definition 4. Let a1(t) =  (μ1(t1, x), μ1(t2, x), …, μ1(tq, x)), (τ1(t1, x), τ1(t2, x), …, τ1(tq, x)), (ν1(t1, x), ν1(t2, x), …, 

ν1(tq, x))   and a2(t) =  (μ2(t1, x), μ2(t2, x), …, μ2(tq, x)), (τ2(t1, x), τ2(t2, x), …, τ2(tq, x)), (ν2(t1, x), ν2(t2, x), …, 

ν2(tq, x))   be two DSVNMEs and λ ≥ 0, then the operational rules of DSVNMEs are defined as follows: 
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4. Correlation Coefficient of DSVNMs 
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Correlation coefficients are usually used in science and engineering applications. They play an 

important role in decision-making, pattern recognition, clustering analysis, and so on. In regards to 

this, this section proposes a correlation coefficient of DSVNMs and a weighted correlation coefficient 

of DSVNMs.  

Based on DSVNMs constructed by dynamic truth-membership degrees, dynamic 

indeterminacy-membership degrees, and dynamic falsity-membership degrees corresponding to t = 

{t1, t2, …, tq}, we can give the following definition of a correlation coefficient between DSVNMs. 

Definition 5. Let A(t)= {  x, μA(tk, x), τA(tk, x), νA(tk, x)   |tk   t, x   X} and B(t) = {  x, μB(tk, x), τB(tk, x), 

νB(tk, x)   | tk   t, x   X} be any two DSVNMs in t = {t1, t2, …, tq} and X = (x1, x2, …, xn). Then, a 

correlation coefficient between A(t) and B(t) is defined as: 

 
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(2) 

Theorem 1. The correlation coefficient between A and B satisfies the following properties: 

(P1) 0 ≤ ρ(A(t), B(t)) ≤ 1; 

(P2) ρ(A(t), B(t)) = 1 if A(t) = B(t); 

(P3) ρ(A(t), B(t)) = ρ(B(t), A(t)). 

Proof. 

(P1) The inequality ρ(A(t), B(t)) ≥ 0 is obvious. Then, let us prove ρ(A(t), B(t))  1. 

According to the Cauchy–Schwarz inequality: 
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where (x1, x2, …, xn)   Rn and (y1, y2, …, yn)   Rn. Then, we can obtain the following inequality: 
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According to the above inequality, there is the following inequality: 
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Hence, there is:  
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From Equation (2), we have ρ(A(t), B(t)) ≤ 1. Thus, 0 ≤ ρ(A(t), B(t)) ≤ 1. 

(P2) A(t) = B(t)   ),(),( jkBjkA xtxt   , ),(),( jkBjkA xtxt   , and 

),(),( jkBjkA xtxt    for tk   t and xj    X   ρ(A(t), B(t)) = 1. 
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(P3) It is straightforward.  

In practical applications, we should consider different weights for each element xj (j = 1, 2, …, n) 

in X and each time tk (k = 1, 2, …, q) in t. Then, let w = (w1, w2, …, wn)T be the weighting vector of  

xj (j = 1, 2, …, n) with wj ≥ 0 and 1
1
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j jw  and ω(t) = (ω(t1), ω(t2), …, ω(tq))T be the weighting 

vector of tk (k = 1, 2, …, q) with ω(tk) ≥ 0 and 1)(
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correlation coefficient of Equation (2) to the following weighted correlation coefficient: 
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(3) 

When wj = 1/n (j = 1, 2, …, n) and ω(tk) = 1/q (k = 1, 2, …, q), Equation (3) reduces to Equation (2). 

Theorem 2. The correlation coefficient ρw(A(t), B(t)) also satisfies the following three properties: 

(P1) 0 ≤ ρw(A(t), B(t)) ≤ 1; 

(P2) ρw(A(t), B(t)) = 1 if A(t) = B(t); 

(P3) ρw(A(t), B(t)) = ρw(B(t), A(t)). 

By the previous similar proof method in Theorem 1, we can prove the properties (P1)–(P3) (omitted). 

5. Correlation Coefficient for Multiple Attribute Decision-Making 

In this section, we apply the weighted correlation coefficient of DSVNMs to multiple attribute 

decision-making problems with DSVNM information. 

For a multiple attribute decision-making problem with DSVNM information, let G = {g1, g2, …, gm} 

be a discrete set of alternatives, X = {x1, x2, ..., xn} be a set of attributes, and t = {t1, t2, …, tq} be a time 

sequence. If the decision makers provide an evaluation value for the alternative gi (i = 1, 2, ..., m) 

regarding the attribute xj (j = 1, 2, …, n) at a time tk (k = 1, 2, …, q), the evaluation value can be 

represented by the form of a DSVNME dij(t) =  (μi(t1, xj), μi(t2, xj), …, μi(tq, xj)), (τi(t1, xj), τi(t2, xj), …, τi(tq, 

xj)), (νi(t1, xj), νi(t2, xj), …, νi(tq, xj))   (j = 1, 2,…, n; i = 1, 2,…, m). Therefore, we can elicit a DSVNM 

decision matrix D(t) = (dij(t))m×n, where dij(t) (i = 1, 2, ..., m; j = 1, 2, ..., n) is in a DSVNME form. 

In multiple attribute decision-making problems, the ideal alternative is used to help the 

identification of the best alternative in the decision set. Therefore, we define each ideal DSVNME 

dj*(t) =  (μ*(t1, xj), μ*(t2, xj), …, μ*(tq, xj)), (τ*(t1, xj), τ*(t2, xj), …, τ*(tq, xj)), (ν*(t1, xj), ν*(t2, xj), …, ν*(tq, 

xj))   =   (1, 1, …, 1), (0, 0, …, 0), (0, 0, …, 0)   (j = 1, 2, ..., n) in the ideal solution (ideal alternative) 

 Xxtttdxtg jkjj  ,|)(,)( **
 (k = 1, 2, …, q; j = 1, 2, ..., n). 

Assume that the weighting vector of attributes for the different importance of each attribute 

xj (j = 1, 2, ..., n) is given by w = (w1, w2,…, wn)T with wj ≥ 0, 


n

j jw
1

1  and the time weighting vector 

for the different importance of each time tk (k = 1, 2, …, q) is given by ω(t) = (ω(t1), ω(t2), …, ω(tq))T 

with ω(tk) ≥ 0 and 1)(
1

 

q

k kt . 

Then, we utilize the weighted correlation coefficient for multiple attribute decision-making 

problems with DSVNM information. 

The weighted correlation coefficient between an alternative gi(t) (i = 1, 2, …, m) and the ideal 

solution g*(t) is calculated by use of the following formula: 
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(4) 

The bigger the value of ρw(gi(t), g*(t)), the better the alternative gi. Then, we rank the alternatives 

and select the best one(s) according to the values of weighted correlation coefficients. 

6. Practical Example 

A practical example about investment alternatives for a multiple attribute decision-making 

problem adapted from Ye [8] is used to demonstrate the applications of the proposed 

decision-making method under a DSVNM environment. There is an investment company, which 

wants to invest a sum of money in the best option. There is a panel with four possible alternatives 

to invest the money: (1) g1 is a car company; (2) g2 is a food company; (3) g3 is a computer company; 

(4) g4 is an arms company. The investment company must take a decision according to the three 

attributes: (1) x1 is the risk factor; (2) x2 is the growth factor; (3) x3 is the environmental factor. Let us 

consider the evaluations of the alternatives on the attributes given by decision makers or experts in 

the time sequence t = {t1, t2, t3}. Assume that the weighting vector of the attributes is given by w = 

(0.35, 0.25, 0.40)T and the weighting vector of times is given by ω(t) = (0.25, 0.35, 0.40)T. The four 

possible alternatives of gi (i = 1, 2, 3, 4) regarding the three attributes of xj (j = 1, 2, 3) are evaluated 

by decision makers, and then the evaluation values are represented by using DSVNMEs, which are 

given as the following DSVNM decision matrix D(t): 

(0.4,0.5,0.3), (0.1,0.2,0.3), (0.3,0.2,0.3)

(0.6,0.4,0.5), (0.1,0.1,0.2), (0.1,0.2,0.3)
( )

(0.4,0.2,0.3), (0.2,0.1,0.2), (0.2,0.3,0.3)

(0.7,0.6,0.8), (0.1,0.0,0.0), (0.1,0.1,0.1)

(0.4,0.5,0.3), (0.1,0.2,0

D t








.2), (0.2,0.3,0.3)

(0.5,0.6,0.7), (0.1,0.1,0.1), (0.1,0.2,0.2)

(0.4,0.5,0.6), (0.1,0.2,0.2), (0.4,0.2,0.3)

(0.6,0.5,0.7), (0.1,0.2,0.1), (0.2,0.3,0.2)

(0.2,0.3,0.2), (0.2,0.2,0.2), (0.4,0.3,0.5)

(0.5,0.6,0.7), (0.2,0.1,0.2), (0.1,0.2,0.2)
.

(0.6,0.5,0.6), (0.3,0.2,0.3), (0.2,0.2,0.3)

(0.4,0.5,0.4), (0.3,0.2,0.2), (0.2,0.1,0.2)








 
 

Then, the developed approach is utilized to give the ranking order of the alternatives and the 

best one(s). 

By applying Equation (4), we can obtain the values of the weighted correlation coefficient 

between each alternative and the ideal alternative as follows:  

ρw(g1(t), g*(t)) = 0.6285, ρw(g2(t), g*(t)) = 0.9122, ρw(g3(t), g*(t)) = 0.7758 and ρw(g4(t), g*(t)) = 0.9025. 

According to the above values of weighted correlation coefficients, we can give the ranking 

order of the four alternatives: A2  A4  A3  A1, which is in accordance with the one of [8]. 

Therefore, the alternative A2 is the best choice.  

The example clearly indicates that the proposed decision-making method is simple and 

effective under the DSVNM environment, based on the weighted correlation coefficient of 

DSVNMs for dealing with multiple attribute decision-making problems with DSVNM information, 

since such a decision-making method can represent and handle the dynamic evaluation data given 
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by experts or decision makers at different time intervals, while existing various neutrosophic 

decision-making methods cannot do this. 

7. Conclusions 

Based on dynamic information collected from different time intervals in some real situations, 

this paper proposed a DSVNM to express dynamic information and the operational relations of 

DSVNMs. The DSVNM is a dynamic set encompassing a time sequence, where its truth-membership 

degrees, indeterminacy-membership degrees, and falsity-membership degrees are represented by 

time sequences. Therefore, DSVNM has desirable characteristics and advantages of its own for 

handling dynamic problems according to a time sequence in real applications, whereas existing 

neutrosophic sets cannot deal with them. 

Then, we proposed the correlation coefficient of DSVNMs and weighted correlation coefficient 

of DSVNMs and investigated their properties. Based on the weighted correlation coefficient of 

DSVNMs, the multiple attribute decision-making method was proposed under a DSVNM 

environment, in which the evaluated values of alternatives regarding attributes take the form of 

DSVNMEs. Through the weighted correlation coefficient between each alternative and the ideal 

alternative, one can rank alternatives and choose the best one(s). Finally, a practical example about 

investment alternatives was given to demonstrate the practicality and effectiveness of the 

developed approach. The proposed method is simple and effective under the DSVNM 

decision-making environment.  

In the future, we shall extend DSVNMs to interval/bipolar neutrosophic sets and develop 

dynamic interval/bipolar neutrosophic decision-making and medical diagnosis methods in different 

time intervals. 
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