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Abstract: Lossy trapdoor functions (LTFs) were first introduced by Peikert and Waters (STOC’08).
Since their introduction, lossy trapdoor functions have found numerous applications. They can be
used as tools to construct important cryptographic primitives such as injective one-way trapdoor
functions, chosen-ciphertext-secure public key encryptions, deterministic encryptions, et al. In this
paper, we focus on the lossy trapdoor functions in the presence of continuous leakage. We introduce
the new notion of updatable lossy trapdoor functions (ULTFs) and give their formal definition and
security properties. Based on these, we extend the security model to the LTFs against continuous
leakage when the evaluation algorithm is leakage resilient. Under the standard DDH assumption
and DCR assumption, respectively, we show two explicit lossy trapdoor functions against continuous
leakage in the standard model. In these schemes, using the technology of matrix kernel, the trapdoor
can be refreshed at regular intervals and the adversaries can learn unbounded leakage information
on the trapdoor along the whole system life. At the same time, we also show the performance
of the proposed schemes compared with the known existing continuous leakage resilient lossy
trapdoor functions.

Keywords: lossy trapdoor functions; continuous leakage; ULTFs; DDH; DCR

1. Introduction

Lossy trapdoor functions (LTFs) were firstly introduced by Peikert and Waters (STOC 2008) [1].
A collection of lossy trapdoor functions can be divided into two computationally indistinguishable
families. The first family is the injective functions which can be efficiently inverted using a trapdoor.
The other family is the lossy functions under which the image size of these functions is significantly
smaller than the size of their domain. Hence, the lossy functions loose a lot of information about their
input. Additionally, injective and lossy functions are efficiently samplable.

Since their introduction, lossy trapdoor functions have found numerous applications. It can be
used as a tool to construct important cryptographic primitives such as injective one-way trapdoor
functions, chosen plaintext secure (CPA) and chosen ciphertext secure (CCA) public key encryptions
(PKE) in the standard model and oblivious transfer (OT). In addition, LTFs have already found various
other applications, including deterministic PKE schemes [2,3], OAEP-based PKE schemes, “hedged”
PKE schemes for protecting against bad randomness [4], selective opening attack (SOA) secure PKE
scheme [5] and efficient non-interactive string commitments [6].
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Leakage-resilient cryptographic systems have received a lot of attention in recent years.
The feature of a leakage resilient cryptosystem is that it remains secure even when some secret
internal information, including the secret key, is leaked to the adversary. In the traditional security
analysis, security models treat such internal information as perfectly hidden from the adversary. With
the development of various side-channel attacks, it is clear that the traditional view is inconsistent
with some physical realities [7]. To stand against such attacks, cryptographic researchers have paid
much to the design of leakage-resilient cryptosystems [8–14].

The continuous leakage resilient (CLR) model was introduced by Dodis et al. [15] and
Brakerski et al. [16]. It is a more powerful security model since it allows the adversary to learn
unbounded leakage on the system’s secret memory during the main operation of the system. There
are a variety of CLR schemes, including CLR one-way relations [15,17], CLR probability PKE [16–18],
CLR Identity-based encryption (IBE) [16,19], CLR secure multiparty computation [20], CLR interactive
proofs [21], CLR signatures, CLR identification schemes and CLR authenticated key agreement
protocols [15].

To withstand continuous leakage, the secret key must be continuously refreshed requiring that:
(1) the functionality of the cryptosystem is preserved even after updating the keys an arbitrary number
of times; (2) one can not combine the leaked values from different versions of the secret key to break the
system. Such a model of invisible key updates was formalized by Alwen et al. [22], where one assumes
that there exists a trusted and leak-free device who uses some updatable key uk to continuously refresh
the secret key in a way that still satisfies the above two requirements. The leak-free device is only
present during the key updates, but not during the normal operations just like decryption when the
leakage actually happens. In [17], they informally refer to this CLR model of invisible key updates
as the floppy model where there is assumed an external leak-free storage that is only present for
refreshing operations.

1.1. Our Motivation

Lossy trapdoor functions play an important role in public key cryptosystems. Its special
construction and properties decide that it is the building block of the cryptosystems. As we all
know, the CLR model is the most demanding security model in the cryptosystem. Therefore, designing
lossy trapdoor functions against continuous leakage is an interesting and practical topic.

Based on the work of Brakerski et al. [16], Koppula et al. [23] firstly gave the security model of
lossy trapdoor functions under continuous leakage and presented the lossy trapdoor functions against
continuous leakage, which is a base of the deterministic public key encryption against continuous
leakage. Their security model is mainly based on the all-but-one (ABO) LTFs of Peikert and Waters
in [1]. Under this model, their proposal is not concise and efficient in which they utilized many bi-linear
parings to encrypt only one bit. Hence, their LTFs against continuous leakage is so complicated that
it can not be used in practice efficiently. Qin and Liu et al. first introduced the leakage resilient
lossy trapdoor functions [24]. In their work, the structure of LTFs is slightly different from the one
introduced by Peikert and Waters in [1]. In [1], the evaluation key of a LTF includes the public
parameters. However, in [24], they distinguish between the public parameters and the evaluation key
with two independent algorithms. However, the slight change on the constructure did not have an
influence on their scheme to satisfy the security properties of LTFs.

Motivated by the work of Qin and Liu et al. [24], we focus on how to construct efficient and
practical LTFs against continuous leakage in the floppy model.

1.2. Our Contribution

In this work, our contribution is described as follows:

1. We introduce the new notion of updatable lossy trapdoor functions (ULTFs) based on the LTF
structure of [24], where the key sample algorithm is divided into two independent steps. In the
first algorithm, it takes in the security parameter 1κ and outputs a public parameter pp and the
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trapdoor td; in the second algorithm, it takes in pp and injective/lossy parameter b ∈ {0, 1} and
outputs the injective/lossy evaluation key ek, which is related to b. At the same time, we also give
the security requirements such as the indistinguishability of injective/lossy evaluation key, etc.
When the evaluation algorithm F is leakage resilient, we can achieve the LTFs against continuous
leakage, which we denote as CLR-LTFs for short. With the help of the new notion of ULTFs, we
achieve the security model of CLR-LTFs in the floppy model. When the adversary is equipped
with the public parameter and additional information from the leakage oracle during each time
period, it still is not able to distinguish the injective and lossy evaluation keys.

2. Based on the ElGamal-like PKE scheme in vector form [17,25,26], which is additively
homomorphic and CPA-secure against continuous leakage, we achieve two proposals of
CLR-LTFs under the standard Decisional Diffie–Hellman (DDH) and Decisional Composite
Residuosity (DCR) assumptions, respectively. In the two CLR-LTF schemes, with the public
parameters and the evaluation key fixed, we utilize the technology of the matrix kernel to
complete the refreshment of the trapdoor. Our first proposal is obtained by embedding the
CLR ElGamal-like PKE scheme into the matrix-based LTFs of [1] n times, where the ciphertexts
constitute the rows of the matrix R and the columns of the matrix Q, respectively. Through the
n-time expansion of the secret key of a single ElGamal-like PKE scheme, the leakage rate of the
achieved CLR-LTF is decreased from 1− o(1) into 1

n for maintaining the indistinguishability of
the injective or lossy evaluation keys. In order to improve the leakage rate in each time period,
we extend the group from a prime order group to a composite order group and get the second
CLR-LTFs based on the DCR assumption, where the leakage rate can arrive at 1.

3. Compared with the other known CLR-LTFs constructions introduced by Koppula et al. [23], we
give an efficiency comparison as below (Table 1).

Table 1. Efficiency comparison.

Scheme Hardness Assumption Leakage Rate |m| Pairing Group

[23] DDH 1/2 1-bit Yes Prime order
[23] SXDH 1− o(1) 1-bit Yes Prime order

Ours DDH 1/n n-bit No Prime order
Ours DCR 1− o(1) αlogN-bit No Composite order

|m| denotes the length of the encrypted massage; n ≈ Θ(κ) where κ is the security parameter; N is an RSA
modulus which will be explained by detail in Section 6; α ≥ 1 is a nature number; DDH means Decisional
Diffie-Hellman assumption; SXDH means Symmetric External Diffie-Hellman assumption; DCR means
Decisional Composite Residuosity assumption.

1.3. Organization

The rest of the article is organized as follows. In Section 2, we review some preliminaries which
would be used in this paper. In Section 3, we introduce the new notion of updatable lossy trapdoor
functions and present the formal definition and security properties. Meanwhile, we extend the security
model to continuous leakage. Next, we introduce the CLR ElGamal-like PKE scheme with some
important security properties which will be borrowed for the following concrete CLR-LTFs in Section 4.
Then, we present two explicit CLR-LTFs. The first CLR-LTF under the DDH assumption in the prime
order group is shown in Section 5. The second CLR-LTF under the DCR assumption in the composite
order group is presented in Section 6, respectively. We also prove that these schemes are satisfying the
security properties that have been given in Section 4. Lastly, we get a conclusion and direct the future
work in Section 7.
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Notion:
negl(κ) is negligible function with security parameter κ;
[t] denotes the set {1, 2, · · · , t}, where t is a natural number;
logx denotes the discrete logarithm of x in the base 2;
Rki(Zn×m

p ) denotes the uniform distribution on any n-by-m matrices over Zp of rank i.

2. Preliminaries

In this section, we present some basic tools that will be used in our constructions and security
proofs. We formally state some decisional assumptions and present some results about the leftover
hash lemma.

2.1. Decisional Assumptions

2.1.1. Decisional Diffie–Hellman (DDH) Assumption

We assume a probability polynomial time (PPT) algorithm G(1κ) which takes as input 1κ and
outputs a tuple of G = (G, p, g), where G is a cyclic group of prime order p and g is a generation of G.
The Decisional Diffie–Hellman (DDH) assumption holds iff

AdvDDH
G,A := |Pr[A(g1, g2, gr

1, gr
2) = 1]− Pr[A(g1, g2, gr

1, gr′
2 ) = 1]| ≤ negl(κ)

for any PPT adversary A, where g1, g2 ∈ G and r ∈ Zq, r′ ∈ Zq \ {r}.
We can extend the standard DDH assumption to the following form. For a group (G, p, g) and

random elements g1, g2, · · · , gl ∈ G, we define the two sets:

L := {(gr
1, gr

2, · · · , gr
l ) : r ∈ Zp};

X := {(gr1
1 , gr2

2 , · · · , grl
l ) : r1, r2, · · · , rl ∈ Zp}.

If x ∈ L, the corresponding r is called a witness for x. At the same time, (X, L) forms a subset
membership problem [26] whose hardness is subject to the DDH assumption [25].

On the other hand, Ref. [26] showed that the DDH assumption is equivalent to the assumption
that it is hard to distinguish between an n-by-m matrix X with rank i ≥ 1 and one with rank j > i in
the exponent of a generator g of a prime order group G.

2.1.2. Rank Hiding Assumption

Following the parameters of the DDH assumption, let Rki(Zn×m
p ) denote the uniform distribution

on all n-by-m matrices over Zp of rank i. The rank hiding assumption [17] holds iff

Advrh
G,A := |Pr[A((G, p, g, gX) : X ← Rki(Zn×m

p )) = 1]
−Pr[A((G, p, g, gX) : X ← Rkj(Zn×m

p )) = 1]| ≤ negl(κ)

for any PPT adversary A.

2.1.3. Extended Rank Hiding Assumption

Based on the rank hiding assumption, the extended rank hiding assumption [17] states that,
for any PPT adversary A, the advantage

Adverh
G,A := |Pr[A((G, p, g, gX , v1, · · · , vt) : X ← Rki(Zn×m

p ); {vl}t
l=1 ∈ kernel(X)) = 1]

− Pr[A((G, p, g, gX , v1, · · · , vt) : X ← Rkj(Zn×m
p ); {vl}t

l=1 ∈ kernel(X)) = 1]| ≤ negl(κ),
where m, n ∈ N, j > i ∈ N and t ≤min{n, m}−max{i, j}.
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2.1.4. Decisional Composite Residuosity (DCR) Assumption

We assume a group Z∗Nα+1 is a multiplicative group where s ≥ 1 is an integer. In addition, the
integer N = PQ is an RSA modulus, which means that P and Q are odd primes of equivalent bit
length. The decisional composite residuosity (DCR) assumption holds on the group Z∗Nα+1 iff

AdvDCR
N,A := |Pr[A(N, g) = 1]− Pr[A(N, g · T) = 1]| ≤ negl(κ)

for any PPT adversary A, where g ∈ G is chosen at random (where G is a cyclic group of order Nα)
and T := 1 + N(modNα+1).

2.2. Generalized Leftover Hash Lemma

The statistical distance between two random variables X and Y over a finite domain Ω is
SD(X, Y)= 1

2 ∑ω∈Ω |Pr[X = ω]− Pr[Y = ω]|. We write X ≈ε Y to denote SD(X, Y)≤ ε, and X ≈ Y
to denote that the statistical distance is negligible. The min-entropy of a random variable X is
H∞(X) = − log(maxxPr[X = x]).

We use the notion of average min-entropy, which captures the remaining unpredictability of a
random variable X conditioned on another random variable Y, formally defined as:

H̃∞(X|Y) = −log(Ey∈Y[2−H∞(X|Y=y)]),

where Ey∈Y denotes the expected value over all values of Y.

Lemma 1 [27]. For any random variables X, Y, Z, if Y has 2r possible values, then

H̃∞(X|(Y, Z)) ≥ H̃∞(X|Z)− r.

In particular,
H̃∞(X|Y) ≥ H∞(X)− r.

Definition 1 [27]. A function Ext : X × {0, 1}t → Y is an average-case (m, ε)-strong extractor if, for all
pairs of random variables (X, Z) such that X ∈ X and H̃∞(X|Z) ≥ m, it holds that

SD((Ext(X, S), S, Z), (UY , S, Z)) ≤ ε,

where S is uniform in {0, 1}t and UY is uniform over Y .

Definition 2 (Universal Hashing). A family H, consisting of deterministic functions h : X → Y , is a
universal hash family if, for any x1 6= x2 ∈ X , we have Prh←H[h(x1) = h(x2)] ≤ 1/|Y|.

Lemma 2 (Generalized Leftover Hash Lemma) [27]. Assume that the familyH = {Hk : X → Y}k∈K is
a universal hash family. Then, for any two random variables X, Z and k ∈ K, it holds that

SD((Hk(X), k, Z), (UY , k, Z)) ≤ 1
2

√
2−H̃∞(X|Z)|Y|.

This lemma implies that any universal hash functions are good extractors. For two random
variables X and Y, a family of universal hash functions {Hk : X → Y}k∈K is an average-case
(m, ε)-strong extractor Ext : X ×K → Y as long as H̃∞(X|Z) ≥ m and log|Y| ≤ m− 2log(1/ε) + 2.

3. Updatable Lossy Trapdoor Function

In this section, we will introduce the new notion of updatable lossy trapdoor functions (ULTFs).
Though Koppula et al. [23] has introduced a notion of LTFs resilient to continual memory leakage, their
notion was mainly based on the all-but-one (ABO) LTFs of Peikert and Waters in [1]. The new notion,
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which will be presented as follows, is mainly based on the LTFs structure of Qin and Liu et al. [24],
which is slightly different from the one introduced by Peikert and Waters in [1]. In [1], the evaluation
key of a LTF includes the public parameters. However, in [24], they distinguish between the public
parameters and the evaluation key with two independent algorithms. As a result, the change in the
structure does not have any influence on the security. Based on the new notion, we can extend the
ULTFs to CLR-LTFs naturally when the evaluation algorithm is leakage resilient.

3.1. Definition of Updatable Lossy Trapdoor Functions

At first, we give some related functions about the security parameter κ:

d(κ): the inpute lenghth of the polynomial about κ;
k(κ): the lossiness k(κ) ≤ d(κ).

Now, we introduce the new notion of updatable lossy trapdoor functions.

Definition 3 (Updatable Lossy Trapdoor Functions). A collection of updatable (d, k)-lossy trapdoor
functions is a 5-tuple of (possible probabilistic) polynomial-time algorithms (PTAs) (G, S, F, F−1, U) such that:

1. Public Parameter. G(1κ): It is a probabilistic PTA which takes in the security parameter 1κ and outputs
the public parameter and the trapdoor (pp, td).

2. Public Parameter. S(pp, b): It is a probabilistic PTA which takes in the public parameter pp and
b ∈ {0, 1} and samples an evaluation key ek which is also called the function index.

3. Evaluation. F(ek, x): It is a deterministic PTA which takes in the evaluation key ek and x ∈ {0, 1}d and
outputs the image y.

4. Inversion. F−1(td, y): It is a deterministic PTA which takes in the image y and the trapdoor td and
outputs x ∈ {0, 1}d or ⊥.

5. Update. U(uk, td): It is a probabilistic PTA which takes in the updatable key uk and the original trapdoor
td and outputs the updated trapdoor td′ such that |td| = |td′|.

3.2. Basic Properties

We require that the ULTF (G, S, F, F−1, U) has some basic properties, indicating its correctness an
hardness requirements:

• Correctness. For all (PP, td) ← G(1κ), all ek ← S(pp, 1) and all x ∈ {0, 1}d, it holds that
F−1(td, F(ek, x)) = x, which is the preimage of y. On the other hand, it requires that, with
the fixed public parameter pp and the evaluation key ek, the updated trapdoor td′ can also recover
the preimage x of y correctly in the injective mode, i.e., it holds that F−1(td′, F(ek, x)) = x.

• Injective/Lossy. For the third evaluation algorithm F(ek, ·), it requires that, for any ek← S(pp, 1),
the function F(ek, ·) is in the injective mode; and for any ek← S(pp, 0) the function F(ek, ·) is in the
lossy mode. The image size of the lossy function F(ek, x) is at most 2d−k. Even when the evaluation
F(ek, x) is in the injective mode, it requires that it can be inverted to the correct preimage using
either the trapdoor td or any of its polynomial frequency updated trapdoor td′.

• Indistinguishability. For the second public parameter algorithm S(pp, b), the two evaluation keys
ek respectively produced by S(pp, 1) and S(pp, 0) are computationally indistinguishable even after
the trapdoor updates.

3.3. Extension

For the particular structure, the ULTFs can be viewed as a special lossy trapdoor function which
served as a fundamental tool in constructing cryptographic primitives in both leakage-free and leaky
settings. Here, if we combine the ULTF with the leakage property efficiently, we can achieve the
continuous leakage resilient (CLR) LTFs. Based on the new notion of ULTFs, we give the security
model of the CLR-LTFs as follows.
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We consider the security model in the floppy model [17]. This means that during the trapdoor
update, there is leak-free device available and between two trapdoor updates there is bounded leakage
about the trapdoor (see [17] for more details).

Definition 4 (Lossy Trapdoor Functions against Continuous Leakage). We say that ULTFs
(G, S, F, F−1, U) is a collection of continuous λ-bit (weak) leakage resilient (d, k)-LTFs (denoted λ-CLR-LTFs)
in the floppy model if the ULTFs satisfy the basic properties above, and, for any PPT λ-key leakage adversary
A = (A1,A2), the advantage

Advλ−CLR
ULTF,A(κ) := |Pr[Expλ−CLR

ULTF,A(κ, 0) = 1]− Expλ−CLR
ULTF,A(κ, 1) = 1]| ≤ negl(κ),

where the experiment Expλ−CLR
ULTF,A(κ, γ) (γ ∈ {0, 1}) is described as:

Experiment Expλ−CLR
ULTF,A(κ, γ):

(pp, td0)← G(1κ)

For i = 0, 1, 2, · · · , t, where t is polynomial in the security parameter κ

{Statei ← A
leakage(tdi)
1 (pp), where |leakage(tdi)| ≤ λ

tdi+1 ← U(uk, tdi)}, where uk is the update key
ek← S(pp, γ)

γ′ ← A2(Statei∈[t], ek)
output γ′.

Remark 1. In this security model, the adversary is only allowed to obtain leakage before it can see the evaluation
key ek; therefore, the security of CLR-LTF in this paper is weak key leakage.

4. ElGamal-Like Public Key Encryption Scheme

Briefly, we introduce the ElGamal-like Encryption scheme which will be elegantly embedded
into the following continuous leakage resilient LTFs. In addition, we will utilize some good algebraic
properties of this cryptographic structure in the following. For the security parameter, κ, G =

(G, p, g)← G(1κ). The scheme is run in group G with prime order p, for some negligible ε = ε(κ) set
l = 2 + λ+2log(1/ε)−2

logp . The ElGamal-like PKE (KeyGen,Encrypt,Decrypt) is operated as follows:

1. KeyGen(1κ): Run G = (G, p, g)← G(1κ). Choose vector w ∈ Zl
p and s ∈ Zl

p and let h = g〈w,s〉 ∈
G. The public key is pk = (G, p, g, gw, h). The secret key is set to sk = s.

2. Encrypt(pk, m): Given a public key pk = (G, p, g, gw, h) along with a message m ∈ G, pick a
random scalar r ∈ Zq uniformly at random and output the ciphertext c = (c1, c2) = (grw, hr ·m).

3. Decrypt(sk, c): Given a ciphertext c = (c1, c2) along with a secret key sk = s output m = c2 · c−s
1 .

The correctness holds directly with hr = gr〈w,s〉 = g〈rw,s〉. Evidently, the above scheme is a variant
of the ElGamal public key encryption in vector form. On the other hand, it also can been seen as the
BHHO (Boneh, Halevi, Hamburg, Ostrovsky) public key encryption [25] when s ∈ {0, 1}n. As we all
know, this primitive has some good cryptographic properties. We will use these properties in our LTFs
against continuous key leakage.

From the leakage resilient aspect, Ref. [25,26] showed that, given the public key and any λ

bits of leakage, H̃(sk|(pk, λ)) ≥ logp + 2log(1/ε)− 2. The leftover hash lemma provides that, with
overwhelming probability over the choice of c1 ∈ X \ L, it holds that hr is ε-close to the uniform
distribution over G.

Lemma 3. If the DDH assumption is hard in the p-prime order group G, then the above scheme is a λ-LR-CPA
secure PKE scheme as long as the leakage parameter λ ≤ (l − 2)log(p)− 2log(1/ε) + 2, where ε = ε(κ) is
some negligible function about the security parameter κ.
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From the continuous leakage resilient aspect, Ref. [17] showed that, with the updated key w ∈ Zl
p,

we can update the secret key with sk′ = sk + β, where β ∈ kernal(w). With the fixed public key,
the updated key sk′ can also decrypt the ciphertext correctly. Combined with the above lemma,
with the help of the (extended) rank hiding assumption, the above scheme is a λ-CLR-CPA secure
PKE scheme.

Lemma 4. Under the extended rank hinging assumption and the DDH assumption for G, then the above
scheme is a λ-CLR-CPA secure PKE scheme in the floppy model as long as the leakage parameter λ ≤ (l −
2)log(p)− 2log(1/ε) + 2, where ε = ε(κ) is some negligible function about the security parameter κ.

5. Continuous Leakage Resilient LTF from the DDH Assumption

In this section, based on the ElGamal-like Encryption scheme, we show a lossy trapdoor function
against continuous trapdoor leakage.

5.1. The Scheme

In this section, we show how to construct continuous leakage resilient lossy trapdoor function
(CLR-LTF) from the continuous leakage resilient CPA-secure ElGamal-like PKE.

For some negligible ε = ε(κ) set, l = 2 + λ+2log(1/ε)−2
logp . The construction CLR-TDF=(G, S, F, F−1,

U) is presented as follows:

1. G(1κ): Run G = (G, p, g) ← G(1κ). Choose g1 = gw1 , g2 = gw2 , · · · , gl = gwl ∈ G and
let w = (w1, w2, · · · , wl) ∈ Zl

p, then gw = (g1, g2, · · · , gl). Choose n tuples of secret keys

si = (si1, si2, · · · sil) ∈ Zl
p for i ∈ [n]. Let hi = Πl

j=1g
sij
j = g〈w,si〉. Output

pp = (G, p, g, gw, h1, h2, · · · , hn), td = (s1, s2, · · · , sn), uk = w.

2. S(pp, b): Given b ∈ {0, 1}. For i ∈ [n], let Ri = (gri
1 , gri

2 , · · · , gri
l ) ∈ L with a witness ri ∈ Zp

independently at random.

Let R =


R1

R2
...

Rn

=


gr1

1 gr1
2 · · · gr1

l
gr2

1 gr2
2 · · · gr2

l
...

...
. . .

...
grn

1 grn
2 · · · grn

l


n×l

and Q = (Q1, Q2, · · · , Qn)T=


hr1

1 · gb hr2
1 · · · hrn

1
hr1

2 hr2
2 · gb · · · hrn

2
...

...
. . .

...
hr1

n hr2
n · · · hrn

n · gb


n×n

.

When b = 1, we say it is in injective mode; otherwise, let g0 = 1G and we say it is in lossy mode.
At last, the evaluation key is ek = (R, Q).

3. F(ek, x): Given a message x = x1x2 · · · xn ∈ {0, 1}n. Given a function index (R, Q), then calculate
FR,Q(x) = (c1, c2), where
c1 = x · R = (c11, c12, · · · , c1l), where c1i = ∏n

j=1 g
rjxj
i , i ∈ [l];

c2 = x ·Q = (c21, c22, · · · , c2n), where c2i = ∏n
j=1 Q

xj
ij , i ∈ [n].

Output c = (c1, c2) ∈ Gl × Gn.
4. F−1(td, c): Firstly, parse c as (c1, c2) = ((c11, c12, · · · , c1l), (c21, c22, · · · , c2n)).

If ∏l
j=1 c

sij
1j = c2i, then xi = 0, i ∈ [n]; if ∏l

j=1 c
sij
1j 6= c2i, then xi = 1, i ∈ [n].

At last, output the message x = x1x2 · · · xn ∈ {0, 1}n.
5. U(td, uk): Input the update key uk = w and the trapdoor is updated into the new one td′ =

td+ (β1, β2, · · · , βn) = (s1 + β1, s2 + β2, · · · , sn + βn), where βi = (bi1, bi2, · · · , bil)← kernel(w)

(i.e., s′ij = sij + bij for ∀i ∈ [n], j ∈ [l]).
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5.2. Correctness and Security

5.2.1. Correctness

• Since the updated trapdoor is td′ = (si + βi)i∈[n] = (sij + bij)i∈[n],j∈[l], we have h′i = Πl
j=1g

sij+bij
j =

g〈w,si+βi〉 = g〈w,si〉 = hi.
• For any evaluation key ek and ∀i ∈ [n], there is

c2i = ∏n
j=1 Q

xj
ij = gbxi ·∏n

j=1 h
′rjxj
i = gbxi · h

′∑n
j=1 rjxj

i

= gbxi · g〈w,si+βi〉·∑n
j=1 rjxj

= gbxi · g〈w,si〉·∑n
j=1 rjxj .

On the other hand,

∏l
j=1 c

s′ij
1j = cs′i1

11 cs′i2
12 · · · c

s′il
1l

= (∏n
j=1 g

rjxj
1 )s′i1(∏n

j=1 g
rjxj
2 )s′i2 · · · (∏n

j=1 g
rjxj
l )s′il

= g
s′i1 ∑n

j=1 rjxj

1 g
s′i2 ∑n

j=1 rjxj
2 · · · g

s′il ∑n
j=1 rjxj

l

= gw1s′i1 ∑n
j=1 rjxj gw2s′i2 ∑n

j=1 rjxj · · · gwl s′il ∑n
j=1 rjxj

= g〈w,si+βi〉∑n
j=1 rjxj

= g〈w,si〉·∑n
j=1 rjxj .

Since in injective mode (i.e., b = 1), gbxi = gxi holds and the correctness of F and F−1 follows.

Theorem 1. Under the DDH assumption and the (extended) rank hiding assumption in group G with the
prime order p, the proposed scheme is a collection of λ-CLR-LTFs with λ ≤ (l − 2)logp− 2(log(1/ε)) + 2,
where ε = ε(κ) is some negligible function of the security parameter κ in the floppy model. Therefore, the leakage
rate is λ

|td| =
(l−2)logp−2(log(1/ε)+2

nllogp ≈ 1
n , and the lossiness is n− logp bits.

Proof. Firstly, we prove the lossiness of the proposed scheme is still n−logp bits after each
trapdoor update.

Lossiness. In the lossy mode, after each trapdoor update, it holds that

h′i = Πl
j=1g

sij+bij
j = g〈w,si+βi〉 = g〈w,si〉 = hi.

Therefore, the evaluation key Q in the lossy mode (i.e., gb = 1G) is

Q =


g〈w,s1〉·r1 g〈w,s1〉·r2 · · · g〈w,s1〉·rn

g〈w,s2〉·r1 g〈w,s2〉·r2 · · · g〈w,s2〉·rn

...
...

. . .
...

g〈w,sn〉·r1 g〈w,sn〉·r2 · · · g〈w,sn〉·rn


n×n

= g



〈w, s1〉 · r1 〈w, s1〉 · r2 · · · 〈w, s1〉 · rn

〈w, s2〉 · r1 〈w, s2〉 · r2 · · · 〈w, s2〉 · rn
...

...
. . .

...
〈w, sn〉 · r1 〈w, sn〉 · r2 · · · 〈w, sn〉 · rn


n×n = gQ′ .

Hence, Q′ is a matrix of rank 1 since the i-th column is ri/r1 times of the first column for all i ∈ [n]
and i 6= 1. Therefore, the image of F has size at most logp. The lossiness is n−logp bits.

In the following, we give the lemma to support the theorem. Based on the λ-CLR-CPA-security
of the ElGamal-like public key encryption in the floppy model (Section 4 Lemma 4), the proposed
lossy trapdoor function can satisfy the indistinguishability between the injective and lossy functions
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tolerating at most λ-bit leakage about the trapdoor at each time period, where λ ≤ (l − 2)logp −
2log(1/ε) + 2.

Lemma 5 (Indistinguishability). For λ ≤ (l − 2)logp− 2(log(1/ε) + 2, injective and lossy functions are
computationally indistinguishable as long as the leakage number of the trapdoor is less than λ bits between the
two trapdoor updates.

Proof. Let Finj and Floss be the distributions on the injective evaluation key and the lossy evaluation key,
respectively. Let Fi be the distribution which is identical to the distribution Finj except for letting the
latter i-th main diagonal element b = 0 in matrix Q. In evidence, F0 = Finj, which is the distribution on
injective evaluation key and Fn = Floss, which is the distribution on the lossy evaluation key. Therefore,
to prove that Finj and Floss are computationally indistinguishable, it is enough to prove that Fi−1 and Fi
are computationally indistinguishable for any i ∈ [n].

In the following, we show that any distinguisher D of the two distributions Fi−1 and Fi can be
used to attack the λ-CLR-CPA security of the ElGmal-like PKE scheme. The game is played between a
simulator S and the distinguisher D.

• Given the public key pk = (G, p, g, g1, g2, · · · , gl , h) of ElGamal-like PKE, the simulator S chooses
a random index i∗ ∈ [n]. For i = [n\i∗], the pairs (si, hi) are produced the same as in ElGamal-like
PKE. For i = i∗, let hi∗ = h and si = sk, where the secret key sk is correlated with the challenge
public key pk. Finally, S sends pp = (G, p, g, g1, g2, · · · , gl , h1, h2, · · · , hn) to the distinguisher D.

• Consequently, the simulator S simulates D’s continuous leakage queries as follows. Suppose that
there are polynomial t = t(κ) times continuous trapdoor leakage queries. Set td0 = (s1, s2, · · · , sn)

and tdi = td0 + kernali(w)(i ∈ [t]). We know that the leakage information is a function of tdi =

(s1, s2, · · · , sn) + kernali(w)(i ∈ [t]) and the simulator S knows all si except for si∗ . According
to D’s leakage query function f of tdi = (s1, s2, · · · , sn) + kernali(w)(i ∈ [t]), the simulator S
adapts f as a function of si∗ and presents the function to its own leakage oracles as long as the
length of the whole output of f is smaller than λ bits, which is the upper bound of the leakage
information of the updatable ElGamal-like PKE scheme. At last, the simulator S achieves the
value f (tdi)(i ∈ [t]) returned from its leakage oracle and then responds with D’s leakage queries.

• The simulator S simulates the challenge evaluation key as follows. For (m0, m1) = (g, 1G), S
queries its own encryption oracle and gets the challenge ciphertext C∗ = (u∗1 , u∗2 , · · · , u∗l , e∗),
which is the encryption of m0 or m1 (i.e., g or 1G):

– For i = [n\i∗], choose Ri = (gri
1 , gri

2 , · · · , gri
l ) ∈ L with the same witness ri uniformly at

random. Let Ri∗ = (u∗1 , u∗2 , · · · , u∗l ) and set R = (R1, R2, · · · , Rn)T .
– For i = [n\i∗] and j ∈ [n], compute hri

j using the same witness ri. For i = i∗, j ∈ [n], let

hr∗i
j = Πl

k=1(u
∗
k )

sjk with the secret keys sj.

– For i 6= j, let Qij = h
rj
i . For 1 ≤ i ≤ i∗ − 1, let Qii = hri

i ; for i∗ + 1 ≤ i ≤ n, let Qii = hri
i g; for

i = i∗, let Qi∗i∗ = e∗.

The simulator S sends ek = (R, Q) to A. We can see that when e∗ is the encryption of g, the
simulator S simulates a function index based on the distribution Fi∗−1 perfectly. On the other hand,
when e∗ is the encryption of 1G, the simulator S simulates a function index based on the distribution
Fi∗ perfectly.

At last, the simulator S outputs what the distinguisher D outputs. Since S perfectly simulates
F∗i−1 or Fi∗ , according to the challenge ciphertext e∗, for any λ-bit key leakage adversary D, it holds that

Pr[D(Finj) = 1]−Pr[D(Floss) = 1] ≤ n· Advλ−CLR-CPA
ElGamal-like,S (κ).
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Remark 2. In this section, we can see that the leakage ratio of the DDH-based CLR-LTF is only 1
n , where the

lossiness is n−logp. This relationship implies that the higher the leakage rate, the lower the lossiness. Therefore,
it is hard to improve the leakage rate in the prime order group. In the next part, we would like to present an
instantiation in the composite order group, which would provide some help in improving the leakage rate to
1− o(1).

6. Continuous Leakage Resilient LTFs from the DCR Assumption

In this section, we show how to construct CLR-LTF under the decisional composite residuosity
(DCR) assumption. The group Z∗Nα+1 is a multiplicative group where α ≥ 1 is an integer. In addition,
the integer N = PQ is an RSA modulus, which means that P and Q are odd primes of equivalent bit
length. Obviously, the group Z∗Nα+1 is a direct product G×H, where G is a cyclic group of order Nα

and H is isomorphic to Z∗N . We define T := 1 + N(modNα+1); therefore, T generates the group H. In
addition, the discrete logarithm with respect to T over group H is efficiently computable. Such an N
will be called admissible in the following discussion.

6.1. The Scheme

Set l = 2 + λ+2log(1/ε)
logN−3 for some negligible ε = ε(κ). The construction CLR-TDF=(G, S, F, F−1, U)

is operated over the group Z∗Nα+1 as follows.

1. G(1κ): On inputting 1κ , the generation algorithm chooses an admissible κ-bit RSA modulus
N = PQ and a natural number α ≥ 1. Note that this fixes the groups G and H (where g ∈ G is
chosen at random). Set l(logN − 2) = λ. Choose s = (s1, s2, · · · , sl) ∈ Zl

N−1
4

at random. Select

g1 = gw1 , g2 = gw2 , · · · , gl = gwl ∈ G uniformly and let w = (w1, w2, · · · , wl) ∈ Zl
N−1

4
. Then,

gw = (g1, g2, · · · , gl). Given h = Πl
i=1gsi

i = g〈w,s〉, output

pp = (N, α, g, gw, h), td = s, uk = w.

2. S(pp, b): Given b ∈ {0, 1}, choose r ∈ Z∗N and define

R = gwr, Q = hr · Tb.

When b = 1, we say it is in injective mode; otherwise, we say it is in lossy mode. At last, the
evaluation key is ek = (R, Q) ∈ Gl × Z∗Nα+1 .

3. F(ek, x): Given a message x ∈ ZNα . Given a function index (R, Q), then calculate FR,Q(x) =

(c1, c2), where
c1 = x · R = Rx; c2 = x ·Q = Qx.

Output c = (c1, c2) ∈ Gl × Z∗Nα+1 .
4. F−1(td, c): Firstly, parse c as (c1, c2). In the injective mode, we compute X = c2 · (c−s

1 ) = Tx.
At last, output the message x = logTX.

5. U(td, uk): Given the update key uk = w and the trapdoor is updated into the new one
td′ = td + β = s + β, where β← kernel(w).

6.2. Correctness and Security

6.2.1. Correctness

• Since the updated trapdoor is td′ = s + β, we have h′ = g〈w,s+β〉 = g〈w,s〉 = h.
• For any evaluation key ek, there exist

c2 · (c−s
1 ) = Qx · (Rx)−s = hrx · Tbx · (gw·rx)−s = hrx · Tbx · h−rx = Tbx,
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since in injective mode (i.e., b = 1), Tbx = Tx holds and the correctness of F and F−1 follows.

Theorem 2. If the DDH assumption is hard in G and the DCR problem is hard in Z∗Nα+1 , then we can
construct a collection of λ-CLR-TDFs. During each time interval, the proposed scheme can tolerate at most
λ ≤ (l − 2)(logN − 3)− 2log(1/ε) bits on the trapdoor, where ε = ε(κ) is some negligible function with
the security parameter κ. Therefore, the leakage rate is λ

|td| =
(l−2)(logN−3)−2log(1/ε)

l(logN−3) ≈ 1− o(1). In addition,
the lossiness is at least αlogN − (logN − 2) bits.

Proof. Firstly, we prove the lossiness of the proposed scheme is still αlogN − (logN − 2) bits even
after any trapdoor update.

Lossiness. After each trapdoor update, h′ = g〈w,s+β〉 = g〈w,s〉 = h. Therefore, in the lossy mode (i.e., b = 0),
it holds c2 = x · Q = hrx · Tbx = hrx ∈ G for any x ∈ ZNα . The image of F has size at most |G|. Since
N/8 ≤ |G| ≤ N/4, the lossiness is at least αlogN − (logN − 2) bits.

6.2.2. Leakage Rate

Since N/8 ≤ |G| ≤ N/4, the min-entropy of the trapdoor is at least l(logN − 3) bits. The entropy
information about the trapdoor revealed by the public key h is at most logN − 2 bits. According to the
leftover hash lemma [27]

H̃∞(td|(pp, λ)) ≥ l(logN − 3)− (logN − 2)− λ ≥ (logN − 2) + 2log(1/ε)− 2.

Therefore, it holds that λ ≤ (l − 2)(logN − 3) − 2log(1/ε). As a result, the leakage rate is
λ
|td| =

(l−2)(logN−3)−2log(1/ε)
l(logN−3) ≈ 1− o(1). Clearly, the leakage rate would arrive at 1 with the parameter

l increasing.

Lemma 6. Under the assumption that the DDH assumption is hard in G and the DCR problem is hard in
Z∗Nα+1 , if the extended rank hiding assumption holds, then the scheme implies a λ-CLR-CPA secure PKE scheme
as long as the leakage parameter λ ≤ (l − 2)(logN − 3) − 2log(1/ε), where ε = ε(κ) is some negligible
function about κ.

Proof. Obviously, we can extract a DCR-Based ElGamal-like PKE scheme against continuous leakage
from the proposed scheme where we can replace the variant b with a message m. As a result, the
evaluation key (R, Q) is just the ciphertext of the message m. It is clear that the DCR assumption is
properly embedded into the ElGamal-like PKE scheme. Therefore, with the assumption of the DDH
and DCR assumptions holding in group G and in Z∗Nα+1 , respectively, and with the extended rank
hiding assumption, the result scheme is a CLR-CPA secure PKE scheme with the leakage parameter
λ ≤ (l − 2)(logN − 3)− 2log(1/ε).

According to this lemma, it is natural to reduce the following lemma about the indistinguishability
of the injective and lossy function.

Lemma 7 (Indistinguishability). Under the assumption that the DDH assumption is hard in G and the
DCR problem is hard in Z∗Nα+1 , if the extended rank hiding assumption holds, then the injective and lossy
functions are still computationally indistinguishable from the continuous leakage as long as the leakage number
of the trapdoor is less than λ bits, where λ ≤ (l − 2)(logN − 3)− 2log(1/ε), and where ε = ε(κ) is some
negligible function about κ.

7. Conclusions

In this paper, we focus on the lossy trapdoor functions in the presence of continuous leakage.
Firstly, we introduce the new notion of updatable lossy trapdoor functions and give the formal
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definition and security requirements. Meanwhile, we extend the notion of ULTFs to CLR-LTFs and
give the explicit security model of CLR-LTFs. Then, we introduce the security properties of the
CLR ElGamal-like PKE scheme, which will be embedded into our proposed scheme. Under the
standard DDH assumption and DCR assumption, respectively, we introduce two concrete lossy
trapdoor functions against continuous leakage in the standard model. In these schemes, the trapdoor
can be refreshed at regular intervals and the adversaries can learn unbounded leakage information
on the trapdoor along the whole system life. Even though, the proposed CLR-LTFs can also be
indistinguishable between the injective and lossy evaluation keys. On the other hand, we also show
the performance of the proposed schemes compared with the known existing CLR-LTFs. In form,
our proposed scheme can also be seen as a deterministic public key encryption, and we think it is of
independent interest in the study of efficient deterministic PKE against continuous leakage.
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