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Abstract: In this brief overview paper, we analyse information flow in the brain. Although 
Shannon’s information concept, in its pure algebraic form, has made a number of valuable 
contributions to neuroscience, information dynamics within the brain is not fully captured by its 
classical description. These additional dynamics consist of self-organisation, interplay of 
stability/instability, timing of sequential processing, coordination of multiple sequential streams, 
circular causality between bottom-up and top-down operations, and information creation. 
Importantly, all of these processes are dynamic, hierarchically nested and correspond to continuous 
brain state change, even if the external environment remains constant. This is where metastable 
coordination comes into play. In a metastable regime of brain functioning, as a result of the 
simultaneous co-existence of tendencies for independence and cooperation, information is 
continuously created, preserved for some time and then dissipated through the formation of 
dynamical and nested spatio-temporal coalitions among simple neuronal assemblies and larger 
coupled conglomerates of them—so-called delocalised operational modules. 
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1. Introduction 

An issue of crucial importance in the studying and understanding of higher cognitive operations 
in normal and pathological brain states and eventually the nature of consciousness is the origin and 
dynamics of information flow in the brain [1–3]. The concept of information as a mathematical 
framework was first proposed in 1948 by the engineer and mathematician Claude Shannon [4] and was 
the birth to Information Theory [5]. It was originally intended for the analysis of telecommunication 
systems, but soon branched out into many other fields [6], including neuroscience [7].  

From the very beginning, Shannon’s information concept was used [8] to estimate the limits of 
information transmission capacity in neurons, which then laid the foundation for “Neural 
Information Flow” theory [9,10]. Further, Attneave [11], Barlow [12] and later Shlens and colleagues 
[13,14] and Schneidman et al. [15] used the information concept as a mutual constraint in studying 
the structure and function of the neural system [7]. At the same time, despite these and many other 
valuable contributions to neuroscience, information dynamics within the brain is not adequately 
captured by the classical description of information [3]. The non-classical aspects of information 
dynamics include self-organisation [1,16], the interplay of stability/instability [17,18], timing of 
sequential processing [2,19,20], coordination of the multiple sequential streams [21,22], circular 
causality between bottom-up and top-down operations [23–25], and information creation [3]. 
Importantly, all of these processes are dynamic, hierarchically nested and correspond to continuous 
change of brain states, even when the external environment remains constant [26–29]. 
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According to Tognoli and Kelso [25], “(…) it seems that transmission principles do not scale well 
upward from simple ‘channels’ of synaptic interactions to the larger and more complex web of 
evolved brains. Thus, it is without surprise that the brain betrays an essential communicational 
etiquette: its parts do not behave in a sequential—one-talks-at-a-time—manner (…). It is also 
overwhelmingly clear that ‘inputs’ from the environment do not enter a silent system. Brain parts 
constantly exchange information about their current and past affairs, and what comes in at a given 
time works more as a ‘perturbation’ to an already established ballet, an event that weaves itself within 
a broader scheme of coordinated brain behaviour rather than the sole commander of all things 
present” ([25], p. 3). All of these nuances show how difficult it is to keep within the Shannonian spirit 
when applying the information principle to the brain. 

The observations above resonate with an ongoing shift in brain informatics paradigm. Since the 
brain is an active system that retains the characteristics of a complex, nonlinear system with 
nonequilibrium dynamics [28], reflected in transient evolution of transient states in the form of 
discrete frames of activity [30] and phase transitions between micro- and macro-levels [31,32], 
evidenced by the presence of spontaneous neuronal avalanches [33,34]—it creates or generates 
information as a result of sequential instabilities. Furthermore, such transient instabilities take place 
on multiple brain scales (micro-, meso-, and macro-) in a nested hierarchy of multiple coordinative 
processes, where autonomous tendencies coexist together with the interdependent tendencies [18]. 
The cornerstone of such coordination dynamics is synergetic self-organization [35], which is described 
through circular causality of adaptive, informationally meaningful, bidirectional couplings on 
multiple levels [25,36]. If one is to consider this multivariability of brain functioning as a whole, 
wherein the dynamic self-assembling process neuronal masses engage and disengage over time in 
the form of transient neuronal assemblies, thus allowing the brain to perceive objects or scenes, 
manipulate mental images and separate remembered parts of an experience, and finally to bind them 
all together into a coherent whole, then a new and peculiar principle emerges—metastability of brain 
functioning [18].  

While metastability is a well-established concept in physics, it was first formulated in relation to 
a neural system by Kelso [37], who framed it within a classical model of coordination dynamics called 
the extended HKB [38] (where HKB stands for Haken, Kelso and Bunz [39]). Metastability in the brain 
refers to competition of complementary tendencies of cooperative integration and autonomous 
fragmentation among multiple distributed neuronal assemblies [1,18,40–44]. The interplay of these 
two tendencies (autonomy and integration) constitutes the metastable regime of brain functioning 
[1,18], where local (autonomous) and global (integrated) processes coexist not as antagonists but as a 
complementary pair [45] at all hierarchically nested levels of the brain functional organisation [23]. 
Such a metastable regime in the brain arises when “the parts are no longer perfect clones of one 
another (e.g., as in computational models built from collections of identical neurons) [and] when 
symmetry is broken and interacting parts are recognized in the diversity of their intrinsic behavior” 
([25], p. 3) (see also [21,26,27,46–49]). As a result, information is continuously created, preserved for 
some time and then dissipated by means of transient spatio-temporal coalitions among multiple 
neuronal assemblies and their operations associated with the emergence or decay of self-organized 
operational structures in the brain [23]. Thus, we conclude that ordered sequences of metastable states 
across multiple spatial and temporal scales constitute information flow in the brain. 

No other neurobiological theory is comparable to the Operational Architectonics (OA) theory of 
brain–mind functioning [2,18,22–24,41,42] in its adherence to metastability as the overall 
phenomenon [1,44] and concrete versions of it such as a sequence of stable transient states [3,27,30] 
or transient coordination of autonomous processes [48,49]. The OA theory provides a new and 
comprehensive framework for outlining information emergence and flow in the brain and mind. In 
this brief review paper, we will use an informal way of description, leaving the modeling and 
mathematical aspects as well as computational results out because they are largely still to be devised 
and to maintain intelligibility for the broad audience of this Special Issue. 
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2. The Operational Architectonics (OA) Theory of Brain–Mind Functioning 

In a series of publications [2,18,22–24,41,42], we have presented a theory of brain OA. This theory 
states that the simplest mental/cognitive operations that are responsible for qualia or simple 
computations are presented in the brain in the form of local three-dimensional fields produced by 
transient functional neuronal assemblies, while the complex operations that are responsible for 
complex operations, objects, images or thoughts are instantiated by coordinated/synchronized simple 
operations (temporal coupling of local 3D fields) in the form of so-called operational modules (OM) 
that may be of varied complexity and life-span. As such, brain OA is presented as a highly structured 
and dynamic extracellular electric field nested in spatial and temporal domains [23,24] and over a 
range of frequencies [50], thus forming a particular operational space–time (OST) [23]. This OST exists 
within brain internal physical space–time (IPST) and the best way to capture it is through the 
electroencephalogram (EEG) measurement [51,52]. The main property of this OST level of brain 
organization is that it intervenes between IPST level, where it literally resides, and the 
experiential/subjective phenomenal space–time (PST) level, to which it is isomorphic [23,41]. 
Furthermore, the OST level has emergent properties relatively independent from the 
neurophysiological/neuroanatomical properties of the IPST level; however, it has one-to-one 
correspondence with the PST level that supervenes on the OST level and is ontologically inseparable 
from it [23,24]. 

According to the OA theory and in agreement with the metastability principle, OMs (that are 
produced by repetitive synchronization of lower-order operations performed by many neuronal 
assemblies along the cortex, with scale-free, power-law dynamics) are metastable because of intrinsic 
differences (including semantic) in the activity between neuronal assemblies that constitute every 
given OM: each neuronal assembly is autonomous by doing its own job, while at the same time still 
retaining a tendency to be coordinated together within the same OM in order to execute a given 
macro-operation [23,24,53]. A metastable regime gives tremendous functional advantages for the 
brain–mind system, for example, speed, flexibility, resilience [21,44] and a tremendous increase in 
the number of available transient states within and between different levels of a nested functional 
hierarchy and spanning over several time scales [18,29,54], thus allowing an expression of virtually 
unlimited diversity of informationally-rich and sophisticated mental and cognitive states [25,53].  

Such a metastable mode of brain–mind functioning [23,24,53] introduces hierarchical coupling 
[51,55] between the brain and mind while simultaneously allowing them to retain their individuality 
(for a conceptual discussion see [53]). When examined from this perspective, mind, cognition, and 
behavior, as well as brain activity, are all seen as dynamic processes that rapidly evolve through a 
series of informationally consistent, spatially and temporally organized, transient coordination states. 
In each moment of time, these states (of varying complexity) are defined by the selective coordination 
of local cortical neuronal assemblies that are interacting by virtue of synchrony of their local 
electromagnetic fields (frames of activity) which are equivalent to functional operations (OST-level) 
within the large-scale anatomical structure of the cortex (IPST-level) [23,24,41]. 

In analyzing the OA framework in physical terms, it could be proposed that such nested 
architectonics of brain–mind operations (presented as OMs of different complexity) can be described 
in terms of nested energy frames as analyzed within the Dynamic Universe theory [56], where the 
flow of information is viewed as the flow of energy [57] with abrupt transients (or rapid transitive 
periods, RTPs [23,24]) between frames of energy [58]. Such RTPs (fast transitions) among the frames 
are typically associated with a fast memory drop in the dynamics, so that each self-organized single-
frame state is often independent from another and the RTPs themselves. This property is 
mathematically denoted as a renewal condition; then, the sequence of RTPs as a renewal point 
process [59–61] is typically associated with the ability of the system to trigger a sequence of complex 
self-organized metastable structures. Why the long-range memory yielded by self-organization is in 
fact compatible with the memory-resetting properties of renewal events is discussed by Allegrini et al. 
[62]. In relation to the brain operational architectonics, this means that within the RTP between two 
consequent metastable OMs, there is a biphasic transitive process: in the first brief phase, there is a 
drastic and abrupt increase in degrees of freedom among participating neuronal assemblies that is 
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accompanied by a sudden increase in entropy, information and dimensionality [24]. This first phase 
of RTP is followed by a second brief phase with a quick reduction in the degrees of freedom of 
neuronal assemblies and rapid decrease in entropy, information and dimensionality, indicating the 
self-organization of a new informational state expressed in the form of a new OM within brain OST 
[24]. Such a new OM (new state) presents the new complex operation, phenomenal image or a 
thought (for a general conceptualization see [23,24]). 

3. Empirical Support 

As follows from the previous discussion, the ordered sequences of metastable states likely 
depend on (1) repertoire (how many types of states exist); (2) probability of occurrence (functional 
importance of states of a different type); (3) relative incidence of state type changes (how often the 
state types change); (4) life-span (maintenance of the relative stability in the neurodynamics within a 
particular time interval); (5) sequence hierarchy (consistent groupings of state types—steady bundle 
with one another—that comprise more integral blocks of structural organization). If these 
characteristics consistently change in a non-random fashion (functional relevance) along with the 
changes in the functional brain states, cognitive tasks and/or different psychopathological changes, 
then they indeed constitute information flow in the brain. As was already noted, the most adequate 
way to study sequences of metastable states is through EEG measurement [51,52]. 

It is well established that local EEG signals have a piecewise stationary structure which could be 
presented as a sequence of “glued” stationary processes with different probability characteristics (for 
the reviews see [2,26,43]). In this context, every quasi-stationary EEG segment (frame) reflects the 
oscillatory state of the underlying neurodynamical system i.e., transient neuronal assembly [2,43] 
which signifies a local functional cortical state [63]. In its turn, every EEG oscillatory state is 
characterized by multiple EEG oscillations where these oscillations are mixed in different proportions 
depending on the level of vigilance as well as on perceptual, cognitive and mental operations. In this 
sense, a particular configuration of EEG oscillations (their repertoire and proportions) 
characterises/reflects a particular type (or class) of neurons’ activities. Thus, a local EEG oscillatory 
state is a steady, transient and self-organised operational unit which has been proposed, based on the 
experimental research, to present the basic building block of cortical activity [64]. Empirical EEG 
studies demonstrate that increased functional loading (multistage memory task) causes a statistically 
significant (a) increase in state type transition between neighboring EEG epochs/frames of the same 
EEG-signal and (b) decrease of life-span of these states [63]. Perhaps these changes indicate that 
during increased functional loading, the brain’s operations are completed more dynamically and that 
there exists a transition to a more differential organization in the electromagnetic field [65]. Moreover, 
not all functional states occur with the same probability; some of them seem to be “preferred” during 
a particular condition [63]. Psychopharmacological influence, psychopathology, or cognitive load 
alterations result in the changes of (a) number of oscillatory types of local EEG states; (b) percentage 
of dominant oscillatory types of local EEG states; (c) transition probability between distinct oscillatory 
types of functional states; (d) duration of functional states and (e) parameters of the temporal 
coincidence of the transitions from one functional state type to another registered in different cortex 
areas [64]. It is important to note that all of these characteristics (repertoire, probability occurrence, 
relative incidence, life-span and sequence hierarchy) differ significantly from random processes, and 
are thus functionally relevant, reflecting different real aspects of information flow within the brain. 

Evidently, the brain’s informational processes dynamic may be reflected in the transformations 
of a small number of packages of relatively stable patterns within the cortex field oscillatory activity 
[50]. It is suggested that particular temporal sequences of several EEG patterns appear in consistent 
groupings (steady bundle with one another) and comprise more integral blocks of local EEG 
structural organization. The idea that there may exist stable “super-segments/frames” in the 
individual/local EEG (steady combinations of particular segment/frame types as, for example, type 
“A” always follows type “F”) was first shown by Jansen [66] and was replicated by other researchers 
[63,64,67,68]. 



Information 2017, 8, 22 5 of 8 

 

As a parallel process to sequential dynamics, it has been demonstrated that a set of local 
bioelectrical (EEG) fields (produced by transient neuronal assemblies that are located in distinct brain 
areas) can rapidly couple with one another, thus demarcating the establishment of a particular more 
global or global metastable spatio-temporal OM in the volumetric OST continuum of the brain (see 
for review [22]). It was shown that the probability that a particular number of cortical areas are 
recruited into an OM (defined as the temporal RTP coincidences) is governed by power-law statistics 
[69]. Such dependency is characteristic for non-ergodic systems, thus suggesting, in contrast to a 
traditional understanding of the brain as an ergodic system [27], that brain functional activity is rather 
non-ergodic [70,71]. Further, our analysis revealed that such stabilized spatiotemporal OM 
configurations also have the transient dynamic which is expressed as a series of sudden transitions 
between OMs [22]. From an information-theory point of view, one may suppose that OMs that cover 
most or the whole cortex and are long-lasting are not efficient in the healthy brain [72] because 
context-dependent information transfer is necessarily very dynamic and it would require very quick 
and flexible reconfiguration of many co-existent OMs. Empirical evidence supports this intuition [22]: 
it has been shown that the average life-span of OMs is longest for small OMs that are formed by two 
neuronal assemblies (~30 s) and shortest for large OMs that span most or the whole cortex (~100 
milliseconds). In this context, the brain operates as a highly dynamic system where large metastable 
spatial–temporal patterns of stabilized activity (indexed as OMs) formed only for very brief episodes 
and then quickly dissipated allowing the brain (as a whole) to have more degrees of freedom to form 
new metastable OMs needed to execute newly immediately-emerged and ever-changing operations 
of different complexity [22]. This dynamic can be significantly altered during pharmacological 
influence, neurological or psychiatric pathology or as result of traumatic brain damage when 
consciousness (including self-awareness) is minimal or lost completely [73–76]. It may also be 
intentionally altered through mental training such as meditation [77,78]. 

4. Conclusions 

Based on the theoretical conceptualizations and empirical data, we propose that information 
flow within the brain has to be organized in a specific temporal order along a chain of metastable 
states within and between different levels of a nested functional architecture of the brain. Such 
dynamic organisation is also isomorphic to the dynamics of phenomenal/subjective experience [53]. 
Therefore, it is proposed that the ordered sequence of metastable states is a core component of 
informational flow in such a complex system as the brain–mind system. This perspective seriously 
considers repetitions of spatial–temporal patterns (indexed as metastable OMs) at all functional 
levels, thus capturing both dynamic as well as hierarchical complexities of brain activity that are 
nested within a multi-scale operational architecture [22–24]. 
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