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Abstract: Over the past couple of decades, global positioning system (GPS) technology has been
utilized to collect large-scale data from travel surveys. As the precise spatiotemporal characteristics
of travel could be provided by GPS devices, the issues of traditional travel survey, such as
misreporting and non-response, could be addressed. Considering the defects of dedicated GPS
devices (e.g., the need for a large sum of money to buy devices, forgetfulness in the taking of devices
to collect data, limiting of the sample size because of the number of devices, etc.), and the fact that
the smartphone is becoming one of the necessities of life, there is an opportunity for smartphones
to replace dedicated GPS devices. Although several general reviews of GPS travel survey and GPS
data-processing methods have been written, a systematic review of smartphone-based GPS data
collection and travel mode detection has not be made.. The studies were collected from six databases.
The purpose of this review is to critically evaluate the current literature on the existing methodologies
of travel mode detection based on GPS raw data collected by smartphones. Meanwhile, according to
a systematic comparison of the different methods of data preprocessing for travel mode detection,
this paper details the strengths and weaknesses of the existing methods. Furthermore, it is a very
important step towards developing methodologies and applications for GPS raw data collected
by smartphones.
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1. Introduction

Due to the worsening traffic congestion, transportation demand modeling and travel behavior
research have played more and more significant roles in the formulation and evaluation of
transportation demand management policies over the past two decades. In practice, travel surveys are
widely used to collect crucial infrastructure data for traffic demand analysis in transportation system
planning [1,2].

The traditional travel survey methods have gone through some stages. In the 1950s, the first
travel survey approach, the face-to-face interview, was used in the field of urban transport planning,
in which interviewers needed to visit participants’ homes and ask questions about the household’s
travel information and the interviewers used paper and pencil to record the answers. In the 1960s,
however, considering the weaknesses of the face-to-face interviews, such as safety and cost issues,
the mail-out/mail-back survey [3], which is relatively safer and more cost-effective, gradually replaced
it, but its low response rate was a major challenge. Furthermore, the collected data needed to be
transferred from paper to computers, which required manpower [4]. In the 1980s, for the purpose
of surmounting the shortcomings of paper-and-pencil interviews (PAPI), computer-assisted surveys
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were introduced. Computer-assisted surveys are of three main types: the computer-assisted telephone
interview (CATI), the computer-assisted personal interview, and the computer-assisted self-interview
(CASI) [5]. However, all of these approaches had some demerits, such as misreporting [3] and
non-response [6]. Thus, in order to overcome the disadvantages of these methods, methods for
collecting travel data automatically had to be considered.

For the sake of improving the accuracy and quantity of travel data and supplementing the
traditional data elements that were collected on paper or via electronic travel diaries, Global Positioning
System (GPS) technology, proving accurate data such as location, time, speed, heading and so
on, has been used for travel surveys since the middle of the 1990s [7,8]. Over the past couple of
decades, GPS-based surveys have been undertaken in many countries, such as the USA, the United
Kingdom, Australia, Austria, Canada, China, Demark, France, Israel, the Netherlands, Japan, Sweden,
Switzerland, and so on [9–21]. Meanwhile, it has been widely recognized that GPS-based data
collection methods can present obvious advantages over traditional travel methods. GPS-based
data collection methods impose fewer requirements on the respondents, provide greater spatial and
temporal precision, and are capable of reducing labor and time costs [22]. Removing the burden
and fatigue from the survey respondents and allowing researchers to collect detailed travel data are
other important advantages of GPS-based data collection methods [23,24]. In view of the very low
level of burden and fatigue on respondents, the surveys’ length can be extended from the traditional
single day to multi-day travel information collection, which provides a chance to test the dynamics
of multi-day travel patterns [1,25]. Although the time and positional characteristics of travel can be
recorded accurately by GPS devices, important attributes such as travel mode, trip purpose, and start
and end of trip cannot be extracted from the data collected by GPS devices. Therefore, data processing
procedures become useful and necessary, because the GPS raw data would be insufficient for travel
modeling purpose without the results of the data processing procedures [4,25].

A number of methods for processing GPS data for application to a GPS-based travel survey
have been studied. Among those studies, the majority concentrated on the identification of travel
modes. Lots of approaches have been applied in inferring travel modes based on GPS data
collected by dedicated GPS devices, such as Rule-based Method [25,26], Bayesian Model with
Expectation Maximization [27], Fuzzy Logic Approach [19], Bayesian Belief Network Model [28],
Multilayer Perceptron [29], Support Vector Machine [30], Artificial Neural Networks [31,32], and many
others. Travel surveys based on dedicated GPS devices have the following disadvantages, however:
(1) researchers need to spend huge amounts of money on dedicated GPS devices; (2) forgetting to
take the GPS devices results in incomplete data collection; (3) the number of dedicated GPS devices
is a limitation of the sample size; (4) in GPS-based travel survey, dedicated GPS devices need to be
distributed to and retrieved from participants [33].

The smartphone is becoming one of the necessities of daily life and is in most instances equipped
with a GPS module, which provides an opportunity to use smartphones to replace dedicated GPS
devices to collect travel data [34]. Some smartphone-based GPS travel surveys have been conducted in
these studies [35,36]. In light of the increasing popularity of smartphones, the probability that people
will forget to carry their own smartphones is very low when they go out. Thus, utilizing smartphones
to collect travel data would reduce expenditure on surveys and ensure efficacy in data collection.
In addition, the accelerometer sensor is also built into some smartphones; using this function can
record more data, which could be used to recognize travel modes [28]. Smartphone-based GPS surveys
have some weaknesses: (1) the short battery lives of smartphones (compared with dedicated GPS
devices); (2) the unstable signal acquisition in certain areas, such as urban canyons; (3) the high cost of
transferring data from phones to data centers [4]. Due to the flaws of smartphone-based GPS surveys,
it is important to choose a proper methodology to process the data.

The focus of this study is to assess existing methodologies of detecting travel modes based on GPS
data collected by smartphones. In this study, the prime aim is to provide a systematic review of the
existing methodologies of travel mode detection, compare the different data processing methods that
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have applied in existing studies, and analyze the pros and cons of these methods. Also, it is a crucial
step towards developing the methodologies and applications of GPS data collected by smartphone.

The rest of this paper is organized as follows: the methods and a review of eligible papers are
given in Section 2. The systematic review process is presented in Section 3. Section 4 describes the
quality of the reviewed studies. Limitations and strengths of this paper are proposed in Section 5.
Finally, the discussion and conclusions are provided in Section 6.

2. Methods

2.1. Search Strategy and Databases Searched

In light of the PRISMA (preferred reporting items for systematic reviews and meta-analyses)
statement [37], six databases, Web of Science (1997–December 2015), ScienceDirect (1997–December
2015), Academic Search Complete (1997–December 2015), Scopus (1997–December 2015),
Cambridge Journals Online (1997–December 2015), and the TRIS (Transportation Research
Information Services) and (International Transport Research Documentation) ITRD database (TRID)
(1997–December 2015), were searched using keywords contained in the title, abstract, mesh heading,
and eligible terms (the reason for selecting 1997 as the start date is that that was the first time GPS
technology was used for travel surveys). There are three categories of search terms and at last one
term from each category must be used in combination: (1) smartphone, cell phone, and mobile phone;
(2) GPS data, GPS trajectory, GPS raw data, and GPS track; (3) travel mode, transportation mode,
movement patterns, travel mode detection, travel mode identification, travel mode recognition, infer
travel mode, identify travel mode, detect travel mode, detect transportation mode, infer transportation
mode, deduce travel mode, classify travel mode, and identify transportation. Considering the specific
structure of each database, the search must be adapted to match the database. It was important to
examine the previous reviews. The references within identified articles were, of course, also reviewed
for further studies.

2.2. Inclusion and Exclusion Criteria

In order to make sure that each study included in the review was eligible, studies had to:
(1) be written in English and published in a peer-reviewed English journal; (2) use a smartphone as a
tool to collect data; (3) collect at least the GPS data by smartphone; (4) relate to travel mode detection
procedure; and (5) have at least one dependent variable related to travel.

2.3. Data Extraction

A standardized data extraction table was extracted from the papers using the matrix method.
The information abstracted from each eligible article included study characteristics (e.g., study
design, study area, study duration), data preprocessing methods (e.g., data error recognition),
trip/segment identification methods (e.g., feature selection reliability testing, parameter selection
reliability testing), and travel mode detection methods (e.g., feature selection reliability testing,
comparison of experimental results). For the credibility of data extraction, the authors drew a
subsample of eight papers and extracted the data independently. The authors approved of 80%
of the extracted data, indicating high inter-rater reliability.

2.4. Quality Assessment

The quality of the included studies in this review is carefully assessed through a modified checklist
which contains data collecting methodological quality scale and data processing methodological
quality scale.

To capture the influences affecting the quality of data collecting methods, the modified checklist
includes five aspects: study design, the basis of sample size selection, survey duration, measures to
overcome drawbacks, and ground truth. The study design may include travel surveys and experimental
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surveys. This is because the quality of GPS data of an experimental survey might be better than
multi-day travel, which is likely to influence the accuracy of the data processing methods [4]. Hence a
study design was added in the checklist as one of the criteria. Adequate sample size calculation is of
importance to determine the number of participants [30]. A formula for the minimum sample size
was introduced by Bolbol et al. [30]. Adequate sample size should not be less than the minimum
sample size. Thus, the adequate sample size selection was chosen in the checklist as one of the criteria.
The reason why survey data were collected over two weeks was to ensure the natural flow of travel
patterns of each participant [30]. The weaknesses of smartphone-based GPS travel surveys are likely
to affect the accuracy of GPS raw data, which further influences the accuracy of the data processing
methods. Therefore, measures for overcoming the drawbacks are essential to ensure the accuracy of
GPS raw data. Ground truth is used to calculate the accuracy of travel mode detection, so ground truth
is selected to be one of the criteria [4].

In order to assess the influences affecting the quality of data processing methodology, the modified
checklist includes three aspects: data preprocessing methods, trip/segment identification methods,
and travel mode detection methods. It is important to recognize and clean the error data before they
can be used in the next part, so it is a necessary step to provide a statistical basis for the choice of
independent variables in the trip/segment identification and travel mode detection [30]. Comparison
of different experimental results is to show whether the proposed approach is the best.

All included studies were evaluated on the basis of the 10 criteria listed in Table 1. The possible
range of evaluation scores was 2 to 12.

Table 1. Checklist for evaluating studies’ quality.

Criteria Description Score

Assessing data collecting methodological quality 2–7

Study design Travel survey 2
Experimental survey 1

Adequate sample size selection Included 1
Not included 0

Survey duration More than 2 weeks 2
less than 2 weeks 1

Overcoming drawbacks of measures Included (e.g., the short battery lives, the signal loss) 1
Not included 0

Ground truth
Included (e.g., prompted recall survey) 1

Not included 0

Assessing data processing methodological quality 0–5
Data preprocessing methods 0–1

Data error recognition Included 1
Not included 0

Trip/segment identification methods 0–2

Independent variables selection reliability testing Testing 1
Not testing 0

Parameter selection reliability testing Testing 1
Nor testing 0

Travel mode detection methods 0–2

Independent variables selection reliability testing Testing 1
Not testing 0

Comparison of experimental results Included 1
Not included 0
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3. Systematic Review Process

The search and retrieval process is shown in Figure 1. The number of papers collected from
each database mentioned above were 1584 (web of science), 1552 (ScienceDirect), 2107 (Scopus),
225 (Academic Search Complete), 107 (TRID), and 79 (Cambridge Journals Online). After duplicates
were removed, a total of 4137 different records were extracted from six databases, of which 265 were
identified following the screening of titles and abstracts. There are three reasons to exclude ineligible
records: the GPS raw data is not collected by smartphone; the collected data are not used to detect
travel modes; and the full text is not available. Thus, the full text of 12 publications was retrieved.
The reference lists of excluded reviews were reviewed and potential papers were gathered. Finally,
12 published papers matching all the criteria were included in this review [1,31,38–47], as shown in
Table 2. In particular, we selected [39] because the segment identification method of this study is a
significant data preprocessing technique for travel mode detection.
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Figure 1. The flowchart of systematic review process.

3.1. GPS Data Processing Procedure

The common procedure of GPS data processing to detect travel modes consists of three parts:
the first is transferring data collected from GPS-enabled smartphones to computers and creating output
files that can be used for the next statistical analysis; the second is to identify trips/segments; and the
last is to detect travel modes according to the previously processed data.
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Table 2. Summary of studies included in this systematic review.

Lead Author
(Year) Location Journal Sample Size Collection Period Device Technical Details Processing

Involved a

Xiao, G. 1

(2015)
Shanghai,
China Information - Mid-October 2013 to

mid-July 2014 GPS-enabled smartphone Random sampling; GPS-only survey; TI, MD

Xiao, G. 2

(2015)
Shanghai,
China

Computers, Environment and
Urban Systems - Mid-October 2013 to

mid-July 2014 GPS-enabled smartphone Random sampling; GPS-only survey; TI, MD

Xiao, G.
(2015)

Shanghai,
China

Transportation Research Board
94th Annual Meeting - Mid-October 2013 to

late-May 2014 GPS-enabled smartphone
Random sampling; GPS-only survey;
Every participant is required to
attend the survey at last five days.

TI

Lari, Z.A.
(2015) Tehran, Iran Transportation Research Board

94th Annual Meeting
35 participants (25 males
and 10 females) 2 weeks

Smartphone equipped
with GPS and
accelerometer sensors;

Random sampling: running the
application from 6 a.m. to 9 p.m. MD

Yang, F.
(2015)

Chengdu,
China

Transportation Research Record:
Journal of the Transportation
Research Board

20 persons - Mobile phone Volunteers are required to collect
data about special multimode trips. TI, MD

Nitsche, P.
(2014)

Vienna,
Austria

Transportation Research Part C:
Emerging Technologies 15 volunteers 2 months Android-based

smartphone Random sampling; TI, MD

Byon, Y.
(2014)

Toronto,
Canada

Journal of Intelligent
Transportation Systems 5 persons

100 Weekday (50 h data
from conventional GPS
data loggers and 50 h
of GPS)

Smartphone Random sampling in selected routes. MD

Stenneth, L.
(2011) USA

Proceedings of the 19th ACM
SIGSPATIAL International
Conference on Advances in
Geographic Information Systems

6 individuals (3 males and
3 females) 3 weeks GPS-enabled

mobile phone Random sampling; GPS-only survey; MD

Zhang, L.
(2011)

Hanover
City,
Germany

Remote Sensing and Spatial
Information Sciences 197sub-traces - Android-based

smartphone

Random sampling; Tracer Android
App has a travel-mode
selection function.

SI, MD

Gonzalez,
P.A. (2010) USA Intelligent Transport Systems 114 trips - GPS-enabled cell phone Random sampling; GPS-only survey; MD

Reddy, S.
(2010) USA ACM Transactions on Sensor

Networks (TOSN)
16 individuals (8 males
and 8 females) 75 min

Nokia N95 equipped
with GPS and
acceleration sensors;

Random sampling; GPS-only survey;
fifteen minutes of data for each of the
five transportation modes;

MD

Zheng, Y.
(2008)

Beijing,
China

Proceedings of the 17th
international conference on
World Wide Web

45 persons 6 months GPS phone and handheld
GPS receivers Random sampling; GPS-only survey; SI, MD

a TI = Trip Identification, SI = Segment Identification, MD = Mode Detection. Note: although 1 and 2 represent two studies published by the same authors in the same year using the
same data, these studies use different methods to identify travel modes, so both studies have been included.
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3.2. Data Preprocessing Procedure

Manual mistakes such as inaccurate timing and underreporting trips can be avoided using the GPS
raw data collected from smartphones. However, it is a pity that the GPS raw data may have systematic
errors. Hence, it is necessary to preprocess the fresh GPS data before they can be utilized in the next
steps. The typical data preprocessing procedure can be divided into two parts: records’ features
are used for error recognition and then to determine the methods or steps of data transformation.
A summary of the data preprocessing procedure is shown in Table 3.

Table 3. Summary of data error recognition and preprocessing in the selected papers.

Year Lead Author GPS Devices Records’ Features Used for
Error Recognition

Methods or Steps of
Data Transforming

2015 Xiao, G. GPS-enabled
smartphone

Number of satellites, HDOP value,
altitude value

Using three steps to implement
data transforming

2015 Lari, Z.A.
Smartphone equipped
with GPS and
accelerometer sensors;

Maximum speed values of
different modes -

2014 Nitsche, P. Android-based
smartphone -

Using the Kalman filter to
preprocess the track data,
transforming the data of
tri-axial accelerometer

2011 Stenneth, L. GPS-enabled
mobile phone

The GPS accuracy, the change
in speed -

2011 Zhang, L. Android-based
smartphone The use of smoothing method The values of speed and heading

2010 Reddy, S.
Nokia N95 equipped
with GPS and
acceleration sensors

The accuracy (vertical, horizontal,
heading and speed), dilution of
precision (time, vertical,
horizontal), the changes in speed
values of single and accelerometer
sampling frequency considered

-

Xiao et al. [39] utilized three rules to remove incomplete or invalid data. The first rule is that
incomplete track points that may indicate wrong records were removed. The second is that records
with fewer than four satellites (for 3D use) or with a Horizontal Dilution of Precision (HDOP) of four
or more were eliminated. The last rule is that track points with an altitude of more than 200 m are
deleted. They also used three steps to preprocess the cleaned track data. The first step is to convert the
UTC time to local data and time. The second step is to extract track data for each person-day based on
user ID and the local date. The last step is to re-number all track points of one person-day to infer the
trip end.

Lari et al. [40] found that speed, an attribute calculated based on three geographical parameters
(altitude, longitude, and latitude), was a significant factor affecting the accuracy of recoding data,
so they used the maximum speed values of different modes to clean the raw data.

Nitsche et al. [42] utilized a Kalman filter to preprocess the track data. For instance, they combined
the raw GPS and cell location data with the predictions of a linear model assuming zero mean,
Gaussian-distributed acceleration to calculate accurate, smooth tracks. They also transformed the data
of tri-axial accelerometer into a rotation-invariant signal because the direction of the three-dimensional
acceleration vector had a great impact on the accuracy of the accelerometer data.

Stenneth et al. [43] rejected the invalid GPS points based on the accuracy of the latitude and
longitude coordinates and the change in speed.

Zhang et al. [44] calculated the values of speed and heading from point positions and time stamps
and utilized a smoothing method to reduce speed errors by averaging the neighborhood.

Reddy et al. [46] recognized and discarded invalid GPS points from three points: the accuracy
of vertical, horizontal, heading and speed; the dilution of precision of time, vertical and horizontal;
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and the changes in speed values of the GPS signal. The accelerometer data were cleaned as well.
They pointed out that the number of such data was very limited, and should be excluded.

However, the data preprocessing procedure was not mentioned in these papers [41,45]. The data
preprocessing methods were simply referred to in papers [1,31,38,47].

3.3. Trip/Segment Identification

In this part, the concept of trip, also defined as a segment, refers only to a one-mode trip. For all
researchers, the first challenge of the GPS data processing procedure would be trip identification
(TI) or segment identification (SI). The data about each trip, travel mode detection, and trip purpose
imputation that the travel model needs are based on the results of TI. A summary of attributes used
for TI/SI in the selected papers is shown in Table 4. Currently, rule-based algorithms are used by most
researchers to undertake TI/SI procedures.

Table 4. Summary of records’ parameters used for TI/SI in selected papers.

Year Lead Author Method Attributes Accuracy

2015 Xiao, G. Hybrid method 1 Critical length, critical distance,
dwell time 96.02%

2015 Yang, F. The wavelet transform modules
maximum algorithm Modulus maxima lines 95%

2014 Nitsche, P. Hybrid method Speed threshold, high amplitudes
accelerometer signal, -

2011 Zhang, L. Hybrid method
Small speed values, small change

in position, large magnitude in
heading change

-

2008 Zheng, Y. Hybrid method Change point, uniform duration,
and uniform length -

Note: 1 A hybrid method means that two or more attributes such as speed, duration, and change point, etc. are
used in the TI/SI.

Xiao et al. [39] found that the specific values of parameters of rule-based methods in most existing
studies were selected based on researchers’ experience. So these studies neglected the possibility
of obtaining better prediction accuracy by using an optimal combination from a list of candidates.
Xiao et al. paid attention to developing algorithms for identifying trip ends and selecting the best
parameter combination from a list of pre-defined candidates to improve trip ends prediction accuracy.
In order to optimize the parameter values, two situations were considered: single loss and normal
recording. Under the single loss situation, they defined two different destinations: habitual destination
and non-habitual destination. Two different parameters for dwell time were defined to judge whether
there existed a trip end for a stop near habitual destinations or non-habitual destinations. Under the
single available situation, due to the existence of two types of trip ends, they extracted two different
parameters (critical length and critical distance) to identify trip ends. Individual parameters had five
values that could constitute 625 distinct parameter combinations. By calculating and comparing the
results of different combinations, the best result could be obtained: 96.02% accuracy, with a low error
rate of 4.74%. Although the improved algorithm obtains a high accuracy of SI, the choice sets of four
parameters actually lacked the theoretical research.

Nitsche et al. [42] used the speed threshold and amplitudes of the accelerometer signal to avoid
coverage of multiple travel modes. The signal available situation was considered, but the signal loss
situation was ignored. Moreover, the value of the speed threshold was not pointed out.

Zhang et al. [44] derived individual travel-mode segments from GPS traces by identifying stops.
As they mentioned, very low speed and very small distance changes could be defined as stops. A new
parameter, heading change, was the first selected to improve the performance of travel segment
identification. Meanwhile, the thresholds of the three parameters used to form the different segments
were put forward: the distance change for five continuous points is less than 5 meters; the speed value
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for five continuous points is less than 0.5 m/s; and the change of heading of five continuous points is
larger than 100 degrees.

Zheng et al. [47] utilized change point to divide each trip into segments. In order to verify the
validity of this approach, they selected two baseline methods, uniform duration-based and uniform
length-based segmentation, to distinguish the trips.

Yang et al. [41] adopted the wavelet transform modulus maximum (WTMM) algorithm for SI
processing. The Gaussian family [Gaus (n)] was selected because it had the best performance in
mode transfer time detection compared with Haar and Daubechies family. As a result, the accuracy
of SI is more than 95%. However, this research has some limitations. For example, the GPS signal
loss situation, which could have a great impact on the results of SI, is not considered. Meanwhile,
seven types of special multimode travel could not represent all combinations of travel modes, such as
walk–bus–bicycle (public bicycle)–walk–subway–walk. Moreover, it might be unreasonable to just use
walk as the conversion of different travel modes.

Lari et al. [40] collected GPS tracks via an appropriate application that recorded vital information
such as the segments, time, date, instant speed, accuracy, bearing, altitude, latitude, and longitude.
This paper did not refer to the SI procedure. Unfortunately, the papers of [31,43,45,46] did not provide
details of the TI/SI procedure.

3.4. Travel Mode Detection

Travel mode detection is the third part of the GPS data processing procedure. Table 5 shows a
summary of the different approaches used for travel mode detection in the selected papers. There are
two categories of methods for travel mode detection: machine learning methods and hybrid methods.
A detailed description of the machine learning methods for MD in each of the selected papers is given
in the next 12 paragraphs.

Gonzalez et al. [45] indicated that the custom Java ME activity daily application, used to collect
the travel behavior data, had some limitations. For example, running the application would shorten
the battery life of the phone; the financial cost of data collection using this application was very high;
and users could not place phone calls or send text messages or e-mails while the application was active.
So TRAC-IT was designed to improve upon these limitations, such as by using a smart algorithm to
conserve battery energy and running as a background application. They chose neural networks (NNs)
to identify travel modes. In their research, two datasets, namely all GPS points and critical GPS points,
were used. They applied 10-fold cross-validation to train and test the neural network. Based on their
results, the highest accuracy achieved for travel mode detection is as high as 91.23% for the only critical
points using a learning rate of 0.1 and a training time of 300 epochs. However, their research has two
limitations. The first is that the sample set of trips for training is not enough. The second is that the
GPS data are manually segmented by the participators. It should be noted that the two limitations
might affect the accuracy of mode detection.

Yang et al. [41] selected the neural network (NN) algorithm to determine the travel mode of
each trip segment. As a result, the accuracy of travel mode detection is more than 86%. Moreover,
the accuracy of bus mode detection is higher than the accuracy in any other study. However, there are
two limitations in this study: the first is that the authors do not consider the defect of the traditional
NN algorithm—it is easy to fall into local optimum; the second is that the results comparison has
little meaning because different studies use a different quality of data, which has a great impact on
the results.

The neural networks (NNs) algorithm was selected by Byon [31] to identify different travel modes.
The objective of this article was to compare travel mode detection performances using NNs between
traditional GPS data and the data collected by smartphone. There are two innovative aspects to this
article: the first is examining the impact of varying sampling rates and monitoring durations on
mode detection accuracy; the second is detecting travel modes in different conditions, such as peak
scenario versus nonpeak scenario, general versus route-specific, and fixed orientation versus no fixed
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orientation of smartphone. There are also some limitations in this article, such as the lack of a GPS data
preprocessing procedure. In this article, the algorithm could be developed to improve the accuracy of
travel mode detection, such as by replacing NNs with PSO-NNs.

Xiao et al. [1] made a table showing the different methods applied to identify travel modes and a
summary of the corresponding accuracies. They found that the accuracy of Neural networks (NNs)
was best. However, the traditional NNs were likely to fall into local optimum when it was trained by
back-propagation algorithms. In order to solve this problem, they utilized particle swarm optimization
(PSO) to search for a global optimum. In their analysis, according to exit studies, they selected five
features to infer travel modes: the average speed, medium speed, average absolute acceleration, travel
distance, and 95th percentile speed. However, the result of distinguishing bus segments from car
segments was not good when only the abovementioned speed-related features were used. To address
the issue, they extracted a new feature named “low-speed point rate” and made use of the two-sample
Kolmogorov–Smirnov test between bus segment and car segment to ensure the value of “low-speed
point rate”. They divided the raw data randomly into two separate subsets consisting of 25% and 75%
of data used for testing and training, respectively. From their results, the accuracy of mode detection
in the training set is 95.81% and the mode-identification accuracy of the test set is 94.44%. Because of
the relatively lower accuracy when distinguishing bus and car segments, potential features that could
preferably differentiate these two segments should be added to improve accuracy.

Another machine learning method currently adopted in travel mode detection is Bayesian
networks. Xiao et al. [38] indicated that most of the methods employed for travel mode detection
did not describe the complex relationship between the features selected as input variables, and most
of these studies did not use the confusion matrix dated from the initial classifier to improve their
classifiers. Thus, they utilized Bayesian networks to detect modes based on GPS data collected
in a smartphone-based travel survey from mid-October 2013 to mid-July 2014. In the authors’
analysis, they used a K2 algorithm to establish the structure of Bayesian networks and estimated
the corresponding conditional probability tables with maximum likelihood methods. They extracted
four features (the average speed, 95% percentile speed, the average absolute acceleration, and travel
distance) to construct Bayesian networks to identify the travel modes. Based on the first confusion
matrix in this paper, it is possible to make a better distinction between bike and e-bike modes as well
as between car and bus modes. In order to further improve the mode-identification performance, they
added two targeted features, named low speed rate and average heading change, to the feature set.
According to the comparison of the results of the original and updated Bayesian networks, the updated
Bayesian network has better mode-identification performance, which means these targeted features
have a great effect upon improving the accuracy of travel mode detection. Even though the improved
Bayesian network achieved a better result, it still has much room for improvement, such as using GIS
sources, and adding potential features that could markedly distinguish bike and e-bike segments.

Similar to the abovementioned machine learning methods, random forest was used by
Lari et al. [40] to classify travel modes. In their research, several valuable attributes (e.g., speed,
accuracy, delta bearing, delta speed, acceleration, and delta acceleration) that might affect the output
were mentioned. In order to obtain reliable and acceptable results, they selected some parameters
(e.g., the number of trees and the number of attributes) to develop the random forest model. In order
to ensure the accuracy of the random forest model, they randomly selected 30% of the total sample as
the test set and 70% of the total sample as the training set. Based on their results, the accuracy of mode
identification is 96.91%. On the other hand, two attributes, instant speed and the accuracy of the GPS
track, are proven to be the most influential attributes based on mean decrease accuracy index and the
Gini index. Although the accuracy of mode detection is very high, there are three main limitations of
their research. First, the data error recognition procedure might be not considered comprehensively
because they just used the maximum speed value to clean the dataset. These conditions should be
considered, including the incomplete track points collected and the altitude of track points beyond the
highest altitude of the area. High-accuracy data could possibly increase the accuracy of the random
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forest model. Secondly, they selected four different forests to examine, but a scientific basis for the
selection is not given. Thirdly, using smartphones to collect GPS data proved that the phones have a
short battery life problem (compared with dedicated GPS devices), which could affect the amount of
data collection, but a solution is not given in this paper.

Stenneth et al. [43] proposed a novel method to identify a user’s travel mode based on the GPS
data collected from the mobile device and external transportation network data. The novel features and
the traditional features were selected to infer travel modes. The novel features consisted of average bus
location closeness, candidate bus location closeness, average rail line trajectory closeness, and bus stop
closeness rate. The traditional features were the average accuracy of GPS coordinates, average speed,
average heading change, and average acceleration. They chose five classification models (Bayesian Net,
Decision Tree, Random Forest, Naïve Bayesian, and Multilayer Perceptron) to detect modes. Based
on their analysis, the mode-identification performance of these five models can be improved when
increasing transportation network data. According to the comparison of recognition results of different
employed approaches, the accuracy of Random Forest is the highest. The proposed approach can
achieve high accuracy for detecting various travel modes, but there are two major limitations to their
research. First, the amount of training data is insufficient, which could affect the accuracy of mode
detection. Secondly, this study does not contain the TI procedure, which could also affect the results.

Zheng et al. [47] designed an automatic mode detection approach comprised of three aspects:
a change point-based segmentation method, an inference model, and a post-processing algorithm
based on conditional probability. In the inference step, the four inference models used in the
experiment were Decision Tree, Bayesian Net, Support Vector Machine, and Conditional Random
Field. Meanwhile, two criteria, accuracy by length and accuracy by duration, were chosen to evaluate
the performance of the four mentioned inference models. From their results, the change point-based
segmentation approach outperforms the uniform duration-based and uniform length-based
approaches. Furthermore, as compared to other inference models, Decision Tree achieves a higher
degree of accuracy of travel mode detection. However, this paper lacks the raw data preprocessing
steps, such as recognizing and cleaning error data, which could have an impact on the accuracy of
segment and further reduce the accuracy of identification.

A hybrid method represents a combination of different methods. A detailed description of the
hybrid methods for MD in each of the selected papers is given in the next four paragraphs.

Nitsche et al. [42] found that the existing methods for detecting travel modes based on the
GPS data collected by smartphones had some drawbacks, such as coping with the impact of GPS
data, only distinguishing a small number of travel modes, and the need to infer trip ends of a trip
chain. In order to overcome these drawbacks, they increased two types of data obtained from cellular
network and accelerometer reading, and utilized an ensemble of probabilistic classifiers combined with
a Discrete Hidden Markov Model (DHMM) to detect eight travel modes. They recruited 15 volunteers
equipped with a smartphone with the developed logging application to collect data in the metropolitan
area of Vienna, Austria over a period of two months. The recognition accuracy of different travel
modes varied considerably. For instance, the detection accuracy of train and subway are 65%, while the
detection accuracy for bicycles is 95%. There are some limitations in the paper. For example, they do
not provide more details for data error recognition. Due to the lack of comparison between the
identification accuracy of different methods based on the same data, it is hard to say that the method
they proposed is better at detecting travel modes than other methods. Thus, the proposed hybrid
method has much room for improvement.

Zhang et al. [44] presented a novel multi-stage method to identify travel modes. In the first
stage, they used three parameters (mean speed, maximum speed, and heading related changes) to
identify the three main travel modes (walking, bicycles, and motorized vehicles) on the basis of the
identified segments. In the second stage, the specific travel mode (car, bus, tram, or train) was classified
based on Support Vector Machines (SVMs) from the motorized vehicles class. From their results,
the classification of travel mode they presented is qualitative and the accuracy is as high as 93%. In this
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paper, they overcome some problems and ambiguities of existing studies on travel mode recognition.
For instance, they use fuzzy logic to address the problem that empirically determined valued are not
always suitable for all environment and test data, and to overcome the ambiguity exists that in GPS
data. However, there are two limitations in this paper. First, they do not take the incomplete GPS
trajectory into account, which could affect the accuracy of segment identification and further influence
the accuracy of transportation mode detection. Secondly, the amount of training data and testing data
is insufficient. These issues could limit their approach to classifying the four specific travel modes.

Reddy et al. [46] presented a novel travel mode classification system consisting of a decision tree
followed by a first-order discrete Hidden Markov Model. The dataset used to train and test the travel
mode classification system was collected from an experiment in which 16 volunteers were asked to
put 6 phones in different positions to obtain 15 minutes data of each mode. According to their results,
the accuracy of mode detection is 93.6%. An important and meaningful conclusion we can come to
in this research is that the position of the phone has no effect on the quality of the data collection.
It should be noted that the dataset was collected from an experiment from which better data could be
obtained. It is a pity that the authors did not test the novel approach on a long-time travel survey in
which the quality of data would be easily influenced by signal problems.

4. Quality of Reviewed Studies

The scores of the quality of eligible articles range from 2 to 12, as shown in Table 6. According
to the Table 6, 8 studies (66.7%) applied the data collected from travel surveys. Not all studies use
an adequate sample size for their travel surveys. Most studies use ground truth to calculate the
accuracy of travel mode detection or train classification models. Many studies (n = 7, 58.3%) took
appropriate measures to recognize errors in the data. For instance, 72.7% of studies tested independent
variables selection reliability in travel mode detection methods. However, none of the studies tested the
independent variables selection reliability in the trip/segment identification procedure. Eight studies
(72.7%) compared results with other experimental results in order to highlight the superiority of the
proposed method. According to the total scores of each paper in Table 6, the highest score from the
selected papers is 10 while the lowest is 3, which means there is much room for improvement.

5. Limitations and Strengths

The limitations in this review should be considered when explicating the current results. In the
first place, the eligible articles must be published in English, which kept relevant literature published
in other languages from being selected. Secondly, the included studies focused only on travel mode
detection approaches, and different approaches used to identify trip purposes do not be discussed.
This study had two strengths: articles were rigorously screened based on the aforementioned
well-defined inclusion/exclusion criteria in six databases, and the quality of the articles included was
evaluated in a standardized way.
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Table 5. Summary of methods of travel mode detection utilized in selected papers.

Lead Author Methods/Steps Input Variables Travel Modes Sample Size 1 Training and
Testing Sample Accuracy Ground

Truth

Gonzalez, P. A.
(2010) Neural Networks

For all GPS points case: average speed, maximum
speed, estimated horizontal accuracy uncertainty,
percent Cell-ID fixes, standard deviation of distances
between stop locations and average dwell time For only
critical points case: average acceleration, maximum
acceleration, average speed, maximum speed, ratio of
the number of critical points over the total distance of
the trip, ratio of the number of critical points over the
total time of the trip, total distance, and average
distance between critical points

Car, Bus, and
Walking 114 trips 10-fold

cross-validation.

88.6% (all GPS
points) 91.23%
(critical
points-only
dataset)

The travel
modes were
manually
noted by
research
team.

Yang, F. (2015)

(WTMM
algorithm used for
the TI) Neural
Network

Average speed, maximum speed, standard deviation of
speed, and standard deviation of acceleration

Walking, Bicycle,
Bus, and Car 20 persons - More than 86% -

Byon, Y. (2014) Neural Networks Speed, accelerometer, magnetometer, and of satellites
Auto, Bus,
streetcar, Bike,
Walking

5 persons, 100
Weekdays -

Accuracy of travel
mode detection
with the
smartphone in
different
conditions is
higher than the
accuracy with the
datalogger.

-

Xiao, G. (2015)

(hybrid method
used for the TI)
Neural Networks
and Particle
Swarm
Optimization
(PSO-NNs)

Low-speed point rate, travel distance, average speed,
average absolute acceleration, median speed, and 95%
percentile speed

Walking, Bike, Bus,
and Car -

1240 segments as
training set; 414
segments as
testing set.

95.81%
(training set)
94.44% (test set)

Prompted
recall survey.

Xiao, G. (2015)

(hybrid method
used for the TI)
Bayesian
Networks

travel distance, average speed, average absolute
acceleration, 95% percentile speed, low speed rate, and
average heading change

Walking, Bike,
E-bike, Bus, and
Car

-

1240 segments as
training set; 414
segments as
testing set.

94.74% (training
set) 92.74%
(test set)

Prompted
recall survey.

Lari, Z.A. (2015) Random Forest Speed, accuracy, delta bearing, delta speed, acceleration,
and delta acceleration

Car, Bus, and
Walking

35 participants,
2 weeks

30% and 70% of
data for testing
and training.

Almost 96%
Users attach
to each
GPS file.
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Table 5. Cont.

Lead Author Methods/Steps Input Variables Travel Modes Sample Size 1 Training and
Testing Sample Accuracy Ground

Truth

Stenneth, L.
(2011)

Bayesian Net (BN),
Decision Tree (DT),
Random Forest
(RF), Naïve
Bayesian (NB),
and Multilayer
Perceptron (ML)

Average bus location closeness, candidate bus location
closeness, average rail line trajectory closeness, bus stop
closeness rate, average accuracy of GPS coordinates,
average speed, average heading change, and average
acceleration

Car, Bus,
Aboveground
Train, Walking,
Bike, and
Stationary

6 persons,
3 weeks

10-fold
cross-validation.

92.5% (BN),
92.2% (DT),
93.7% (RF),
91.6% (NB),
83.3% (ML)

Travel modes
were labeled
in sensor
reports.

Zheng, Y. (2008)

(hybrid method
used for the SI)
Decision Tree(DT),
Bayesian Net(BN),
Support Vector
Machine (SVM)
and Conditional
Random
Field (CRF)

Length, mean velocity, expectation of velocity, top three
velocity and top three accelerations from each segment

Walking, Car, Bus,
and Bike

45 persons,
6 months

30% and 70% of
data for testing
and training.

74% (DT),
70% (BN),
59% (SVM),
47% (CRF)

Prompted
recall survey

Nitsche, P. (2014)

(hybrid method
used for the TI) An
ensemble of
probabilistic
classifiers
combined with a
Discrete Hidden
Markov
Model (DHMM)

5th, 50th and 95th percentile of speed, accelerations,
decelerations, direction change, standard deviation of
the high-frequency accelerometer magnitudes, and
power Spectrum of the accelerometer signal for
frequencies iω/128 Hz with i = 1, ..., 64 and the
sampling frequency ω = 50 Hz

Walking, Bicycle,
Motorcycle, Car,
Bus, Electric
Tramway, Metro,
and Train

15 volunteers,
2 months -

Range from 65%
(train, subway) to
95% (bicycle)

The current
transport
modes were
annotated by
the
volunteers
during
travel.

Zhang, L. (2011)

(hybrid method
used for the SI)
Two-stage
approach, and
Support Vector
Machines (SVMs)
used in
secon stage

In the first stage: mean speed, maximum speed, and
heading related changes; In the second stage: mean and
standard deviation of maximum speed, mean and
standard deviation of average speed, mean and
standard deviation of average acceleration, mean and
standard deviation of travel time, mean and standard
deviation of acceleration, and ratio of stop time in
respect to travel time

Walking, Bicycle,
Car, Bus, Tram,
and Train

197 sub-traces,

83 sub-trace as
training data; 54
sub-trace as
testing data.

93%

User can pick
and modify
travel modes
in the
Tracer APP.

Reddy, S. (2010)

Decision Tree
followed by a
first-order discrete
Hidden Markov
Model
(DT-DHMM)

GPS speed, accelerometer variance, accelerometer DFT
components from 1–3 Hz calculated

Still, Walking, Run,
Bike, and Motor

16 individuals,
75 min

10-fold
cross-validation. 93%

Experiment
(i.e., mode
known).

Note: 1 the “Sample size” column provides lots of information, such as the number of sub-trips, the number of volunteers, and the collection period. However, some of the selected
papers do not report all necessary details about the data collection procedure, the evaluation procedure, performance metrics, and validation data, which could influence the results;
Section 3.2, Section 3.3, and Section 3.4 provide more detailed summaries based on each paper.
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Table 6. Distribution of quality characteristics across reviewed studies.

Criteria Description Score
Twelve Selected Papers Percentage

Xiao 1 Xiao 2 Xiao 3 Lari Yang Byon Nitsche Stenneth Zhang Gonzalez Reddy Zheng

Assessing data collecting methodological quality

Study design
Travel survey 2

√ 4 √ √ √ √ √ √ √
66.7%

Experimental survey 1
√ √ √ √

33.3%

Adequate sample
size selection

Included 1 0%
Not included 0

√ √ √ √ √ √ √ √ √ √ √ √
100%

Survey duration More than 2 weeks 2
√ √ √ √ √ √ √ √

66.7%
Less than 2week 1

√ √ √ √
33.3%

Overcoming
drawbacks of
measures

Included(e.g., the
short battery lives, the
signal loss)

1
√ √ √ √ √ √ √ √

66.7%

Not included 0
√ √ √ √

33.3%

Ground truth

Included (e.g.,
prompted
recall survey)

1
√ √ √ √ √ √ √ √ √ √

83.3%

Not included 0
√ √

16.7%

Assessing data processing methodological quality
Data preprocessing methods

Data error
recognition

Included 1
√ √ √ √ √ √ √

58.3%
Not included 0

√ √ √ √ √
41.7%

Trip/segment identification methods

Independent
variables selection
reliability testing

Testing 1
√ √ √ √ √ √

50%

Not testing 0
√ √ √ √ √ √

50%

Parameter
selection
reliability testing

Testing 1 0%

Nor testing 0
√ √ √ √ √ √ √ √ √ √ √ √

100%

Travel mode detection methods

Independent
variables selection
reliability testing 1

Testing 1
√

/ 5 √ √ √ √ √ √ √
72.7%

Not testing 0 /
√ √ √

27.3%

Comparison of
experimental
results

Included 1
√

/
√ √ √ √ √ √ √

72.7%

Not included 0 /
√ √ √

27.3%

The total scores of each paper 10 8 10 7 3 4 7 8 6 4 4 8

Note: 1 represents paper [1]; 2 represents paper [38]; 3 represents paper [39]; 4 √
shows that the paper contains the corresponding part; 5 / represents the part of [39] that describes the

approach to segment identification, but not the part about travel mode detection.
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6. Discussion and Conclusions

At present, smartphone-based GPS travel surveying, though it may still have some problems,
is widely recognized as offering substantial advantages over traditional travel survey methods.
The travel survey method not only increases the accuracy of travel information but also provides a
chance to explore the dynamics of multi-day travel patterns. Moreover, more information about travel
behavior can be offered by smartphone-based GPS travel surveys. The aim of this systematic literature
review is to summarize and critically appraise the travel mode detection methodologies. To our
knowledge, this review may be the first one to systematically search the eligible literature and evaluate
the existing methodologies of travel mode detection based on GPS data collected by smartphone.

In order to have a strict evaluation process, this systematic review has provided a detailed
discussion of GPS data processing, such as the GPS data preprocessing procedure, TI/SI procedure,
and travel mode detection. The review has also carefully discussed advantages and disadvantages
of the different methods used in the included articles. Although new appropriate approaches or
improved methods are utilized to obtain highly accurate results, there are several research gaps in the
steps of GPS data processing.

The aforementioned drawbacks of smartphone-based GPS travel surveys, such as the short battery
life of smartphones, signal loss, the information of ground truth, and so on, should be taken into
consideration when these surveys are conducted, because these limitations could have an impact
on the accuracy of the data. It is common sense that a TI/SI procedure is undertaken before travel
mode detection. Thus, the accuracy of TI/SI might highly affect the accuracy of travel mode detection.
In addition, signal noise and signal loss could reduce the accuracy of TI/SI and further influence the
accuracy of travel mode detection. Moreover, it is a significant step to take appropriate measures
to avoid the negative impacts of drawbacks. According to the prediction results of different modes
in selected papers, similar modes, such as bike and e-bike, bus and car, are difficult to distinguish.
Furthermore, most researchers only use a segment or a single trip to deduce its mode. In addition,
the participants recruited by researchers to take part in a travel survey have not been divided into
different types based on their social attributes, such as students, workers, and so on. Different types
of people have different travel patterns; the travel time, travel frequency, and mode choice patterns
might be not the same for university students and workers, for instance [48,49].

Attention must be paid to ways of coping with the drawbacks of smartphone-based GPS travel
surveying and improving travel mode detection methods. The accuracy of travel mode detection
could be further improved, which could make smartphone-based GPS travel survey take the place of
traditional travel surveys.
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