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Abstract: Speech compression is a key technology underlying digital cellular communications, VoIP,
voicemail, and voice response systems. We trace the evolution of speech coding based on the linear
prediction model, highlight the key milestones in speech coding, and outline the structures of the
most important speech coding standards. Current challenges, future research directions, fundamental
limits on performance, and the critical open problem of speech coding for emergency first responders
are all discussed.
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1. Introduction

Speech coding is a critical technology for digital cellular communications, voice over Internet
protocol (VoIP), voice response applications, and videoconferencing systems. In this paper, we present
an abridged history of speech compression, a development of the dominant speech compression
techniques, and a discussion of selected speech coding standards and their performance. We also
discuss the future evolution of speech compression and speech compression research. We specifically
develop the connection between rate distortion theory and speech compression, including rate
distortion bounds for speech codecs. We use the terms speech compression, speech coding, and
voice coding interchangeably in this paper. The voice signal contains not only what is said but also
the vocal and aural characteristics of the speaker. As a consequence, it is usually desired to reproduce
the voice signal, since we are interested in not only knowing what was said, but also in being able to
identify the speaker. All of today’s speech coders have this as a goal [1–3].

Compression methods can be classified as either lossless or lossy. Lossless compression methods
start with a digital representation of the source and use encoding techniques that allow the source
to be represented with fewer bits while allowing the original source digital representation to be
reconstructed exactly by the decoder. Lossy compression methods relax the constraint of an exact
reproduction and allow some distortion in the reconstructed source [4,5].

Thus, given a particular source such as voice, audio, or video, the classic tradeoff in lossy source
compression is rate versus distortion—the higher the rate, the smaller the average distortion in the
reproduced signal. Of course, since a higher bit rate implies a greater channel or network bandwidth or
a larger storage requirement, the goal is always to minimize the rate required to satisfy the distortion
constraint or to minimize the distortion for a given rate constraint. For speech coding, we are interested
in achieving a quality as close to the original speech as possible within the rate, complexity, latency, and
any other constraints that might be imposed by the application of interest. Encompassed in the term
quality are intelligibility, speaker identification, and naturalness. Note that the basic speech coding
problem follows the distortion rate paradigm; that is, given a rate constraint set by the application, the
codec is designed to minimize distortion. The resulting distortion is not necessarily small or inaudible,
just acceptable for the given application.
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The distortion rate structure is contrasted with the rate distortion formulation wherein the
constraint is on allowable distortion and the rate required to achieve that distortion is minimized.
Notice that for the rate distortion approach, a specified distortion is the goal and the rate is adjusted to
obtain this level of distortion. Voice coding for digital cellular communications is an example of the
distortion rate approach, since it has a rate constraint, while coding of high quality audio typically has
the goal of transparent quality, and hence is an example of the rate distortion paradigm.

The number of bits/s required to represent a source is equal to the number of bits/sample
multiplied by the number of samples/s. The first component, bits/sample, is a function of the coding
method, while the second component, samples/s, is related to the source bandwidth. Therefore, it is
common to distinguish between speech and audio coding according to the bandwidth occupied by
the input source. Narrowband or telephone bandwidth speech occupies the band from 200 to 3400 Hz,
and is the band classically associated with telephone quality speech. The category of wideband speech
covers the band 50 Hz to 7 kHz, which is a bandwidth that originally appeared in applications in 1988
but has come into prominence in the last decade. Audio is generally taken to cover the range of 20 Hz
to 20 kHz, and this bandwidth is sometimes referred to today as fullband audio. More recently, a few
other bandwidths have attracted attention, primarily for audio over the Internet applications, and the
bandwidth of 50 Hz to 14 kHz, designated as superwideband, has gotten considerable recent attention [6].
The interest in wider bandwidths comes from the facts that wider bandwidths improve intelligibility,
naturalness, and speaker identifiability. Furthermore, the extension of the bandwidth below 200 Hz
adds to listener comfort, warmth, and naturalness. The focus in this paper is on narrowband and
wideband speech coding; however, codecs for these bands often serve as building blocks for wider
bandwidth speech and audio codecs. Audio coding is only discussed here as it relates to the most
prevalent approaches to narrowband and wideband speech coding.

As the frequency bands being considered move upward from narrowband speech through
wideband speech and superwideband speech/audio, on up to fullband audio, the basic structures for
digital signal processing and the desired reproduced quality change substantially. Interestingly, all
of these bands are incorporated in the latest speech coders, and the newest speech coding standard,
EVS, discussed later, utilizes a full complement of signal processing techniques to produce a relatively
seamless design.

The goal of speech coding is to represent speech in digital form with as few bits as possible while
maintaining the intelligibility and quality required for the particular application [1,4,5]. This one
sentence captures the fundamental idea that rate and distortion (reconstructed speech quality) are
inextricably intertwined. The rate can always be lowered if quality is ignored, and quality can always
be improved if rate is not an issue. Therefore, when we mention the several bit rates of various speech
codecs, the reader should remember that as the rate is adjusted, the reconstructed quality changes as
well, and that a lower rate implies poorer speech quality.

The basic approaches for coding narrowband speech evolved over the years from waveform
following codecs to the code excited linear prediction (CELP) based codecs that are dominant
today [1,5]. This evolution was driven by applications that required lower bandwidth utilization
and by advances in digital signal processing, which became implementable due to improvements
in processor speeds that allowed more sophisticated processing to be incorporated. Notably, the
reduction in bit rates was obtained by relaxing prior constraints on encoding delay and on complexity.
This later relaxation of constraints, particularly on complexity, should be a lesson learned for future
speech compression research; namely, the complexity constraints of today will almost certainly be
changed in the future.

With regard to complexity, it is interesting to note that most of the complexity in speech encoding
and decoding resides at the encoder for most voice codecs; that is, speech encoding is more complex,
often dramatically so, than decoding. This fact can have implications when designing products.
For example, voice response applications, wherein a set of coded responses are stored and addressed
by many users, require only a single encoding of each stored response (the complex step) but those
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responses may be accessed and decoded many times. For real time voice communications between
two users, however, each user must have both an encoder and a decoder, and both the encoder and the
decoder must operate without noticeable delay.

As we trade off rate and distortion, the determination of the rate of a speech codec is
straightforward, however, the measurement of the distortion is more subtle. There are a variety
of approaches to evaluating voice intelligibility and quality. Absolute category rating (ACR) tests are
subjective tests of speech quality and involve listeners assigning a category and rating for each speech
utterance according to the classifications, such as, Excellent (5), Good (4), Fair (3), Poor (2), and Bad (1).
The average for each utterance over all listeners is the Mean Opinion Score (MOS) [1].

Of course, listening tests involving human subjects are difficult to organize and perform, so the
development of objective measures of speech quality is highly desirable. The perceptual evaluation
of speech quality (PESQ) method, standardized by the ITU-T as P.862, was developed to provide
an assessment of speech codec performance in conversational voice communications. The PESQ has
been and can be used to generate MOS values for both narrowband and wideband speech [5,7]. While
no substitute for actual listening tests, the PESQ and its wideband version have been widely used for
initial codec evaluations. A newer objective measure, designated as P.863 POLQA (Perceptual Objective
Listening Quality Assessment) has been developed but it has yet to receive widespread acceptance [8].
For a tutorial development of perceptual evaluation of speech quality, see [9]. More details on MOS
and perceptual performance evaluation for voice codecs are provided in the references [1,7–10].

The emphasis in this paper is on linear prediction based speech coding. The reason for this
emphasis is that linear prediction has been the dominant structure for narrowband and wideband
speech coding since the mid-1990’s [11] and essentially all important speech coding standards since
that time are based on the linear prediction paradigm [3,11]. We do not discuss codec modifications to
account for channel or network effects, such as bit errors, lost packets, or delayed packets. While these
issues are important for overall codec designs, the emphasis here is on compression, and the required
modifications are primarily add-ons to compensate for such non-compression issues. Further, these
modifications must be matched to the specific compression method being used, so understanding the
speech compression techniques is an important first step for their design and implementation.

We begin with the fundamentals of linear prediction.

2. The Basic Model: Linear Prediction

The linear prediction model has served as the basis for the leading speech compression methods
over the last 45 years. The linear prediction model has the form

spnq “
N

ÿ

i“1

aispn´ iq `wpnq (1)

where we see that the current speech sample at time instant n can be represented as a weighted linear
combination of N prior speech samples plus a driving term or excitation at the current time instant.
The weights, tai, i “ 1, 2, ...., Nu, are called the linear prediction coefficients. A block diagram of this
model is depicted in Figure 1.
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We can write the z-domain transfer function of the block diagram in Figure 1 by assuming zero
initial conditions to obtain

Spzq
Wpzq

“
1

1´ Apzq
“

1

1´
N
ř

i“1
aiz´i

(2)

where Apzq represents the weighted linear combination of past samples as indicated [4,5]. This model
is also known as an autoregressive (AR) process or AR model in the time series analysis literature.
It is helpful to envision the linear prediction model as a speech synthesizer, wherein speech is
reconstructed by inserting the linear prediction coefficients and applying the appropriate excitation
in order to generate the set of speech samples. This is the basic structure of the decoders in all linear
prediction based speech codecs [12]. However, the encoders carry the burden of calculating the linear
prediction coefficients and choosing the excitation to allow the decoder to synthesize acceptable quality
speech [4,5].

The earliest speech coder to use the linear prediction formulation was differential pulse code
modulation (DPCM) shown in Figure 2. Here we see that the decoder has the form of the linear
prediction model and the excitation consists of the quantized and coded prediction error at each
sampling instant. This prediction error is decoded and used as the excitation and the linear prediction
coefficients are either computed at the encoder and transmitted or calculated at both the encoder and
decoder on a sample-by-sample basis using least mean squared (LMS) or recursive least squares (RLS)
algorithms that are adapted based on the reconstructed speech samples. The LMS approach served as
the basis for the ITU-T international standards G.721, G.726, and G.727, which have transmitted bit
rates from 16 kilobits/s up to 40 kilobits/s, with what is called “toll quality” produced at 32 kbits/s.
See the references for a further development of DPCM and other time domain waveform following
variants as well as the related ITU-T standards [1,4,5].
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Figure 2. Differential Pulse Code Modulation (DPCM).

Of course, for many applications these rates were too high, and to lower these rates, while
maintaining reconstructed speech quality, required a more explicit use of the linear prediction model.
It is instructive to investigate the usefulness of the linear prediction model for speech spectrum
approximation. To do this, consider the voiced speech segment shown in Figure 3a. If we take the Fast
Fourier Transform (FFT) of this segment, we obtain the spectrum shown in Figure 3b.
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Spectrum of the Segment in (a) from Linear Prediction N = 100; (d) An N = 10th order Linear
Predictor Approximation.
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The very pronounced ripples in the spectrum in Figure 3b are the harmonics of the pitch period
visible in Figure 3a as the periodic spikes in the time domain waveform. As one might guess, these
periodicities are due to the periodic excitation of the vocal tract by puffs of air being released by the
vocal cords. Can the linear prediction model provide a close approximation of this spectrum? Letting
the predictor order N = 100, the magnitude spectrum can be obtained from the linear prediction model
in Figure 1, and this is shown in red in Figure 3c. We see that the model is able to provide an excellent
approximation to the magnitude spectrum, reproducing all of the pitch harmonics very well. However,
for speech coding, this is not a very efficient solution since we would have to quantize and code
100 frequency locations plus their amplitudes to be transmitted to reproduce this spectrum. This is
a relatively long speech segment, about 64 ms, so if we needed (say) 8 bits/frequency location plus
8 bits for amplitude for accurate reconstruction, the transmitted bit rate would be about 25,000 bits/s.
This rate is about the same or slightly lower than DPCM for approximately the same quality but still
more than the 8 kbits/s or 4 kbits/s that is much more desirable in wireline and cellular applications.
Further, speech sounds can be expected to change every 10 ms or 20 ms so the transmitted bit rate
would be 3 to 6 times 25 kbits/s, which is clearly not competitive.

So, what can be done? The solution that motivated the lower rate linear predictive coding methods
was to use a lower order predictor, say N = 10, to approximate the envelope of the spectrum as shown
in red in Figure 3d, and then provide the harmonic structure using the excitation.

Thus, we only need to quantize and code 10 coefficients and so if the rate required for the
excitation is relatively low, the bit rate should be much lower, even with 10 ms frame sizes for the
linear prediction analysis.

The linear predictive coder (LPC) was pioneered by Atal and Hanauer [13], Makhoul [14], Markel
and Gray [15], and others and took the form shown in Figure 4, where with N = 10 uses the explicit
split between the linear prediction fit of the speech envelope and the excitation to provide the spectral
fine structure. In Figure 4, the excitation consists of either a periodic impulse sequence if the speech
is determined to be Voiced (V) or white noise if the speech is determined to be Unvoiced (UV) and
G is the gain of the excitation used to match the reconstructed speech energy to that of the input.
A depiction of the two components, namely the speech envelope and the spectral fine structure, for
a particular speech spectrum is shown in Figure 5 [16].
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Figure 5. A depiction of the decomposition of the spectrum in terms of the envelope and the spectral
fine structure.

The linear prediction coefficients and the excitation (V/UV decision, gain, and pitch) are
calculated based on a block or frame of input speech using, which are since the 1970’s, well
known methods [4,5,14,15]. These parameters are quantized and coded for transmission to the
receiver/decoder and they must be updated regularly in order to track the time varying nature of
a speech signal [3–5,11,17,18]. The resulting bit rate was usually 2.4 kbits/s, 4 kbits/s, or 4.8 kbits/s
depending on the application and the quality needed. For LPC-10 at a rate of 2.4 kbits/s, the coding
of the linear prediction coefficients was allocated more than 1.8 kbits/s and the gain, voicing, and
pitch (if needed) received the remaining 600 bits/s [5]. This structure in Figure 4 served as the decoder
for the LPC-10 (for a 10th order predictor) Federal Standard 1015 [19], as well as the synthesizer in
the Speak ‘N Spell toy [20]. The speech quality produced by the LPC codecs was intelligible and
retained many individual speaker characteristics, but the reconstructed speech can be “buzzy” and
synthetic-sounding for some utterances.

Thus, the power of the linear prediction model is in its ability to provide different resolutions of
the signal frequency domain representation and the ability to separate the calculation of the speech
spectral envelope from the model excitation, which fills in the harmonic fine structure. Today’s speech
coders are a refinement of this approach.

3. The Analysis-by-Synthesis Coding Paradigm

Researchers found the linear prediction model compelling but it was clear that the excitation must
be improved without resorting to the higher transmitted bit rates of waveform-following coders such
as DPCM. After a series of innovations, the analysis-by-synthesis (AbS) approach emerged as the most
promising method to achieve good quality coded speech at 8 kbits/s, which was a very useful rate for
wireline applications, and more importantly, for digital cellular applications. An analysis-by-synthesis
coding scheme is illustrated in Figure 6, where a preselected set of excitations, (say) 1024 sequences of
some chosen length, (say) 80 samples, and here shown as the Codebook, are applied one at a time (each
80 sample sequence) to the linear prediction model with a longer term predictor also included to model
the periodic voiced excitation. For each excitation, the speech is synthesized and subtracted from the
current block of input speech being coded to form an error signal, then this error signal is passed
through a perceptual weighting filter, squared and averaged over the block, to get a measure of the
weighted squared error. This is repeated for every possible excitation (1024 here) and the one excitation
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that produces the minimum weighted squared error is chosen, then its’ 10 bit code is transmitted along
with the predictor parameters to the decoder or receiver to synthesize the speech [21].
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Let us investigate how we can get the rate of 8 kbits/s using this method. At a sampling rate of
8000 samples/s, a sequence 80 samples long corresponds to 10 ms, so for a 1024 sequences, we need
10 bits transmitted every 10 ms, for a rate of 1000 bit/s for the excitation. This leaves 7000 bits/s for
10 coefficients (this is a maximum since we need to transmit a couple of other parameters), which can
yield a very good approximation.

The set of 1024 codewords in the codebook, and the analysis-by-synthesis approach, as promising
as it appears, entails some difficult challenges, one of which is the complexity of synthesizing 1024
possible 80 sample reconstructed speech segments for each input speech segment of length 80 samples,
every 10 ms! This is in addition to calculating the linear prediction coefficients and the pitch excitation.

In recent years, it has become common to use an adaptive codebook structure to model the
long term memory rather than a cascaded long term predictor. An encoder using the adaptive
codebook approach and a corresponding decoder are shown in Figure 7a,b, respectively. The adaptive
codebook is used to capture the long term memory and the fixed codebook is selected to be a set
of random sequences, binary codes, or a vector quantized version of a set of desirable sequences.
The analysis-by-synthesis procedure is computationally intensive, and it is fortunate that algebraic
codebooks, which have mostly zero values and only a few nonzero pulses, have been discovered and
work well for the fixed codebook [22,23].
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The analysis-by-synthesis coding structure relies heavily on the perceptual weighting filter to
select an excitation sequence that produces highly intelligible, high quality speech. Further, the
analysis-by-synthesis approach only became widely implementable after innovations in the design
of the excitation sequence and in efficient search procedures so as to reduce complexity dramatically.
These advances and the current codecs are discussed in following sections. See also [11,17,18].

4. The Perceptual Weighting Function

As noted in the previous section, the perceptual weighting filter is critical to the success of
the analysis-by-synthesis approach. This importance was exposed early by the work of Anderson
and his students on tree coding, a form of analysis-by-synthesis coding built around a DPCM like
coding structure, wherein they used unweighted mean squared error [24]. They were able to greatly
improve the signal-to-quantization noise ratio, which is a measure of how well the speech time-domain
waveform is approximated, over DPCM at the same rate but with a surprising degradation in perceived
quality! The degradation in speech quality was the result of the analysis-by-synthesis search with the
mean squared error distortion measure generating a spectrally whitened coding error which sounded
noise-like and had a flattened spectrum. The later work of Atal and Schroeder employing the coding
method shown in Figure 6 with a perceptual weighting filter (as well as a longer block size) revealed the
promise of the paradigm, but with the complexity limitations at the time from the Gaussian excitation
and the analysis-by-synthesis search [21]. We return to this issue in the next section.

The selection of a perceptual weighting filter was informed by the prior work on noise spectral
shaping in conjunction with waveform coders [25]. The shaping of the quantization error in those
codecs was accomplished by creating a weighting function using the linear prediction coefficients and
motivated by the linear prediction model itself. The general form of the noise shaping filter in the
waveform coders was

Wpzq “
1´

N
ř

i“1
βiaiz´i

1´
N
ř

i“1
αiaiz´i

(3)

where the tai, i “ 1, ..., Nu are the linear prediction coefficients and the parameters α and β are
weighting factors chosen to be between 0 and 1 to adjust the shape of the formant peaks and the
spectral valleys. Various values of these parameters have been used in the successful codecs, with
these parameters usually held fixed for coding all inputs.
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The effect of perceptual weighting in analysis-by-synthesis codecs is shown in Figure 8, where
the input speech spectral envelope is shown in blue as the original and the unweighted squared error
spectral shape is shown as a dashed red line. We can see that the dashed red line crosses over and
moves above the blue line representing the original speech spectral envelope in several frequency
bands. What this means perceptually is that in these regions the coding error or noise is more audible
than in those regions where the input speech spectrum is above the error spectrum. The goal of
the frequency weighted perceptual weighting is to reshape the coding error spectrum such that it
lies below the input speech spectrum across the desired frequency band. With a proper selection of
the parameters α and β in the weighting function, the error spectrum can be reshaped as shown by
the solid red line in Figure 8. This shaping causes the input speech to mask the coding error which
produces a perceptually preferable output for listeners.
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Notice that although the solid red line does lie below the solid blue line across the frequency band,
there are a couple of frequencies where the two curves get close together and even touch. The most
desirable perceptual shaping would keep the red curve corresponding to the coding error spectral
envelope an equally spaced distance below the input speech envelope across the band but this is not
achieved with the shaping shown. This reveals that this shaping method is not universally successful
and in some coded frames of speech the coding error spectrum may cross over the input speech
spectrum when the parameters α and β are held fixed, as they usually are in most codecs. However,
this weighting function is widely used and has been quite successful in applications.

5. The Set of Excitation Sequences: The Codebook

In demonstrating the promising performance of analysis-by-synthesis speech coding, Atal and
Schroeder used a perceptual weighting function and a codebook of 1024 Gaussian sequences each
40 samples long. The complexity of the analysis-by-synthesis codebook search, wherein for each
40 samples of input speech to be coded, 1024 possible reproduction sequences are generated, was
immediately recognized as prohibitive [21]. Researchers investigated a wide variety of possible
codebooks in addition to Gaussian random codebooks, including convolutional codes, vector
quantization, permutation codes, and codes based on block codes from error control coding. The key
breakthrough by Adoul and his associates was to demonstrate that relatively sparse codebooks
made up of a collection of +1 or ´1 pulses all of the same amplitude could produce good quality
speech [22,23].
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These codebooks have been refined to what are called the interleaved single pulse permutation
(ISSP) designs that are common in the most popular codecs today. These codebooks consist of a set of
40 sample long sparse sequences with fixed pulse locations that are used sequentially to reconstruct
possible sequences. The coupling of the sparsity, the fixed pulse locations, and the sequential searching
reduces the complexity of the analysis-by-synthesis process while still generating good quality
reconstructed speech. These codebooks are discussed in more detail in the references [11,17,18,22,23].

6. Codec Refinements

A host of techniques for improving coded speech quality, lowering the bit rate, and reducing
complexity have been developed over the years. Here we mention only three techniques that are
incorporated in most higher performance speech coding standards (such as G.729, AMR, and EVS,
all to be discussed in Section 8): Postfiltering, voice activity detection (VAD) and comfort noise
generation (CNG).

6.1. Postfiltering

Although a perceptual weighting filter is used inside the search loop for the best excitation
in the codebook in analysis-by-synthesis methods, there is often some distortion remaining in the
reconstructed speech that is sometimes characterized as “roughness”. This distortion is attributed
to reconstruction or coding error as a function of frequency that is too high at regions between
formants and between pitch harmonics. Codecs thus often employ a postfilter that operates on the
reconstructed speech at the decoder to de-emphasize the coding error between formants and between
pitch harmonics. Postfiltering is indicated by the “Post-Processing” block in Figure 7b.

The general frequency response of the postfilter has the form similar to the perceptual weighting
filter with a pitch or long term postfilter added. There is also a spectral tilt correction since
the formant-based postfilter results in an increased low pass filter effect, and a gain correction
term [26]. The postfilter is usually optimized for a single stage encoding (however, not always),
so if multiple tandem connections of speech codecs occur, the postfilter can cause a degradation in
speech quality [5,17,18,26].

6.2. Voice Activity Detection and Comfort Noise Generation

It has been said broadly that conversational speech has about 50% silence. Thus, it seems intuitive
that the average bit rate can be reduced by removing silent periods in speech and simply coding these
long periods at a much reduced bit rate. The detection of silent periods between speech utterances,
called voice activity detection (VAD), is tricky, particularly when there is background noise. However,
ever more sophisticated methods for VAD have been devised that remove silence without clipping the
beginning or end of speech utterances [18,27].

Interestingly, it was quickly discovered that inserting pure silence into the decoded bit stream
produced unwanted perceptual artifacts for the listener because segments of the coded speech utterance
has in the background any signals that are present in the “silent” periods, so inserting pure silence
had an audibly very pronounced switching between silence and speech plus background sounds.
Further, pure silence sometimes gave the listener the impression that the call had been lost. Therefore,
techniques were developed to characterize the sounds present in between speech utterances, such
as energy levels and even spectral shaping, and then code this information so that more realistic
reconstruction of the “silent” intervals could be accomplished. These techniques are called comfort
noise generation (CNG) and are essential to achieving lower average bit rates while maintaining speech
quality [18,27].

7. The Relationship between Speech and Audio Coding

The process of breaking the input speech into subbands via bandpass filters and coding each
band separately is called subband coding [4,5,28,29]. To keep the number of samples to be coded
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at a minimum, the sampling rate for the signals in each band is reduced by decimation. Of course,
since the bandpass filters are not ideal, there is some overlap between adjacent bands and aliasing
occurs during decimation. Ignoring the distortion or noise due to compression, quadrature mirror
filter (QMF) banks allow the aliasing that occurs during filtering and subsampling at the encoder
to be cancelled at the decoder [28,29]. The codecs used in each band can be PCM, ADPCM, or even
an analysis-by-synthesis method, however, the poorer the coding of each band, the more likely aliasing
will no longer be cancelled by the choice of synthesizer filters. The advantage of subband coding is
that each band can be coded to a different accuracy and that the coding error in each band can be
controlled in relation to human perceptual characteristics [4,5].

Transform coding methods were first applied to still images but later investigated for speech.
The basic principle is that a block of speech samples is operated on by a discrete unitary transform and
the resulting transform coefficients are quantized and coded for transmission to the receiver. Low bit
rates and good performance can be obtained because more bits can be allocated to the perceptually
important coefficients, and for well-designed transforms, many coefficients need not be coded at all,
but are simply discarded, and acceptable performance is still achieved [30].

Although classical transform coding has not had a major impact on narrowband speech coding
and subband coding has fallen out of favor in recent years (with a slight recent resurgence for Bluetooth
audio [31]), filter bank and transform methods play a critical role in high quality audio coding, and
several important standards for wideband, superwideband, and fullband speech/audio coding are
based upon filter bank and transform methods [32–35]. Although it is intuitive that subband filtering
and discrete transforms are closely related, by the early 1990’s, the relationships between filter bank
methods and transforms were well-understood [28,29]. Today, the distinction between transforms
and filter bank methods is somewhat blurred, and the choice between a filter bank implementation
and a transform method may simply be a design choice. Often a combination of the two is the most
efficient [32].

The basic very successful paradigm for coding full band audio in the past two decades has
been the filter bank/transform based approach with perceptual noise masking using an iterative bit
allocation [32,35]. This technique does not lend itself to real time communications directly because of
the iterative bit allocation method and because of complexity, and to a lesser degree, delay in the filter
bank/transform/noise masking computations. As a result, the primary impact of high quality audio
coding has been to audio players (decoders) such as MP3 and audio streaming applications, although
the basic structure for high quality audio coding has been expanded in recent years to conversational
applications with lower delay [34].

A high level block diagram of an audio codec is shown in Figure 9. In this diagram, two paths
are shown for the sampled input audio signal, one path is through the filter bank/transform that
performs the analysis/decomposition into spectral components to be coded, and the other path
into the psychoacoustic analysis that computes the noise masking thresholds. The noise masking
thresholds are then used in the bit allocation that forms the basis for the quantization and coding in
the analysis/decomposition path. All side information and parameters required for decoding are then
losslessly coded for storage or transmission.
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The primary differences among the different coding schemes that have been standardized and/or
found wide application are in the implementations of the time/frequency analysis/decomposition in
terms of the types of filter banks/transforms used and their resolution in the frequency domain.
Note that the frequency resolution of the psychoacoustic analysis is typically finer than the
analysis/decomposition path since the perceptual noise masking is so critical for good quality.
There are substantive differences in the other blocks as well, with many refinements over the years.

The strengths of the basic audio coding approach are that it is not model based, as in speech
coding using linear prediction, and that the perceptual weighting is applied on a per-component basis,
whereas in speech coding, the perceptual weighting relies on a spectral envelope shaping. A weakness
in the current approaches to audio coding is that the noise masking theory that is the foundation of the
many techniques is three decades old; further, the masking threshold for the entire frame is computed
by adding the masking thresholds for each component. The psychoacoustic/audio theory behind this
technique of adding masking thresholds has not been firmly established.

Other key ideas in the evolution of the full band audio coding methods have been pre- and
post-masking and window switching to capture transients and steady state sounds. Details of the
audio coding methods are left to the very comprehensive references cited [4,5,32–34].

8. Speech Coding Standards

Although the ITU-T had set standards for wireline speech coding since the 1970’s, it was only
with the worldwide digital cellular industry that standards activities began to gain momentum, and by
the 1990’s, speech coding standardization activities were expanding seemingly exponentially. We leave
the historical development of speech coding standards and the details of many of the standards to the
references [1–3,5,11]. Here, however, we present some key technical developments of standards that
have greatly influenced the dominant designs of today’s leading speech coding standards.

By the early 1990’s, the analysis-by-synthesis approach to speech coding was firmly established
as the foundation of the most promising speech codecs for narrowband speech. The research and
development efforts focused on designing good excitation codebooks while maintaining manageable
search complexity and simultaneously improving reconstructed speech quality and intelligibility.

What might be considered two extremes of codebook design were the Gaussian random
codebooks, made up of Gaussian random sequences, and the multipulse excitation type of codebook,
which consisted of a limited number of impulses (say 8) placed throughout a speech frame, each
with possibly different polarity and amplitude [36]. In the former case, encoding complexity was
high since there needed to be a sufficient number of sequences to obtain a suitably rich excitation
set, while in the latter, encoding was complex due to the need to optimally place the impulses and
determine their appropriate amplitude. The breakthrough idea came through the work of Adoul and
his colleagues who showed that a relatively sparse set of positive and negative impulses, all of the
same amplitude (!), would suffice as a codebook to produce good quality speech, while at the same
time, managing complexity due to the sparseness of the impulses and the need to determine only one
amplitude [22,23]. These ideas were motivated by codes from channel coding, and while it should
be noted that others had proposed and investigated using excitations motivated by channel coding
structures [37,38], Adoul and his colleagues provided the demonstration that the needed performance
could be achieved.

This sparse excitation codebook, called an algebraic codebook, served as the basis for the
G.729 analysis-by-synthesis speech coding standard set by the ITU-T for speech coding at 8 kbits/s.
The speech coding method in G.729 was designated as Algebraic Code Excited Linear Prediction
(ACELP) and served to define a new class of speech codecs. We leave further development of the G.729
standard to the references [3,23], but we turn our attention now to ACELP codecs in general and the
most influential and widely deployed speech codec in the 2000’s to date.

The Adaptive Multirate (AMR) codec uses the ACELP method but improves on the G.729 standard
in several ways, including using a split vector quantization approach to quantize and code the linear
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prediction parameters on a frame/subframe basis. The AMR narrowband (AMR-NB) codec was
standardized and widely deployed and operated at the bit rates of 4.75, 5.15, 5.9, 6.7, 7.4, 7.95, 10.2,
and 12.2 kbits/s [3]. The bit rate can be changed at any frame boundary and the “adaptive” in AMR
refers to the possible switching between rates at frame boundaries in response to instructions from the
base station/mobile switching center (MSC) or eNodeB in LTE (long term evolution), which is referred
to as “network controlled” switching. The AMR-NB codec standardization was then followed by the
AMR-WB (wideband) speech codec, which operates at bit rates of 6.6, 8.85, 12.65, 14.25, 15.85, 18.25,
19.85, 23.05, and 23.85 kbits/s [27]. These codecs have been implemented in 3rd generation digital
cellular systems throughout the world and have served as the default codecs for VoLTE (voice over
long term evolution) in 4th generation digital cellular, designated as LTE, while a new codec standard
was developed. The AMR-WB codec is the basis for claims of HD (High Definition) Voice for digital
cellular in industry press releases and the popular press, where HD simply refers to wideband speech
occupying the band from 50 Hz to 7 kHz.

After the development of the AMR codecs, another speech codec, called the Variable Multirate
(VMR) codec, was standardized [39]. This codec allowed rate switching at the frame boundaries not
only as a result of network control but also due to the analysis of the input speech source. This type of
rate switching is called “source controlled” switching. Although the VMR codec was standardized, it
was not widely deployed, if at all.

The newest speech codec to be standardized is the Enhanced Voice Services (EVS) codec designed
specifically for 4th generation VoLTE but is expected to be deployed in many applications because of
its performance and its wide-ranging set of operable modes [40]. The new EVS codec uses the ACELP
codec structure and builds on components of the AMR-WB codec. The EVS codec achieves enhanced
voice quality and coding efficiency for narrowband and wideband speech, provides new coding modes
for superwideband speech, improves quality for speech, music, and mixed content, has a backward
compatible mode with AMR-WB with additional post-processing, and allows fullband coding at a bit
rate as low as 16.4 kbit/s. The EVS codec has extensive new pre-processing and post-processing
capabilities. It builds on the VMR-WB codec and the ITU-T G.718 codec by using technologies from
those codecs for classification of speech signals. Further, the EVS codec has source controlled variable
bit rate options based on the standardized ERVC-NW (enhanced variable rate narrowband-wideband)
codec. There are also improvements in coding of mixed content, voice activity detection, comfort noise
generation, low delay coding, and switching between linear prediction and MDCT (modulated discrete
cosine transform) coding modes. Further details on the EVS codec can be found in the extensive set of
papers cited in [40].

The impact of rate distortion theory and information theory in general can be seen in the designs
of the excitation codebooks over the years, starting with the tree/trellis coding work of Anderson [24],
Becker and Viterbi [37], and Stewart, Gray, and Linde [38], among others, through the random
Gaussian sequences employed by Atal and Schroeder [21] and then continuing with the algebraic
codes pioneered by Adoul, et al. Additionally, this influence appears in the use of vector quantization
for some codebook designs over the years and also for quantization of other parameters, such as the
linear prediction coefficients in AMR codecs [27]. More recently, rate distortion theoretic bounds on
speech codec performance have been developed as described in the following section.

9. Fundamental Limits on Performance

Given the impressive performance of the EVS codec and the observably steady increase in speech
codec performance over the last 3 decades, as evidenced by the standardized speech codec performance
improvements since the mid-1980’s, it would be natural to ask, “what is the best performance
theoretically attainable by any current or future speech codec design?” Apparently, this question
is not asked very often. Flanagan [41] used Shannon’s expression for channel capacity to estimate the
bit rate for narrowband speech to be about 30,000 bit/s, and further, based on experiments, concluded
that the rate at which a human can process information is about 50 bits/s. Later, in his 2010 paper [42],
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Flanagan reported experiments that estimated a rate of 1000 to 2000 bits/s preserved “quality and
personal characteristics”. Johnston [43] performed experiments that estimated the perceptual entropy
required for transparent coding of narrowband speech to be about 10 kbit/s on the average up to
a maximum of about 16 kbits/s. See also [44]. Given the wide range of these bit rates and since these
are all estimates of the bit rate needed for a representative bandwidth or averaged over a collection of
speech utterances, they do not provide an indication of the minimum bit rate needed to code a specific
given utterance subject to a perceptually meaningful distortion measure.

In standardization processes, the impetus for starting a new work item for a new speech codec
design comes not only from a known, needed application, but also from experimental results that
indicate improvement in operational rate distortion performance across the range of desirable rates and
acceptable distortion is possible. However, the question always remains as to what is the lowest bit rate
achievable while maintaining the desired quality and intelligibility with any, perhaps yet unexplored,
speech coding structure.

Other than the broad range of estimated rates cited earlier, there have been only a few attempts to
determine such performance limits in the past [45]. There are two challenges in determining any rate
distortion bound: specifying the source model and defining an analytically tractable, yet meaningful,
distortion measure. For real sources and human listeners, both of these components are extraordinarily
difficult, a fact that has been recognized since the 1960’s. Recently however, the author and his students
have produced some seemingly practical rate distortion performance bounds as developed in some
detail in a research monograph [45].

In order to develop such bounds, it is necessary to identify a good source model and to utilize
a distortion measure that is relevant to the perceptual performance of real speech coders. The approach
used in [45] is to devise speech models based on composite sources, that is, source models that switch
between different modes or subsources, such as voiced, unvoiced, onset, hangover, and silence speech
modes. Then, conditional rate distortion theory for the mean squared error (MSE) distortion measure
is used to obtain rate distortion curves subject to this error criterion. Finally, a mapping function is
obtained that allows the rate versus MSE curves to be mapped into rate versus PESQ-MOS bounds. Since
the PESQ-MOS performance of real speech codecs can be determined from [7], direct comparisons are
possible. These steps are performed for each speech utterance consisting of one or two short sentences
of total length of a few seconds, such as those that are used in evaluating voice codec performance
using [7]. A complete list of references and details of the approach are left to [45].

While these bounds have not been compared to all standardized codecs, the bounds are shown to
lower bound the performance of many existing speech codecs, including the AMR-NB and AMR-WB
codecs, and additionally, these bounds indicate that speech codec performance can be improved by
as much as 0.5 bit/sample or 50%! Further, by examining how the different codecs perform for the
different source sequences, it is possible to draw conclusions at to what types of speech sources are the
most difficult for current codec designs to code [45], thus pointing toward new research directions to
improve current codecs.

Therefore, practically significant rate distortion bounds that express the best performance
theoretically attainable for the given source model and distortion measure address at least these
two questions: (1) Is there performance yet to be achieved over that of existing codecs; and (2) what
types of speech codecs might be worthy of further research? Furthermore, answers to these questions
can be provided without implementing new speech codecs; seemingly a very significant savings in
research and development effort.

It is critical to emphasize what has already been said: The rate distortion bounds obtained thus
far are based on certain specified source models, composite source models in this case, and on using
a particular method to create a distortion measure expressible in terms of MOS, mean opinion score,
which can be interpreted in terms of subjective listening tests. Therefore, it is clear that the current
bounds can be refined further by developing better source (speech) models and by identifying a more
precise, perceptually relevant distortion measure. As a result, it would appear that future research to
extend rate distortion performance bounds for speech is highly desirable.
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10. Current Challenges

An on-going challenge for conversational voice communications is latency. It is well known that
a round trip delay nearing 0.5 s in a conversation causes the speakers to “step on” each other’s speech;
that is, a speaker will inherently begin to speak again if a response is not heard in around 0.5 s [46].
Since this fact is well known, the latency in the speech encoding and the estimated switching and
network delays are designed to be much less than this amount. However, the responses of the base
station/mobile switching center (MSC) or eNodeB in the cellular networks can add significant latency
in call handling and switching that is unmodeled in the engineering estimates, resulting in excessive
latency, particularly across providers.

Another challenge to conversational call quality is transcoding at each end of a cellular call.
Generally, each cell phone encodes the speaker’s voice using a particular voice codec. The codec at
one end of the call need not be the codec at the other end of the call, and in reality, which codec is
being used by the phone at the other end is usually unknown. As a result, the coded speech produced
by the speaker’s cell phone is decoded at the network interface, re-encoded in terms of log PCM and
transmitted to the other end, where the log PCM coded speech is decoded and re-encoded using
a codec that can be decoded by the far end cell phone. These transcoding operations degrade the
voice quality of the call, and in fact, add latency. The requirement to transcode is well-known to
engineers and providers, but is unavoidable, except in special circumstances where the call is entirely
within some networks where transcoder free operation is available. While the goal is to move toward
transcoder free operation, this capability is not widely deployed nor is it available across networks [47].
The necessity to transcode can also limit the ability to communicate using wideband speech codecs [48].

Background noises and background speakers are also a great challenge to speech codecs. While the
pre-processing stages have gotten more sophisticated in classifying the types of inputs and identifying
the presence of background impairments [40], this is still a challenging issue. Any background
sound that is not correctly identified as background noise can significantly degrade the speech
coding operation since the CELP codecs are designed primarily to code speech. Additionally, input
background noise and the presence of other speakers can cause the source controlled variable rate
codecs to operate at a higher rate than expected and can be a difficult challenge for VAD and
CNG algorithms.

A network source that lowers reconstructed voice quality is the behavior of the BS/MSC or
eNodeB in cellular networks. These switching centers are all-powerful in that they allocate specific
bit rates to speech codecs on the cellular networks. These BS/MSC or eNodeB installations take into
account a wide variety of information when allocating bit rates to a user, ranging from the quality of
the connection with the handset, the loading of the current cell site, the loading of adjacent cell sites,
expected traffic conditions at the particular time of day, and many other data sources. The way all of
this information is used to allocate bit rate is not standardized and can vary widely across cell sites
and networks. One broad statement can be made however: The BS/MSC or eNodeB is conservative in
allocating bit rate to voice calls, often resulting in lower than expected coded speech quality.

For example, a cell phone may measure and report that the channel connecting the cell phone to
the control/switching center is a good one and request a 12.2 kbits/s bit rate for the speech codec (this
is one of the rates available for AMR-NB). Often, unfortunately, the control/switching center will reply
and instruct the cell phone to use the 5.9 or 6.7 kbits/s rate, both of which have quality lower than
achievable at 12.2 kbits/s. Thus, call quality is degraded, particularly when transcoding is necessary,
since a lower codec rate results in poorer transcoding quality. Now, to be fair, the service provider
could reply that using the lower rate guarantees that the users call will not be dropped or reserves bit
rate for the user to stream video, so such are the tradeoffs.

11. First Responder Voice Communications

Emergency first responder voice communications in the U.S. and Europe rely on entirely
different communications systems than the telephone network or digital cellular systems used by
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the public. These emergency first responder systems have much lower transmitted data rates and
as a result, the voice codecs must operate at much lower bit rates. Additionally, the voice codecs
must operate in much more hostile environments, such as those experienced by firefighters for
example, wherein the background noise consists of chain saws, sirens, and alarms, among other noise
types. Furthermore, first responders depend critically on voice communications in these dynamic,
unpredictable environments.

In the U.S., the Emergency First Responder Systems are called Land Mobile Radio (LMR), which
started out as a purely analog system but in recent years has evolved toward digital transmission via the
designation Project 25 (P25) Radio Systems [49]. The standard used for first responder communications
in Europe and the United Kingdom is TETRA, originally Trans European Trunked Radio but now
Terrestrial Trunked Radio, and TETRA includes a comprehensive set of standards for the network and
the air interface. TETRA was created as a standard for a range of applications in addition to public
safety [49].

For P25 in the U.S., the speech codecs used are the IMBE, AMBE, and AMBE +2 codecs, all of which
are based upon the Multiband Excitation (MBE) coding method [49,50]. In P25 Phase I, the Improved
MBE, or IMBE, codec at 4.4 kbits/s is used for speech coding and then an additional 2.8 kbits/s is
added for error control (channel) coding. This 7.2 kbits/s total then has other synchronization and
low-speed data bits incorporated to obtain the final 9.6 kbits/s presented to the modulator. For P25
Phase II, the total rate available for speech and channel coding is half of 7.2 kbits/s or 3.6 kbits/s,
which is split as 2.45 kbits/s for voice and 1.15 kbits/s for channel coding [49,50].

These bit rates, namely, 4 kbits/s and below, are in the range of what is called low bit rate speech
coding [51]. Speech coding at these rates has not been able to achieve quality and intelligibility
sufficient for widespread adoption. In fact, there have been standards activities directed toward
establishing an ITU-T standard at 4 kbits/s for over a decade, and while some very innovative codecs
have been developed, none have yet achieved toll quality across the desired range of conditions.
The public safety first responder requirements include a much harsher operational environment in
terms of background noises as well as a desire for quality equivalent to analog narrowband speech
communications, which is similar to toll quality.

We do not provide block diagrams of the IMBE based codecs here but we describe the basic IMBE
codec in the following. The IMBE vocoder models each segment of speech as a frequency-dependent
combination of voiced (more periodic) and unvoiced (more noise-like) speech. The encoder computes
a discrete Fourier transform (DFT) for each segment of speech and then analyzes the frequency content
to extract the model parameters for that segment, which consists of the speaker pitch or fundamental
frequency, a set of Voiced/Unvoiced (V/UV) decisions, which are used to generate the mixture of
voiced and unvoiced excitation energy, and a set of spectral magnitudes, to represent the frequency
response of the vocal tract. These model parameters are then quantized into 88 bits, and the resulting
voice bits are then output as part of the 4.4 kbits/s of voice information produced by the IMBE
encoder [5,49,50].

At the IMBE decoder the model parameters for each segment are decoded and these parameters
are used to synthesize both a voiced signal and an unvoiced signal. The voiced signal represents the
periodic portions of the speech and is synthesized using a bank of harmonic oscillators. The unvoiced
signal represents the noise-like portions of the speech and is produced by filtering white noise.
The decoder then combines these two signals and passes the result through a digital-to-analog converter
to produce the analog speech output.

For TETRA, the voice codec is based on code excited linear prediction (CELP) and the speech is
coded at 4.567 kbits/s, or alternatively, if the speech is coded in the network or in a mobile handset,
the AMR codec at 4.75 kbits/s is used [3,49]. Block diagrams of the TETRA encoder and decoder are
essentially the same as the CELP codecs already discussed. The TETRA codecs based on the CELP
structure are clearly a very different coding method than IMBE.
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The algorithmic delay of the TETRA voice codec is 30 ms plus an additional 5 ms look ahead.
Such a delay is not prohibitive, but a more thorough calculation in the standard estimates an end-to-end
delay of 207.2 ms, which is at the edge of what may be acceptable for high quality voice communications.
A round trip delay near 500 ms is known to cause talkers to talk over the user at the other end, thus
causing difficulty in communications, especially in emergency environments [49].

Codec performance in a noisy environment is much more of a challenge than for clean speech,
wherein for these hostile environments, the speech codecs must pass noisy (PASS (Personal Alert Safety
System) alarms, chainsaws, etc.) input speech and speech from inside a mask (Self-Contained Breathing
Apparatus (SCBA) that is essential in firefighting) [49,52]. Recent extensive test results by the Public
Safety Research Program in the U. S. has shown that the IMBE codecs at these low rates perform poorly
compared to the original analog FM voice systems and that the AMR codecs at a rate of 5.9 kbit/s,
which is higher than the 4.75 kbits/s used in TETRA, perform poorly as well [52]. Emergency first
responder voice communications is clearly an area in need of intensive future research.

12. Future Research Directions

The EVS speech codec is a tremendous step forward for both speech coding and for a codec that
is able to combine speech and audio coding to obtain outstanding performance. Among the many
advances in this codec are the preprocessing and postprocessing modules. Because of the need to fine
tune the coding schemes to the codec input, further advances in preprocessing are needed in order to
identify background disturbances and to separate those disturbances from the desired signals such as
speech and audio. There also appears to be substantial interest in capturing and coding stereo audio
channels for many applications, even handheld devices.

The EVS codec has taken the code-excited linear prediction and transform/filter bank methods
with noise masking paradigms to new levels of performance in a combined codec. The question is how
much further can these ideas be extended? Within these coding structures, some possible research
directions are to incorporate increased adaptivity into the codec designs. Since it is well known that
the perceptual weighting according to the input signal envelope does not always succeed in keeping
the error spectrum below the speech spectrum, adapting the parameters of the perceptual weighting
filters in CELP is one possible research direction. Another research direction is to incorporate adaptive
filter bank/transform structures such as adaptive band combining and adaptive band splitting into
combined speech/audio codecs. Of course, a more difficult, but perhaps much more rewarding
research direction would be to identify entirely new methods for incorporating perceptual constraints
into codec structures.

13. Summary and Conclusions

After reading this paper, one thing should be crystal clear, there has been extraordinary innovation
in speech compression in the last 25 years. If this conclusion is not evident from this paper alone, the
reader is encouraged to review References [1–3,11,17,18,35,44]. A second conclusion is that standards
activities have been the primary drivers of speech coding research during this time period [3,11,35].
Third, the ACELP speech coding structure and the transform/filter bank audio coding structure have
been refined to extraordinary limits by recent standards, and one wonders how much further these
paradigms can be extended to produce further compression gains. However, given the creativity
and technical expertise of the engineers and researchers involved in standards activities, as well as
the continued expansion of the boundaries on implementation complexity, additional performance
improvements and new capabilities are likely to appear in the future.

Rate distortion theory and information theory have motivated the analysis-by-synthesis approach,
including excitation codebook design, and some speech codecs employ vector quantization to transmit
linear prediction coefficients, among other parameters. It is not obvious at present what next
improvement might come out of this theory, unless, for example, speech codecs start to exploit
lossless coding techniques further.
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Recent results on rate distortion bounds for speech coding performance may offer some efficiencies
in the codec design process by indicating how much performance gain is still possible, irrespective of
complexity, and may also point the way toward specific techniques to obtain those gains. More work
is needed here both to extend the existing bounds and to demonstrate to researchers that such rate
distortion bounds are a vital tool in arriving at new speech codecs.
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Abbreviations

The following abbreviations are used in this manuscript:

VoIP Voice over Internet Protocol
CELP Code-Excited Linear Prediction
MOS Mean Opinion Score
ACR Absolute Category Rating
PESQ Perceptual Evaluation of Speech Quality
POLQA Perceptual Objective Listening Quality Assessment
AR Autoregressive
DPCM Differential Pulse Code Modulation
LMS Least Mean Square
RLS Recursive Least Squares
ITU-T International Telecommunications Union—Telecommunications
FFT Fast Fourier Transform
LPC Linear Predictive Coder (or Coding)
AbS Analysis-by-Synthesis
ISSP Interleaved single pulse permutation
VAD Voice Activity Detection
CNG Comfort Noise Generation
QMF Quadrature Mirror Filter
ACELP Algebraic Code-Excited Linear Prediction
AMR Adaptive Multirate
VoLTE Voice Over Long Term Evolution
NB Narrowband
MSC Mobile Switching Center
WB Wideband
VMR Variable Multirate
EVS Enhanced Voice Services
ERVC-NW Enhanced Variable Rate—Narrowband-Wideband
NDCT Modulated Discrete Cosine Transform
BS Base Station
LMR Land Mobile Radio
TETRA Terrestrial Trunked Radio
MBE Multiband Excitation
IMBE Improved Multiband Excitation
AMBE Advanced Multiband Excitation
DFT Discrete Fourier Transform
V/UV Voiced/Unvoiced
PASS Personal Alert Safety System
SCBA Self-Contained Breathing Apparatus
FM Frequency Modulation
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