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Abstract: In this study, we combine the fuzzy customer information problem with the multicommodity
multimodal routing with schedule-based services which was explored in our previous study [1].
The fuzzy characteristics of the customer information are embodied in the demanded volumes of
the multiple commodities and the time windows of their due dates. When the schedule-based
services are considered in the routing, schedule constraints emerge because the operations of block
container trains should follow their predetermined schedules. This will restrict the routes selection
from space-time feasibility. To solve this combinatorial optimization problem, we first build a fuzzy
chance-constrained nonlinear programming model based on fuzzy possibility theory. We then use
a crisp equivalent method and a linearization method to transform the proposed model into the
classical linear programming model that can be effectively solved by the standard mathematical
programming software. Finally, a numerical case is presented to demonstrate the feasibility of the
proposed method. The sensitivity of the best solution with respect to the values of the confidence
levels is also examined.

Keywords: multicommodity; multimodal routing; fuzzy demanded volume; fuzzy soft time window;
fuzzy chance-constrained programming

1. Introduction

The routing problem has always been a highlight in combinatorial optimizations. Great importance
has been attached to it, not only in the transportation field, but also in many other industries such as
telecommunications, manufacturing and the Internet [2]. The routing problem aims at improving the
performance of a system by reasonably distributing the flow of the object (data, signal or products) in it.
As for the multimodal routing problem, it is defined as selecting the best routes to move commodities
from their origins to their destinations through a multimodal service network. The multimodal routing
problem arises under the following conditions.

The remarkable growth of international trade in recent years stimulates the worldwide commodity
circulation, which significantly expands the geographical scale of the transportation network, extends
the freight transportation distance, and leads to a more complex transportation environment. All these
tendencies present great challenges for decision makers from various aspects including transportation
cost, efficiency, reliability and so on. Meanwhile, because of the integrative combination of the
respective advantages of different transportation service modes, multimodal transportation has
been proved to be a more cost-efficient [3] and environment-friendly [4] means compared with the
traditional uni-modal transportation in a long-haul transportation setting. Therefore, large numbers
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of enterprises decide to adopt multimodal transportation schemes to transport their products or
materials. According to the relevant statistics, the volume fulfilled by the multimodal transportation
accounts for 80% of the total freight volume in North America [5]. However, the logistics cost is
still high, and accounts for approximately 30%–50% of the total production cost of enterprises [6].
Consequently, lowering transportation costs by advanced multimodal routing becomes an effective
approach for enterprises to raise profits and maintain competitiveness in the global market [2].

By considering the practical demand of lowering the transportation costs by selecting the best
multimodal routes, many researchers have devoted themselves to the multimodal routing problem
(or intermodal routing problem) in recent decades. Barnhart and Ratliff [7] developed a foundational
framework on modeling intermodal routing, and introduced a solution procedure with matching to
solve the routing problem from Cincinnati to Atlanta/Chattanooga. Boardman et al. [8] designed a
real-time intermodal routing decision support system by incorporating the k-shortest path double-swap
method with database and user interface. Lozano and Storchi [9], Lam and Srikanthan [10] and
Boussedjra et al. [11] highlighted the intermodal/multimodal shortest path problem. They separately
developed an ad hoc modified chronological algorithm, clustering technique accelerated k-shortest
algorithm and multi-label label correcting shortest path algorithm, to identify the shortest path in
the intermodal/multimodal service network. Zhang and Guo [12] described the physical structure
of the multimodal service network, and proposed a foundational network assignment model for
the multimodal routing problem. Zhang et al. [13] formulated the multimodal routing problem as
a generalized shortest path problem, built a 0–1 integer programming model based on Reddy and
Kasilingam’s work [14], and adopted Dijkstra algorithm to obtain the optimal solution of the model.
Winebrake et al. [15] developed a geospatial model to find optimal routes with different objectives in
the intermodal transportation network. The construction and solution of the model were implemented
by ArcGIS software. Kim et al. [16] and Chang et al. [17] both analyzed the intermodal sea–truck routing
problem for container transportation in South Korea, and formulated classical programming models to
solve the empirical cases in South Korea. The proposed models were solved by standard mathematical
programming software. Liu et al. [18] explored the dynamic path optimization for multimodal service
network. The network deformation method was used in their study to transform the initial network
into a directed simple graph. This enabled the problem to be effectively solved by a modified Dijkstra
algorithm. Cho et al. [19] presented a weighted constrained shortest path model and a label setting
algorithm to draw the optimal international intermodal routing. They applied the proposed method to
a real-world routing case from Busan to Rotterdam. Sun and Lang [20] as well as Xiong and Wang [21]
separately discussed the bi-objective optimization for the multimodal routing problem that aims at
minimizing transportation costs and transportation time. The normalized normal constraint method
and Taguchi genetic algorithm were utilized to generate the Pareto frontier of the problem. The former
also conducted a sensitivity analysis of the Pareto frontier with respect to demand and supply.

Above all, substantial accomplishments have been achieved in the multimodal routing problem.
However, some research potential still exists.

(1) The majority of the current studies concentrated on the single commodity flow routing
problem. In practice, decision makers usually need to plan routes for multiple commodities in their
planning horizons. In addition, the best routing for multiple commodities is not the simple set of
the respective independent best routes for all commodities, because the multimodal service network
is usually capacitated. Therefore, it is necessary to combine the multicommodity flow with the
multimodal routing.

(2) In the current studies, rail schedules are rarely considered in the model formulation.
Many studies, especially the domestic ones, formulated the rail service as a time-flexible pattern
that is similar to the road service, and hence simplified the connection between different transportation
services in the terminals as a continuous “arrival-transshipment-departure” procedure. Actually, rail
services are organized by predetermined schedules, especially in China, and train schedules will
restrict the routing because of space-time feasibility. If the transportation of a commodity along a route
cannot match the schedules of the rail services on it, the planned route is infeasible in the practice.
Consequently, consideration of schedules in routing modeling is quite worthwhile.
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(3) Multimodal routing in most current studies was oriented on the certain customer information,
which means all customer information is determined and known when making routing decisions.
However, as has been claimed in many studies as well as indicated in the practice, customer
information, especially their demands, is difficult to determine during the planning period.
Many studies on other transportation problems, e.g., the vehicle routing problem [22–24] and service
network design problem [25,26], have all paid great attention to the uncertain issues from the fuzzy or
stochastic viewpoint. Hence uncertain customer information is also a characteristic that should not be
neglected in the multimodal routing problem.

The first two issues above have already been explored in our previous study (see Reference [1]).
In this study, we will focus on integrating the fuzzy customer information problem into this previous
study in order to develop the initial problem into its extended version: schedule-constrained
multicommodity multimodal routing problem with fuzzy customer information.

Similar to the transportation scenario constructed in Reference [1], the rail service (the schedule-
based service) in the multimodal service network specifically refers to the “point-to-point” block
container train service. This kind of service is operated directly and periodically from its loading
organization station to its unloading organization station. For the convenience of modeling, the
same block container train in different periods is treated as a different one. The road service is
formulated as an uncapacitated time-flexible service, which matches the superiority of the road service
(container trucks) in its organization flexibility. Transshipment is not necessary when the commodity
arrives at and then departs from a terminal by road service, and a road service route can be covered
entirely or partly in the routing. For the convenience of modeling, a road service can be divided into
several segments, e.g., a directed road service route (g, h, i, j) is divided into sub segments (g, h), (g, i),
(g, j), (h, i), (h, j), and (i, j).

For the convenience of readability, we briefly introduce the schedule Constraints (1)–(4) resulting
from the actual transportation practice that the operation of block container trains should follow their
predetermined schedules. For detailed relative information, we can refer to Reference [1].

(1) If the commodity plans to be moved by rail service from the current terminal (loading
organization station) to the successor terminal (unloading organization station), its arrival time at the
current terminal should not be later than the upper bound of the loading operation time window of
the block container train at the same terminal.

(2) In the above situation, if the arrival time of the commodity at the terminal is earlier than the
lower bound of the operation time window of the block container train at the same terminal, it should
wait until the lower bound of the time window.

(3) After being loaded on the train, the commodity should wait until the departure time of the
train. Then it departs from the current terminal to the successor terminal, and arrives at the successor
terminal at the arrival time of the train.

(4) The commodity should wait until the lower bound of the unloading operation time window
of the train at the successor terminal, and then gets unloaded from it.

For the uncertain customer information problem, we will explain it in detail by using a whole
section. After defining the symbols that will be used in the model formulation (Section 2), we
organize the remaining sections of this study as follows. In Section 3, we analyze the uncertain
characteristics of the customer information from the fuzzy viewpoint, and propose fuzzy demands and
fuzzy soft due date time windows to define the uncertainty. In Section 4, a fuzzy chance-constrained
nonlinear programming model for the routing problem is established based on fuzzy possibility theory.
In Section 5, we introduce a crisp equivalent method and a linearization method to transform the
proposed model into its equivalent linear programming form, after which the routing problem can
be effectively solved by the standard mathematical programming software. In Section 6, a numerical
case is presented to demonstrate the feasibility of the proposed model, and the sensitivity of the best
solution with respect to the values of the confidence levels is also examined. Finally, conclusions of
this study are drawn in Section 7.
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2. Notations

N: terminal set in the multimodal service network, h, i, and j are the terminal indexes;
A: directed transportation arc set in the multimodal service network, and A “tpi, jq|i P N, j P Nu;
K: commodity set, and k is the commodity index;
Γij: set of rail services on (i, j);
Ωij: set of road services on (i, j);
S: transportation service set in the multimodal service network, s and r are the service indexes,

S “ Ypi,jqPA
 

Sij
(

where Sij is transportation service set on (i, j), and Sij “ Γij YΩij;
δ´ piq: predecessor terminal set to terminal i, and δ´ piq Ď N;
δ` piq: successor terminal set to terminal i, and δ` piq Ď N;
ok: origin terminal of commodity k;
dk: destination terminal of commodity k;
tk
release: release time of commodity k from its origin terminal;
“

ls
i , us

i
‰

: loading/unloading operation time window of rail service s at terminal i;
SDs

i , SAs
j : scheduled departure time and scheduled arrival time of service s from terminal i and at

terminal j on (i, j);
Qs

ij: available carrying capacity of rail service s at terminal i, unit: TEU;
tijs: transportation time of service s on (i, j), especially for s P Γij, the effective transportation time

tijs “ ls
i ´ SDs

i , unit: h;
cs

ij: unit transportation costs of by service s on (i, j), unit: ¥/TEU;
cs: unit loading/unloading operation costs of service s, unit: ¥/TEU;
cstore: unit inventory costs of rail service s, unit: ¥/TEU-h;
cpick: additional charges for picking up the unit commodity from shipper at a rail terminal by rail

service at origin, unit: ¥/TEU;
φk: a 0-1 indicating parameter, if the above service is demanded, φk = 1, otherwise φk = 0;
cdelivery: additional charges for delivering the unit commodity from rail terminal to receiver by

rail service at destination, unit: ¥/TEU;
µk: a 0-1 indicating parameter, if the above service is demanded, µk = 1, otherwise µk = 0;
π: inventory period free of charge, unit: h;
M: a large enough positive number;
Xk

ijs: 0-1 variable, If commodity k is moved on (i, j) by service s, Xk
ijs = 1, otherwise Xk

ijs = 0
(decision variable);

Yk
i : arrival time of commodity k at terminal i (decision variable);

Zk
ijs: charged inventory time at terminal i before being moved on (i, j) by rail service s, unit:

h (decision variable).

3. Fuzzy Characteristics of the Customer Information

3.1. Fuzzy Demanded Volume

It is difficult to master the accurate demand information of the customers when planning the best
multimodal routes in advance. On the one hand, the planning is earlier than the actual transportation;
and, on the other hand, due to the impact of many uncertain factors in production and consumption,
the demands (measured by demanded volumes of the commodities) negotiated by shippers and
receivers are difficult to be determined during the planning period. Consequently, there is a great
challenge for the decision makers in that the demands are uncertain before the actual transportation
starts. The advance routing should deal with this uncertainty. Generally, there is not enough historical
data that can be utilized to fit the probability distributions for all the uncertain demands, but the
decision makers can effectively estimate the demands according to their expertise. Therefore, when the
stochastic demands are unattainable, it is worthwhile to adopt fuzzy logic to estimate the uncertainty
of the demands.
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In this study, we use a triangular fuzzy number to represent the demanded volume of a commodity
flow. For commodity k, its fuzzy volume is defined as:

rqk “
´

qL
k , qM

k , qU
k

¯

@k P K

where qL
k <qM

k <qU
k , and qM

k is the most likely volume of commodity k.
Consequently, the total volume of commodities loaded on a block container train is:

Vijs “
ÿ

kPK

rqk ¨ Xk
ijs@ pi, jq P A,@s P Γij

Vijs is also a triangular fuzzy number according to the fuzzy arithmetic rules, and can be
rewritten as:

ĄVijs “

˜

ÿ

kPK

qL
k ¨ X

k
ijs,

ÿ

kPK

qM
k ¨ X

k
ijs,

ÿ

kPK

qU
k ¨ X

k
ijs

¸

“

´

VL
ijs, VM

ijs , VU
ijs

¯

@ pi, jq P A,@s P Γij

3.2. Fuzzy Soft Time Window

Due date is closely related to the customer satisfaction level. It can be a time point or a time
window. In general, a customer considers that the transportation service is satisfactory when the arrival
time of the commodity at the destination is neither too early nor too late. Therefore, time windows
are more suitable than time points to represent the due dates of moving commodities. Moreover, in
practice, customers also accept violation of the time windows to some degree. In that case, the
satisfaction level of the customer will decrease when the violation degree increases. Therefore, the time
windows in this study are soft ones instead of hard ones that stress the arrival time of a commodity at
its destination must be within the time window.

The customers may consider “good” if the arrival time at the destination is within the time
window, while “all right” or “bad” or other personal human feelings if the arrival time is out of
the range of the time window [24]. Hence, we can use trapezoidal fuzzy numbers to represent the
due date, and further measure the customer satisfaction quantitatively using the fuzzy membership
function [27,28]. For commodity k, its due date is defined as:

rTk “
´

Tmin
k , TL

k , TU
k , Tmax

k

¯

@k P K

where Tmin
k <TL

k <TU
k <Tmax

k , and [TL
k ,TU

k ] is the time window that the customer considers the arrival
time of the commodity at the destination to be neither too early nor too late. The corresponding
satisfaction level in the fuzzy soft time window is shown in Figure 1.Information 2016, 7, 13 6 of 17 
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The membership function of the time window is as Equation (1), where µk

´

Yk
dk

¯

is also the

customer satisfaction level when commodity k arrives at its destination dk at Yk
dk

.

µk

´

Yk
dk

¯

“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

Yk
dk
´ Tmin

k

TL
k ´ Tmin

k
, Tmin

k ď Yk
dk
ă TL

k

1, TL
k ď Yk

dk
ď TU

k
Yk

dk
´ Tmax

k

TU
k ´ Tmax

k
, TU

k ă Yk
dk
ď Ymax

k

0, otherwise

@k P K (1)

Assuming that the customer satisfaction level should not be lower than the confidence level
γ (γP[0, 1]), the acceptable arrival time at the destination ranges from

“`

TL
k ´ Tmin

k
˘

¨ γ` Tmin
k

‰

to
“`

TU
k ´ Tmax

k
˘

¨ γ` Tmax
k

‰

.

4. Model Formulation

The schedule-constrained multicommodity multimodal routing problem aims to select the best
time-feasible routes for all commodity flows through the multimodal service network. Oriented on the
customers’ practical demand of lowering the total transportation costs, minimizing the generalized
costs of all commodities is therefore set as the optimization objective. The generalized costs include
transportation costs en route, loading/unloading operation costs and inventory costs at terminals,
as well as the customer-specific additional rail origin-pickup/destination-delivery service costs.
First, we formulate this problem as a nonlinear programming model with fuzzy parameters (M1).
The framework of M1 derives from the model in Reference [1].

‚ Objective Function:
minimize

ÿ

kPK

rqk ¨
ÿ

pi,jqPA

ÿ

sPSij

cs
ij ¨ X

k
ijs (2)

`
ÿ

kPK

rqk ¨
ÿ

iPN

¨

˝

ÿ

hPδ´piq

ÿ

rPShi

cr ¨ Xk
hir `

ÿ

jPδ`piq

ÿ

sPSij

cs ¨ Xk
ijs

˛

‚ (3)

`
ÿ

kPK

rqk ¨
ÿ

pi,jqPA

ÿ

sPΓij

cstore ¨ Zk
ok js (4)

`
ÿ

kPK

rqk ¨ φk ¨
ÿ

jPδ`pokq

ÿ

sPΓok j

cpick ¨ Xk
ok js `

ÿ

kPK

rqk ¨ µk ¨
ÿ

jPδ´pdkq

ÿ

sPΓidk

cdelivery ¨ Xk
idks (5)

‚ Subject to:

ÿ

jPδ`piq

ÿ

sPSij

Xk
ijs ´

ÿ

hPδ´piq

ÿ

rPShi

Xk
hir “

$

’

&

’

%

1, i “ ok
0,@i P N \ tok, dku

´1, i “ dk

@k P K,@i P N (6)

ÿ

sPSij

Xk
ijs ď 1 @k P K,@ pi, jq P A (7)

ĄVijs ď Qs
ij @ pi, jq P A,@s P Γij (8)

Yk
ok
“ tk

release@k P K (9)
´

max
!

Yk
i , SDs

i

)

` tijs ´Yk
j

¯

¨ Xk
ijs “ 0@k P K,@ pi, jq P A,@s P Sij (10)

Yk
i ď us

i ¨ X
k
ijs `M

´

1´ Xk
ijs

¯

@k P K,@ pi, jq P A,@s P Γij (11)
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µk

´

Yk
dk

¯

ě γ @k P K (12)
´

max
!

0, ls
i ´Yk

i ´ π
)

´ Zk
ijs

¯

¨ Xk
ijs “ 0 @k P K,@ pi, jq P A,@s P Γij (13)

Xk
ijs P t0, 1u @k P K,@ pi, jq P A,@s P Sij (14)

Yk
i ě 0 @k P K,@i P N (15)

Zk
ijs ě 0 @k P K,@ pi, jq P A,@s P Γij (16)

Equations (2)–(5) are the transportation costs en route, loading and unloading costs at terminals,
inventory costs at terminal as well as the rail origin-pickup and destination-delivery service costs,
respectively. Their summation is the generalized costs that the decision maker plans to minimize.

Constraint Set (6) are the commodity flow conservation equation. Constraint Sets (6) and (7)
ensure the integrity of each commodity flow that one and only one route can be selected to move
the commodity through the multimodal service network. Constraint Set (8) is the capacity constraint
resulting from the limited available carrying capacity of a block container train. Constraint Set (9)
assumes the arrival time of the commodity at its origin equals its release time. Constraint Set (10)
ensures the compatibility requirements between decision variables Xk

ijs and Yk
j . Constraint Set (11)

ensures the arrival time of the commodity at a terminal will not exceed the upper bound of the
operation time window of the utilized block container train at the same terminal. Constraint Set (12)
is the customer satisfaction level constraint. Constraint Set (13) is similar to Constraint Set (10),
and ensures the compatibility requirements among decision variables Xk

ijs, Yk
i and Zk

ijs. Constraint
Sets (14)–(16) are variable domain constraints.

In M1, the Objective Function (2)–(5) and Constraint Set (8) are involved with fuzzy parameters,
the mathematical meaning of minimizing the objective and of the constraint are hence not clear,
consequently M1 is not a well-defined model. In order to obtain a well-defined model, we need
to transform the fuzzy objective and the fuzzy constraint set into their respective crisp equivalents.
Based on Liu and Iwamura’s theoretical framework on chance-constrained programming in a fuzzy
environment [29], we can obtain M1’s crisp equivalent fuzzy chance-constrained programming model
(M2) as follows. (M2 is a well-defined model.)

‚ Objective Function:
minimize f (17)

‚ Subject to:
Pos

!

f pX, Y, Z, rqq ď f
)

ě α (18)

Pos
!

ĄVijs ď Qs
ij

)

ě β @ pi, jq P A,@s P Γij (19)

Constraint Sets (6), (7), and (9)–(16).
In M2, Pos t¨u denotes the possibility of the event in t¨u [29]. α and β are predetermined

confidence levels that indicate the decision maker’s subjective preference for the corresponding
issues, and α, βP[0, 1]. f pX, Y, Z, rqq is the objective value of M1 where X “ YkPK,pi,jqPA,sPSij

!

Xk
ijs

)

,

Y “ YkPK,iPN

!

Yk
i

)

, Z “ YkPK,pi,jqPA,sPΓij

!

Zk
ijs

)

and rq “ YkPK t rqku. For @ pX, Y, Zq, f pX, Y, Z, rqq is also
a triangular fuzzy number based on the fuzzy arithmetic rules. When confidence level α is given, there
possibly exist several potential f that satisfy Constraint Set (18). Minimizing f as the objective of M2
will find the minimal value (min f ) of f pX, Y, Z, rqqwith confidence level α. Constraint Set (19) means
the possibility that the total volume of commodities loaded on a block container train do not exceed its
available carrying capacity should not be lower than the given confidence level β.
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5. Solution Strategy

M2 is a fuzzy chance-constrained nonlinear programming model. Because of the restrictions of
the fuzzy chance constraint sets and the nonlinear constraint sets, it is difficult to solve this by the
exact solution algorithm that can be effectively implemented by the standard mathematical software.
Therefore, it is necessary to conduct some transformations to M2. It is obvious that the problem will be
effectively solvable if M2 can be transformed into a linear programming model. For this purpose, we
conduct the following transformations to M2 successively.

5.1. Crisp Equivalent of the Fuzzy Chance Constraint Sets

We consider a general triangular fuzzy number ra “
`

aL, aM, aU˘ where aL>aM>aU>0, let µ
ra pxq

denote its membership function whose expression is as Equation (20).

µ
ra pxq “

$

’

’

’

’

&

’

’

’

’

%

x´ aL

aM ´ aL , aL ď x ď aM

aU ´ x
aU ´ aM , aM ď x ď aU

0, otherwise

(20)

The definition of Pos tra ď bu is as [29]: Pos tra ď bu “ sup tµ
ra pxq|x P R, x ď bu. Lemma:

@ra “
`

aL, aM, aU˘, for any predetermined confidence level λP[0, 1], Pos tra ď bu ě λ if and only if
b ě p1´ λq ¨ aL ` λ ¨ aM.

Proof: First we prove Pos tra ď bu ě λ ñ b ě p1´ λq ¨ aL ` λ ¨ aM (sufficiency), and the proof is
also illustrated by Figure 2.

Pos tra ď bu ě λ ñ sup tµ
ra pxq|x P R, x ď bu ě λ ñ b ě x˚

x˚ ´ aL

aM ´ aL “ λ ñ x˚ “
`

aM ´ aL˘ ¨ λ` aL

,

.

-

ñ b ě
`

aM ´ aL˘ ¨ λ` aL

ñ b ě p1´ λq ¨ aL ` λ ¨ aM.
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Then we prove b ě p1´ λq ¨ aL ` λ ¨ aM ñ Pos tra ď bu ě λ (necessity), and the proof is also
illustrated by Figure 3.
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If aM ď b, sup tµ
ra pxq|x P R, x ď bu “ 1 ñ Pos tra ď bu “ 1 ñ Pos tra ď bu ě λ .

If aM > b,
sup tµ

ra pxq|x P R, x ď bu “ µ
ra pbq “

b´ aL

aM ´ aL ñ Pos tra ď bu “
b´ aL

aM ´ aL

b ě p1´ λq ¨ aL ` λ ¨ aM ñ
b´ aL

aM ´ aL ě λ

,

/

/

.

/

/

-

ñ Pos tra ď bu ě λ.

Above all, the proposed lemma is proven.
According to the lemma above, the crisp equivalent of fuzzy chance Constraint Set (18) is:

f ě p1´ αq ¨
ÿ

kPK

qL
k ¨ωk ` α ¨

ÿ

kPK

qM
k ¨ωk (21)

where ωk represents the following function.

ř

pi,jqPA

ř

sPSij

cs
ij ¨ X

k
ijs `

ř

iPN

˜

ř

hPδ´piq

ř

rPShi

cr ¨ Xk
hir `

ř

jPδ`piq

ř

sPSij

cs ¨ Xk
ijs

¸

`
ř

pi,jqPA

ř

sPΓij

cstore ¨ Zk
ok js

`ϕk ¨
ř

jPδ`pokq

ř

sPΓok j

cpick ¨ Xk
ok js ` µk ¨

ř

jPδ´pdkq

ř

sPΓidk

cdelivery ¨ Xk
idks

Similarly, the crisp equivalent of fuzzy chance Constraint (19) set is:

Qs
ij ě p1´ βq ¨VL

ijs ` β ¨VM
ijs @ pi, jq P A,@s P Γij (22)

where VL
ijs “

ř

kPK
qL

k ¨ X
k
ijs and VM

ijs “
ř

kPK
qM

k ¨ X
k
ijs.

5.2. Linearization of the Nonlinear Constraint Sets

Proposition 1: Nonlinear Constraint Set (10) is equivalent to the following linear Constraint
Sets (23)–(26).

SDs
i ` tijs ´Yk

j ě M ¨

´

Xk
ijs ´ 1

¯

@k P K,@ pi, jq P A,@s P Γij (23)

SDs
i ` tijs ´Yk

j ď M ¨

´

1´ Xk
ijs

¯

@k P K,@ pi, jq P A,@s P Γij (24)

Yk
i ` tijs ´Yk

j ě M ¨

´

Xk
ijs ´ 1

¯

@k P K,@ pi, jq P A,@s P Ωij (25)

Yk
i ` tijs ´Yk

j ě M ¨

´

1´ Xk
ijs

¯

@k P K,@ pi, jq P A,@s P Ωij (26)
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Proposition 2: Nonlinear Constraint Set (13) is equivalent to the following linear Constraint
Sets (27) and (28).

Zk
ijs ě M ¨

´

Xk
ijs ´ 1

¯

`

´

ls
i ´Yk

i ´ π
¯

@k P K,@ pi, jq P A,@s P Γij (27)

Zk
ijs ď M ¨ Xk

ijs @k P K,@ pi, jq P A,@s P Γij (28)

The two propositions above have been proved in our previous study. For the detailed proof
processes, we can refer to Section 4.4 in Reference [1].

5.3. Final Formulation of the Problem (M3)

‚ Objective Function:
minimize f

‚ Subject to:

ÿ

jPδ`piq

ÿ

sPSij

Xk
ijs ´

ÿ

hPδ´piq

ÿ

rPShi

Xk
hir “

$

’

&

’

%

1, i “ ok
0,@i P N tok, dku

´1, i “ dk

@k P K,@i P N

ÿ

sPSij

Xk
ijs ď 1 @k P K,@ pi, jq P A

f ě p1´ αq ¨
ÿ

kPK

qL
k ¨ωk ` α ¨

ÿ

kPK

qM
k ¨ωk

Qs
ij ě p1´ βq ¨VL

ijs ` β ¨VM
ijs @ pi, jq P A,@s P Γij

Yk
ok
“ tk

release@k P K

SDs
i ` tijs ´Yk

j ě M ¨

´

Xk
ijs ´ 1

¯

@k P K,@ pi, jq P A,@s P Γij

SDs
i ` tijs ´Yk

j ď M ¨

´

1´ Xk
ijs

¯

@k P K,@ pi, jq P A,@s P Γij

Yk
i ` tijs ´Yk

j ě M ¨

´

Xk
ijs ´ 1

¯

@k P K,@ pi, jq P A,@s P Ωij

Yk
i ` tijs ´Yk

j ě M ¨

´

1´ Xk
ijs

¯

@k P K,@ pi, jq P A,@s P Ωij

Yk
i ď us

i ¨ X
k
ijs `M

´

1´ Xk
ijs

¯

@k P K,@ pi, jq P A,@s P Γij

µk

´

Yk
dk

¯

ě γ@k P K

Zk
ijs ě M ¨

´

Xk
ijs ´ 1

¯

`

´

ls
i ´Yk

i ´ π
¯

@k P K,@ pi, jq P A,@s P Γij

Zk
ijs ď M ¨ Xk

ijs @k P K,@ pi, jq P A,@s P Γij

Xk
ijs P t0, 1u @k P K,@ pi, jq P A,@s P Sij

Yk
i ě 0@k P K,@i P N

Zk
ijs ě 0 @k P K,@ pi, jq P A,@s P Γij

Currently, M3 is composed of a linear objective function and linear constraint sets, and
is hence a mixed integer linear programming model with three kinds of decision variables
including X “ YkPK,pi,jqPA,sPSij

!

Xk
ijs

)

, Y “ YkPK,iPN

!

Yk
i

)

and Z “ YkPK,pi,jqPA,sPΓij

!

Zk
ijs

)

. Because it
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belongs to the linear programming, M3 is effectively solvable by many exact solution algorithms
(e.g., Branch-and-Bound algorithm and Simplex Algorithm) that can be performed on much standard
mathematical programming software (e.g., Lingo and Cplex). We can then obtain the global optimal
solution of M3 by using this method.

6. Numerical Case Study and Sensitivity Analysis

In this section, we design a numerical case to demonstrate the feasibility of the proposed
method in solving the multicommodity multimodal routing problem with fuzzy customer information.
The multimodal service network in this case is shown in Figure 4. Before solving the problem, all
the values regarding the schedules, release times and due dates of the multiple commodities are all
discretized into real numbers.
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Figure 4. A multimodal service network.

The schedules of the block container trains operated in the multimodal transportation are
presented in Table 1.

Table 1. Schedules of the container block trains.

Rail service No. 1 2 3 4 5 6 7

origin 1 1 2 2 3 3 3
loading start time 9 13 15 21 23 1 17

loading cutoff time 10.5 13.5 16 24 25 1.5 20
departure time 11 14 16.5 24.5 25.5 4 21

destination 3 4 5 7 4 5 6
arrival time 15 19 22 31 27 9.5 26

unloading start time 15.5 20 22.5 31.5 27.5 10 26.5
operation period(unit: day/train) 1 1 1 1 1 1 1

available capacity(unit: TEU) 20 30 15 30 40 35 20

Rail service No. 8 9 10 11 12 13 14

origin 4 5 5 6 6 7 7
loading start time 3 1 6 11 1 14 21

loading cutoff time 6 2 8 14 3 17 22
departure time 7 2.5 9 15 4 18 22.5

destination 8 4 7 7 8 8 9
arrival time 17 6 13 18.5 7 23 28

unloading start time 18 7 13.5 19 7.5 24 28.5
operation period(unit: day/train) 1 1 1 1 1 1 1

available capacity(unit: TEU) 40 35 45 25 20 30 20



Information 2016, 7, 13 12 of 16

Transportation costs (unit: ¥/TEU) and times (unit: h) en route of the services in the multimodal
service network are given in Table 2.

Table 2. Transportation service costs and times en route.

Arc
Costs Time

Arc
Costs Time

Rail Road Rail Road Rail Road Rail Road

(1, 3) 1310 2700 4.5 5.5 (4, 6) - 2340 - 5.5
(1, 4) 1513 2880 6 6 (4, 8) 2080 - 11 -
(2, 3) - 3600 - 10 (5, 4) 1108 - 4.5 -
(2, 5) 1371 2700 6 7.5 (5, 6) - 3780 - 9
(2, 7) 2323 - 7 - (5, 7) 1310 2340 4.5 5.5
(3, 4) 1047 - 2 - (6, 7) 1209 - 4 -
(3, 5) 1614 - 6 - (6, 8) 1027 1680 3.5 4.5
(3, 6) 1310 2400 5.5 6 (6, 9) - 2940 - 8.5
(3, 7) - 3660 - 10 (7, 8) 1513 3060 6 8.5
(4, 5) - 1440 - 3.5 (7, 9) 1432 2820 6 8

The loading/unloading costs of rail services and of road services are 195 ¥/TEU and 25 ¥/TEU,
respectively. The inventory costs of rail services are 3.125 ¥/TEU-h, and the inventory period free of
charge is 48 h. The additional rail service origin-pickup and destination-delivery costs are 225 ¥/TEU
and 337.5 ¥/TEU, respectively.

In the numerical case, there are six commodity flows that need to be moved through the
multimodal service network, and their information is presented in Table 3.

Table 3. Customer information of the commodity flows.

No. O D Pickup Delivery Release Time Volume Due Date

1 1 8
‘

ˆ 8 (16, 24, 33) [35, 55, 68, 80]
2 1 9

‘ ‘

15 (8, 17, 25) [40, 50, 55, 61]
3 1 9 ˆ

‘

5 (17, 26, 32) [33, 40, 50, 70]
4 2 8

‘ ‘

0 (22, 30, 38) [45, 60, 75, 90]
5 2 8 ˆ

‘

13 (14, 20, 27) [50, 65, 77, 89]
6 2 9

‘

ˆ 19 (13, 20, 28) [60, 75, 80, 95]

Let α = 0.9, β = 0.9 and γ = 0.9, and by using the Branch-and-Bound algorithm implemented by
Lingo 12 on a Lenovo Laptop with Intel Core i5 3235 M 2.60 GHz CPU and 4 GB RAM, we can obtain
the best routes for the six commodity flows (see in Table 4). The computation lasts 1 s. Note that there
is no transshipment at the terminal with an asterisk.

Table 4. Best multimodal routes under α = β = γ = 0.9.

No. Best Multimodal Routes

1 (1)—Train 2—(4)—Train 8—(8)
2 (1)—Train 1—(3)—Road Service—(6*)—Road Service—(9)
3 (1)—Train 2—(4)—Road Service—(5)—Train 10—(7)—Road Service—(9)
4 (2)—Train 4—(7)—Train 13—(8)
5 (2)—Train 4—(7)—Road Service—(8)
6 (2)—Road Service—(5)—Train 10—(7)—Train 14—(9)

To further discuss the numerical case, we will analyze the sensitivity of the best solution of M3
with respect to the values of the three confidence levels. First we examine how the confidence level α

and β influence the multicommodity multimodal routing. In order to explain the performance of the
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routing by comparing the planned costs (best solution of M3), the actual minimal costs, and actual
costs, we should first simulate the actual multimodal transportation case by randomly generating
deterministic volumes of the commodity flows according to their triangular fuzzy volumes. The fuzzy
simulation is as follows.

For k=1:|K|
Generate a random number q˚k P

“

qL
k , qU

k

‰

;
Calculate its membership µ

rqk

`

q˚k
˘

according to Equation (20);
Generate a random number τP[0, 1];

If µ
rqk

`

q˚k
˘

ě τ;
q˚kÑthe actual volume of commodity k;

End
End

After T fuzzy simulations (in this study, T = 30), we can obtain T deterministic volume sets for
the commodity set. The explored problem is hence transformed into a routing problem in a certain
environment. For the T deterministic volume sets, first we calculate their actual best routes and
corresponding actual minimal costs by solving M1 with Constraint Sets (10) and (13) linearized, and
then get their average actual minimal costs. Second, we calculate their respective actual costs when
moving the commodities along the planned routes, and then obtain their average actual costs.

In this sensitivity analysis, we keep γ = 0.9, and let α vary from 0.3 to 0.6 with step size of 0.1,
and β from 0.1 to 1.0 with step size of 0.1, the sensitivity of the three kinds of costs with respect to the
values of α and β is shown in Figure 5.
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Figure 5. Sensitivity of the three kinds of costs with respect to the values of α and β.

As we can see from Figure 5: (1) when confidence level α is given, larger values of confidence level
β will lead to larger planned costs, and the increase of the planned costs is stepwise. Similarly, when
confidence level β is given, larger values of confidence level α will also lead to larger planned costs,
and the increase of the planned costs in this situation is linear; (2) The actual costs are only related to
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confidence level β. The values of confidence level α do not influence the actual costs. Similar to the
variation of the planned costs, larger values of confidence level β will lead to larger planned costs, and
the increase of the actual costs is stepwise; (3) The actual minimal costs is not related to confidence
level α and confidence level β.

It should be noted that too large or too small values of α and of β will increase the gaps among the
planned costs, the actual costs and the actual minimal costs. In this numerical case, the best value of
confidence level α is 0.5, and the best value of confidence level β is 0.3. Therefore, in the practical fuzzy
multicommodity multimodal routing, in order to make better fuzzy multicommodity multimodal
routing decision to meet the practice, the values of the two confidence levels should be moderate, to
which great importance ought to be attached.

Then, to examine how customer satisfaction level γ influences the multicommodity multimodal
routing, we conduct the sensitivity of the best solution of M3 with respect to the value of γ. Let γ vary
from 0.4 to 1.0 with step size of 0.05, and keeping α = β = 0.9, we can obtain Figure 6 that illustrates the
result of the sensitivity analysis.Information 2016, 7, 13 15 of 17 
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be formulated by a linear programming model that can be effectively solved by exact solution 
algorithms (e.g., Branch-and-Bound algorithm). This solving strategy can provide an exact 
benchmark for systematically testing various heuristic algorithms that will be developed in our 
future study.  

Although several advances have been made by this study, weaknesses still exist. The most 
significant one is that this study still considers the multimodal service network as a deterministic 
system. Actually, due to the man–facility–environment impact, operation delays of the container 
block trains are common, and the travel time of container trucks on the road cannot remain 
deterministic. Therefore, the multimodal service network is a kind of fuzzy system. Accordingly, our 
future study will focus on integrating the fuzzy multimodal service network into our current study. 
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Figure 6. Sensitivity of the best solution with respect to the value of γ.

As we can see from Figure 6, considering a reasonable customer satisfaction level range, when
the customer satisfaction level is lower than 0.6 (γ < 0.6), its variation has only a slight influence on
the multicommodity multimodal routing. However, when γ ě 0.6, Figure 6 shows that larger values
of confidence level γ will result in a larger value of the total generalized costs of the routing, and the
increase of the total generalized costs is stepwise. The sensitivity analysis above clearly indicates that
restricting the multicommodity multimodal routing to meet stricter customer satisfaction levels will
increase the costs of the multimodal service network system to some degree, which is logical according
to practical experience.

7. Conclusions

In this study, we apply the fuzzy customer information problem to multicommodity multimodal
routing with schedule-based services. The main contribution of this study is that it comprehensively
considers the following characteristics in modeling the multimodal routing: (1) multicommodity
flows as an optimization object; (2) schedule constraints existing in practice; and (3) fuzzy customer
information as the formulation environment. All the formulation characteristics enhance the feasibility
of the multimodal routing in dealing with the practical problems. In addition, this study proposes
a crisp equivalent method and a linearization method to enable this problem to be formulated
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by a linear programming model that can be effectively solved by exact solution algorithms
(e.g., Branch-and-Bound algorithm). This solving strategy can provide an exact benchmark for
systematically testing various heuristic algorithms that will be developed in our future study.

Although several advances have been made by this study, weaknesses still exist. The most
significant one is that this study still considers the multimodal service network as a deterministic
system. Actually, due to the man–facility–environment impact, operation delays of the container block
trains are common, and the travel time of container trucks on the road cannot remain deterministic.
Therefore, the multimodal service network is a kind of fuzzy system. Accordingly, our future study
will focus on integrating the fuzzy multimodal service network into our current study.
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