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Abstract: In the field of information theory, statistics and other application areas, the
information-theoretic divergences are used widely. To meet the requirement of metric
properties, we introduce a class of new metrics based on triangular discrimination which
are bounded. Moreover, we obtain some sharp inequalities for the triangular discrimination
and other information-theoretic divergences. Their asymptotic approximation properties are
also involved.
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1. Introduction

In many applications such as pattern recognition, machine learning, statistics, optimization and other
applied branches of mathematics, it is beneficial to use the information-theoretic divergences rather than
the squared Euclidean distance to estimate the (dis)similarity of two probability distributions or positive
arrays [1–9]. Among them the Kullback–Leibler divergence (relative entropy), triangular discrimination,
variation distance, Hellinger distance, Jensen–Shannon divergence, symmetric Chi-square divergence,
J-divergence and other important measures often play a critical role. Unfortunately, most of these
divergences do not satisfy the metric properties and unboundedness [10]. As we know, metric properties
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are the preconditions for numerous convergence properties of iterative algorithms [11]. Moreover,
boundedness is also highly concerned in numerical computations and simulations. In paper [12],
Endres and Schindelin have proved that the square root of twice Jensen–Shannon divergence is a metric.
Triangular discrimination presented by Topsøe in [13] is a non-logarithmic measure and is simple in
complex computation. Inspired by [12], we discuss the triangular discrimination. In this paper, the
main result is that a class of new metrics derived from the triangular discrimination are introduced.
Finally, some new relationships among triangular discrimination, Jensen–Shannon divergence, square of
Hellinger distance, variation distance are also obtained.

2. Definition and Auxiliary Results

Definition 1. Let

Γn =

{
P = (p1, p2, · · · , pn)|pi ≥ 0,

n∑
i=1

pi = 1

}
, n ≥ 2

be the set of all complete finite discrete probability distributions. For all P,Q ∈ Γn, the triangular
discrimination is defined by

∆(P,Q) =
n∑
i=1

(pi − qi)2

pi + qi
. (1)

In the above definition, we use convention based on limitation property that 0
0

= 0.
The triangular discrimination is obviously symmetric, nonnegative and vanishes for P = Q, but

it does not fulfill the triangle inequality. In the view of the foregoing, the concept of triangular
discrimination should be generalized. If P,Q ∈ Γn, the function ∆α(P,Q) is studied:

∆α(P,Q) =

(
n∑
i=1

(pi − qi)2

pi + qi

)α

, (2)

where α ∈ (0,+∞).
In the following, the α−power of the summand in ∆(P,Q) with all α ∈ (0,+∞) are discussed.

Definition 2. Let the function L(p, q) : [0,+∞)× [0,+∞)→ [0,+∞) be defined by

L(p, q) =
(p− q)2

p+ q
. (3)

It is easy to see that L(p, q) ≥ 0 and L(p, q) = L(q, p). To all α ∈ (0,+∞), the issue of whether
(L(p, q))α satisfies the triangle inequality is considered in the following.

Lemma 1. If the function g : [0, a) ∪ (a,+∞)→ (−∞,+∞) is defined by

g(x) =

(x−a)(x+3a)
(x+a)2√
L(a, x)

with a > 0, then

lim
x→a+

g(x) =

√
2

a
, lim

x→a−
g(x) = −

√
2

a
.
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Proof. As

g(x) =


x+3a

(x+a)
3
2
, x > a

− x+3a

(x+a)
3
2
, 0 ≤ x < a

we can get

lim
x→a+

g(x) =
a+ 3a

(a+ a)
3
2

=

√
2

a
, lim

x→a−
g(x) = − a+ 3a

(a+ a)
3
2

= −
√

2

a
.

Lemma 2. If the function h : [0,+∞) → (0,+∞) is defined by h(x) = 3x+a

(x+a)
3
2

with a > 0, then h is

monotonic increasing in [0, a) and monotonic decreasing in (a,+∞).

Proof. Straightforward derivative shows

h′(x) =
3(a− x)

2(x+ a)
5
2

,

h′(x) > 0 in [0, a) and h′(x) < 0 in (a,+∞). Thus the lemma holds.

Assuming 0 < p < q, we introduce function Rpq : [0,+∞)→ [0,+∞) defined by

Rpq(r) =
√
L(p, r) +

√
L(q, r).

Lemma 3. The function Rpq(r) has two minima, one at r = p and the other at r = q.

Proof. The derivative of the function Rpq(r) is

Rpq
′(r) =

1

2

( (r−p)(r+3p)
(r+p)2√
L(p, r)

+

(r−q)(r+3q)
(r+q)2√
L(q, r)

)
. (4)

So Rpq
′(r) < 0 for r ∈ [0, p) and Rpq

′(r) > 0 for r ∈ (q,+∞). It shows Rpq(r) is monotonic decreasing
in [0, p) and monotonic increasing in [q,+∞).

Next consider the monotonicity of Rpq(r) in the open interval (p, q).
From Lemma 3, we have

lim
r→p+

(r−p)(r+3p)
(r+p)2√
L(p, r)

=

√
2

p
,

lim
r→q−

(r−q)(r+3q)
(r+q)2√
L(q, r)

= −
√

2

q
.

(5)

From Lemma 2, we have

(p−q)(p+3q)
(p+q)2√
L(p, q)

= − p+ 3q

(p+ q)
3
2

> − p+ 3p

(p+ p)
3
2

= −
√

2

p
,

(q−p)(q+3p)
(p+q)2√
L(p, q)

=
q + 3p

(p+ q)
3
2

<
q + 3q

(q + q)
3
2

=

√
2

q
.

(6)
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Using (5) and (6),

lim
r→p+

Rpq
′(r) =

1

2

(
lim
r→p+

(r−p)(r+3p)
(r+p)2√
L(p, r)

+

(p−q)(p+3q)
(p+q)2√
L(p, q)

)
=

1

2

(√
2

p
− p+ 3q

(p+ q)
3
2

)
> 0,

lim
r→q−

Rpq
′(r) =

1

2

( (q−p)(q+3p)
(q+p)2√
L(p, q)

+ lim
r→q−

(r−q)(r+3q)
(r+q)2√
L(r, q)

)
=

1

2

(
q + 3p

(p+ q)
3
2

−
√

2

q

)
< 0.

Let

A(y, r) =

(r−y)(r+3y)
(r+y)2√
L(y, r)

=

(r−y)(r+3y)
(r+y)2

√
r
√
L(y

r
, 1)

=
1√
r
B(y, r), y > 0,

then

∂B(y, r)

∂r
= −

3y
√

(r−y)2

r+y

2
√
r(r + y)2

≤ 0.

The equality holds if and only if r = y. So with respect to variable r in the open interval (p, q), B(p, r)

and B(q, r) are both monotonic decreasing, B(p, r) +B(q, r) is also monotonic decreasing. Using (4),

Rpq
′(r) =

1

2
(A(p, r) + A(q, r)) =

1

2
√
r

(B(p, r) +B(q, r)) ,

this shows lim
r→p+

B(p, r) + B(q, r) > 0, lim
r→q−

B(p, r) + B(q, r) < 0. So we can see B(p, r) + B(q, r)

has only one zero point in the open interval (p, q) with respect to variable r. As a consequence, Rpq
′(r)

has only one zero point x0 in the open interval (p, q) with respect to variable r. This means Rpq
′(r) > 0

in the interval (p, x0), Rpq
′(r) < 0 in the interval (x0, q). From the above we know Rpq

′(r) has only one
maximum and no minimum in the open interval (p, q).

As a result, the conclusion in the lemma is obtained.

Theorem 1. Let p, q, r ∈ [0,+∞), then

(L(p, q))
1
2 ≤ (L(p, r))

1
2 + (L(q, r))

1
2 . (7)

Proof. If p = q, then L(p, q) = 0. The triangle inequality (7) obviously holds.
If p 6= q and one of p, q is equal to 0, it is easy to obtain that (7) holds.
Next we assume 0 < p < q without loss of generality. Note that the formula is valid:

(L(p, q))
1
2 = lim

r→p

(
(L(p, r))

1
2 + (L(q, r))

1
2

)
= lim

r→q

(
(L(p, r))

1
2 + (L(q, r))

1
2

)
.

From Lemma 3 the triangle inequality (7) can be easily proved for any number r ∈ [0,+∞).

Corollary 1. Let p, q, r ∈ [0,+∞). If 0 < α < 1
2
, then

(L(p, q))α ≤ (L(p, r))α + (L(q, r))α. (8)

Proof. Let a, b > 0 and 0 < γ < 1, then aγ + bγ > (a + b)γ which follows from the concavity of xγ .
Now a γ which satisfies α = 1

2
γ can be found. Thus from Theorem 1,

(L(p, r))α + (L(q, r))α =(L(p, r))
1
2
γ + (L(q, r))

1
2
γ

≥
(

(L(p, r))
1
2 + (L(q, r))

1
2

)γ
≥ (L(p, q))

1
2
γ = (L(p, q))α.

This is the triangle inequality (8) for the function (L(p, q))α.
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Theorem 2. Let p, q, r ∈ [0,+∞). If α > 1
2
, then the triangle inequality (8) does not hold.

Proof. Assuming 0 < p < q, let l(r) = (L(p, r))α + (L(q, r))α. Firstly the formula is valid:

(L(p, q))α = lim
r→p

((L(p, r))α + (L(q, r))α) = lim
r→q

((L(p, r))α + (L(q, r))α) .

The derivative of the function l is

l′(r) = α

(
(r − p)(3p+ r)

(p+ r)2
(L(p, r))α−1 +

(r − q)(3q + r)

(q + r)2
(L(q, r))α−1

)
.

When r ∈ (p, q), let

m(r) =

(
(r − p)(3p+ r)

(p+ r)2
(L(p, r))α−1

) 1
1−α

.

Using l’Hôspital’s rule,

lim
r→p+

m(r) =
8p2

(1− α)(p+ r)3

(
(r − p)(3p+ r)

(p+ r)2

) 2α−1
1−α

= 0.

So
lim
r→p+

l′(r) =
(p− q)(3q + p)

(q + p)2
(L(p, q))α−1 < 0.

According to the definition of derivative, there exists a δ > 0 such that for any s ∈ (p, p+ δ),

(L(p, q))α = lim
r→p+

((L(p, r))α + (L(q, r))α) > (L(p, s))α + (L(q, s))α.

This shows the triangle inequality (8) does not hold.

To sum up the theorems and corollary above, we can obtain the main theorem:

Theorem 3. The function (L(p, q))α satisfies the triangle inequality (8) if and only if 0 < α ≤ 1
2
.

3. Metric Properties of ∆α(P,Q)

In this section, we mainly prove the following theorem:

Theorem 4. The function ∆α(P,Q) is a metric on the space Γn if and only if 0 < α ≤ 1
2
.

Proof. From (2) we can get ∆α(P,Q) =

(
n∑
i=1

L(pi, qi)

)α
. It is easy to see that ∆α(P,Q) ≥ 0 with

equality only for P = Q and ∆α(P,Q) = ∆α(Q,P ). So what we concern is whether the triangle
inequality

∆α(P,Q) ≤ ∆α(P,R) + ∆α(Q,R) (9)

holds for any P,Q,R ∈ Γn.
When P = Q, ∆α(P,Q) = 0, the triangle inequality (9) holds apparently. So we assume P 6= Q in

the following.
Next we consider the value of α in two cases respectively:
(i) 0 < α ≤ 1

2
:
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From Theorem 3, the inequality (L(pi, qi))
α ≤ (L(pi, ri))

α + (L(qi, ri))
α holds. Applying

Minkowski’s inequality we have(
n∑
i=1

L (pi, qi)

)α

=

{
n∑
i=1

((L(pi, qi))
α)

1
α

}α

≤

{
n∑
i=1

((L(pi, ri))
α + (L(qi, ri))

α)
1
α

}α

≤

{
n∑
i=1

((L(pi, ri))
α)

1
α

}α

+

{
n∑
i=1

((L(qi, ri))
α)

1
α

}α

=

(
n∑
i=1

L (pi, ri)

)α

+

(
n∑
i=1

L (qi, ri)

)α

.

So the triangle inequality (9) holds.
(ii) α > 1

2
:

Let
F (x1, · · · , xn) = F1(x1, · · · , xn) + F2(x1, · · · , xn),

where

F1(x1, · · · , xn) =

(
n∑
i=1

(pi − xi)2

pi + xi

)α

,

F2(x1, · · · , xn) =

(
n∑
i=1

(qi − xi)2

qi + xi

)α

.

Then F (p1, · · · , pn) = F (q1, · · · , qn) = ∆α(P,Q).
Next we prove (p1, · · · , pn) and (q1, · · · , qn) are not the extreme points of the function F (x1, · · · , xn).

By the symmetry we only need to prove (p1, · · · , pn) is not the extreme point.
By partial derivative,

∂F

∂xi

∣∣∣∣
(x1,··· ,xn)=(p1,··· ,pn)

=
∂F1

∂xi

∣∣∣∣
(x1,··· ,xn)=(p1,··· ,pn)

+
∂F2

∂xi

∣∣∣∣
(x1,··· ,xn)=(p1,··· ,pn)

. (10)

Since P 6= Q, we might as well assume p1 6= q1 and p1 > 0.

∂F2

∂x1

∣∣∣∣
(x1,··· ,xn)=(p1,··· ,pn)

=
α(p1 − q1)(p1 + 3q1)

(p1 + q1)2
·

(
n∑
i=1

(pi − qi)2

pi + qi

)α−1

6=0.

(11)

∂F1

∂x1

∣∣∣∣
(x1,··· ,xn)=(p1,··· ,pn)

= lim
∆x1→0

1

∆x1

(F1(p1 + ∆x1, · · · , pn)− F1(p1, · · · , pn))

= lim
∆x1→0

1

∆x1

(
∆x2

1

2p1 + x1

)α
= lim

∆x1→0

∆x2α−1
1

(2p1 + x1)α

=0.

(12)
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Then taking (11) and (12) into (10), we have

∂F

∂x1

∣∣∣∣
(x1,··· ,xn)=(p1,··· ,pn)

6= 0.

Therefore, (p1, · · · , pn) is not the extreme point of the function F (x1, · · · , xn). For the same reason,
(q1, · · · , qn) is also not the extreme point.

Using the definition of extreme point, there exists a pointR = (r1, · · · , rn) such that F (r1, · · · , rn) <

F (p1, · · · , pn) = ∆α(P,Q). As F1(r1, · · · , rn) = ∆α(P,R), F2(r1, · · · , rn) = ∆α(Q,R), then
∆α(P,R) + ∆α(Q,R) < ∆α(P,Q). The inequality is not consistent with the triangle inequality (9).

From what has been discussed above, the conclusion in the theorem is obtained.

The generalization of this result to continuous probability distributions is straightforward. Consider a
measurable space (X ,A), and P ,Q are probability distributions with Radon-Nykodym densities p = dP

dµ
,

q = dQ
dµ

w.r.t. a dominating σ-finite measure µ. Then

∆α(P,Q) =

(∫
X

(p− q)2

p+ q
dµ

)α
(13)

is a metric if and only if 0 < α ≤ 1
2
.

Next we will discuss the maxima and minima of ∆α(P,Q). It is obvious that ∆α(P,Q) = 0 is the
minima, if and only if P = Q. Because ∆(P,Q) can rewrite in the form

∆(P,Q) =
n∑
i=1

(pi − qi)2

pi + qi

=
n∑
i=1

(
pi + qi −

4piqi
pi + qi

)
= 2−

n∑
i=1

4piqi
pi + qi

≤ 2.

(14)

∆(P,Q) obtains the maxima 2 when P,Q are two distinct deterministic distributions, namely piqi = 0.
Then the metric ∆α(P,Q) achieves its maximum value 2α.

4. Some Inequalities among the Information-Theoretic Divergences

Definition 3. For all P,Q ∈ Γn, the Jensen–Shannon divergence is defined by

JS(P,Q) =
1

2

n∑
i=1

[
pi ln

(
2pi

pi + qi

)
+ qi ln

(
2qi

pi + qi

)]
.

The square of the Hellinger distance is defined by

H2(P,Q) =
1

2

n∑
i=1

(
√
pi −
√
qi)

2.

The variance distance is defined by

V (P,Q) =
n∑
i=1

|pi − qi|.
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Next we introduce the Csiszár’s f -divergence[14].

Definition 4. Let f : [0,+∞)→ (−∞,+∞) be a convex function satisfying f(1) = 0, the f -divergence
measure introduced by Csiszár is defined as

Cf (P,Q) =
n∑
i=1

qif

(
pi
qi

)
(15)

for all P,Q ∈ Γn.

The triangular discrimination, Jensen–Shannon divergence, the square of the Hellinger distance,
variance distance are all f -divergence.

Example 1. (Triangular Discrimination) Let us consider

f∆(x) =
(x− 1)2

x+ 1
, x ∈ [0,+∞)

in (15). Then we can verify f∆(x) is convex because f ′′∆(x) = 8
(x+1)3 ≥ 0, f∆(1) = 0, f∆(x) ≥ 0 and

Cf∆
(P,Q) = ∆(P,Q).

Example 2. (Jensen–Shannon divergence) Let us consider

fJS(x) =
x

2
ln

2x

x+ 1
+

1

2
ln

2

x+ 1
, x ∈ [0,+∞)

in (15). Then we can verify fJS(x) is convex because f ′′JS(x) = 1
2x2+2x

≥ 0, fJS(1) = 0 and
CfJS(P,Q) = JS(P,Q). By standard inequality lnx ≥ 1− 1

x
, fJS(x) ≥ x

2
(1− x+1

2x
) + 1

2
(1− x+1

2
) = 0

holds.

Example 3. (Square of Hellinger distance) Let us consider

fh(x) =
1

2
(
√
x− 1)2, x ∈ [0,+∞)

in (15). Then we can verify fh(x) is convex because f ′′h (x) = 1
4x
√
x
≥ 0, fh(1) = 0, fh(x) ≥ 0 and

Cfh(P,Q) = H2(P,Q).

Example 4. (Variation distance) Let us consider

fV (x) = |x− 1|, x ∈ [0,+∞)

in (15). Then we can easily get fV (x) is convex, fV (1) = 0, fV (x) ≥ 0 and CfV (P,Q) = V (P,Q).

Theorem 5. Let f1, f2 be two nonnegative generating functions and there exists the real constants k,K
such that k < K and if f2(x) 6= 0 then

k ≤ f1(x)

f2(x)
≤ K,

if f2(x) = 0, then f1(x) = 0. We have the inequalities:

kCf2(P,Q) ≤ Cf1(P,Q) ≤ KCf2(P,Q).



Information 2015, 6 369

Proof. The conditions can be rewritten as kf2(x) ≤ f1(x) ≤ Kf2(x). So from the formula (15),

Cf1(P,Q) =
n∑
i=1

qif1(
pi
qi

) ≥
n∑
i=1

qi

(
kf2

(
pi
qi

))
= k

n∑
i=1

qif2

(
pi
qi

)
= kCf2(P,Q).

and

Cf1(P,Q) =
n∑
i=1

qif1(
pi
qi

) ≤
n∑
i=1

qi

(
Kf2

(
pi
qi

))
= K

n∑
i=1

qif2

(
pi
qi

)
= KCf2(P,Q).

We have shown that f∆, fJS , fh, fV are all nonnegative. In the following we will have
some inequalities.

Theorem 6.
1

4
∆(P,Q) ≤ JS(P,Q) ≤ ln 2

2
∆(P,Q).

Proof. When x 6= 1, both f∆(1) and fJS(1) are not equal to 0. We consider the function:

φ(x) =
fJS(x)

f∆(x)
=

x
2

ln 2x
x+1

+ 1
2

ln 2
x+1

(x−1)2

x+1

.

The derivative of the function φ(x) is

φ′(x) =
(1 + 3x) lnx+ 4(1 + x) ln 2

x+1

2(1− x)3
.

Let
ψ(x) = (1 + 3x) lnx+ 4(1 + x) ln

2

x+ 1
. (16)

Straightforward derivative shows

ψ′(x) = 3 lnx+ 4 ln
2

1 + x
+

1

x
− 1,

ψ′′(x) = − (x− 1)2

x2(x+ 1)
< 0.

So ψ(x) is concave function when x ∈ [0,+∞) and ψ′(1) = ψ(1) = 0. This means ψ(x) gets the
maximum 0 at the point x = 1. Accordingly ψ(x) < 0 when x 6= 1. From (16), we findφ′(x) < 0, 0 < x < 1

φ′(x) > 0, x > 1
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and

lim
x→0+

φ(x) =
1
2

ln 2

1
=

ln 2

2
.

Using l’Hôspital’s rule (differentiate twice),

lim
x→1

φ(x) = lim
x→1

1
2

(
1
x
− 1

x+1

)
8

(x+1)3

=
1

4
.

Using l’Hôspital’s rule (differentiate once),

lim
x→+∞

φ(x) =
1
2

ln 2x
x+1

(x−1)(x+3)
(x+1)2

=
ln 2

2
.

Thus
1

4
≤ φ(x) =

fJS(x)

f∆(x)
≤ ln 2

2
.

When x = 1, f∆(1) = fJS(1) = 0. As a consequence of Theorem 5, we obtain the result

1

4
Cf∆

(P,Q) ≤ CfJS(P,Q) ≤ ln 2

2
Cf∆

(P,Q).

Thus the theorem is proved.

Theorem 7.
JS(P,Q) ≤ H2(P,Q) ≤ 1

ln 2
JS(P,Q).

Proof. When x 6= 1, both fh(1) and fJS(1) are not equal to 0. We consider the function:

ξ(x) =
fJS(x)

fh(x)
=

x
2

ln 2x
x+1

+ 1
2

ln 2
x+1

1
2
(
√
x− 1)2

.

The derivative of the function φ(x) is

ξ′(x) =
ln 2

x+1
+
√
x ln 2x

x+1√
x(1−

√
x)3

.

By standard inequality lnx ≥ 1− 1

x
,

ln
2

x+ 1
+
√
x ln

2x

x+ 1
≥ 1− x+ 1

2
+
√
x

(
1− x+ 1

2x

)
=

(
√
x− 1)2(

√
x+ 1)

2
√
x

> 0

So ξ′(x) > 0, 0 < x < 1

ξ′(x) < 0, x > 1

and

lim
x→0+

ξ(x) =
1
2

ln 2
1
2

= ln 2.
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Using l’Hôspital’s rule (differentiate twice),

lim
x→1

ξ(x) = lim
x→1

1
2

(
1
x
− 1

x+1

)
1

4
√
x3

= 1.

Using l’Hôspital’s rule (differentiate once),

lim
x→+∞

ξ(x) =
1
2

ln 2x
x+1√

x−1
2
√
x

= ln 2.

Thus
ln 2 ≤ φ(x) =

fJS(x)

fh(x)
≤ 1,

or
1 ≤ 1

φ(x)
=

fh(x)

fJS(x)
≤ 1

ln 2
.

When x = 1, fh(1) = fJS(1) = 0. As a consequence of Theorem 5, we obtain the result

CfJS(P,Q) ≤ Cfh(P,Q) ≤ 1

ln 2
CfJS(P,Q).

Thus the theorem is proved.

Theorem 8.
1

2
V 2(P,Q) ≤ ∆(P,Q) ≤ V (P,Q).

Proof. When x 6= 1, both f∆(1) and fV (1) are not equal to 0. We consider the function:

f∆(x)

fV (x)
=

(x−1)2

x+1

|x− 1|
=
|x− 1|
x+ 1

≤ 1.

When x = 1, f∆(1) = fV (1) = 0. As a consequence of Theorem 5, we obtain the result Cf∆
(P,Q) ≤

CfV (P,Q). This means ∆(P,Q) ≤ V (P,Q). Next,

1

2
V 2(P,Q) =

1

2

(
n∑
i=1

|pi − qi|

)2

≤ 1

2

(
n∑
i=1

(pi + qi)

)(
n∑
i=1

(pi − qi)2

pi + qi

)
(Cauchy–Schwarz inequality)

=
1

2
· 2 ·

(
n∑
i=1

(pi − qi)2

pi + qi

)

=
n∑
i=1

(pi − qi)2

pi + qi
= ∆(P,Q)

Thus the theorem is proved.

From the above theorems, inequalities among these measures are given by
1

8
V 2(P,Q) ≤ 1

4
∆(P,Q) ≤ JS(P,Q) ≤ H2(P,Q) ≤ 1

ln 2
JS(P,Q)

≤ 1

2
∆(P,Q) ≤ 1

2
V (P,Q)

(17)

These inequalities are sharper than the inequalities in [13] Theorem 2 and [15] (Section 3.1).
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5. Asymptotic Approximation

Definition 5. For all P,Q ∈ Γn, the Chi-square divergence is defined by

χ2(P,Q) =
n∑
i=1

(pi − qi)2

qi
.

In [12],

JS(P,Q) =
1

2
D2
PQ ≈

1

2

n∑
i=1

1

4qi
(pi − qi)2 =

1

8
χ2(P,Q).

In this section, we will discuss the asymptotic approximation of ∆(P,Q) andH2(P,Q) when P → Q

in L2 norm.

Theorem 9. If ‖P −Q‖2 → 0, then

∆(P,Q)→ 1

2
χ2(P,Q), H2(P,Q)→ 1

8
χ2(P,Q).

Proof. From Taylor’s series expansion at q, we have

(x− q)2

x+ q
=

(x− q)2

2q
+ o

(
(x− q)2

)
1

2
(
√
x−√q)2 =

(x− q)2

8q
+ o

(
(x− q)2

)
Hence

∆(P,Q) =
n∑
i=1

(pi − qi)2

pi + qi
=

n∑
i=1

(pi − qi)2

2qi
+ o

(
‖P −Q‖2

2

)
=

1

2
χ2(P,Q) + o

(
‖P −Q‖2

2

)
H2(P,Q) =

n∑
i=1

1

2
(
√
pi −
√
qi)

2 =
n∑
i=1

(pi − qi)2

8qi
+ o

(
‖P −Q‖2

2

)
=

1

8
χ2(P,Q) + o

(
‖P −Q‖2

2

)
Equivalently, JS(P,Q) ≈ H2(P,Q) ≈ 1

4
∆(P,Q) ≈ 1

8
χ2(P,Q) when P → Q. So in some cases,

one of the information-theoretic divergences can be substituted for another. The asymptotic property can
also interpret the boundedness of triangular discrimination and, on the other hand, the new metrics.
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