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Abstract: Automated forward vehicle detection is an integral component of many advanced 

driver-assistance systems. The method based on multi-visual information fusion, with its 

exclusive advantages, has become one of the important topics in this research field. During 

the whole detection process, there are two key points that should to be resolved. One is to 

find the robust features for identification and the other is to apply an efficient algorithm for 

training the model designed with multi-information. This paper presents an adaptive SVM 

(Support Vector Machine) model to detect vehicle with range estimation using an on-board 

camera. Due to the extrinsic factors such as shadows and illumination, we pay more attention 

to enhancing the system with several robust features extracted from a real driving 

environment. Then, with the introduction of an improved genetic algorithm, the features are 

fused efficiently by the proposed SVM model. In order to apply the model in the forward 

collision warning system, longitudinal distance information is provided simultaneously. The 

proposed method is successfully implemented on a test car and evaluation experimental 

results show reliability in terms of both the detection rate and potential effectiveness in a 

real-driving environment. 

Keywords: vehicle detection; genetic algorithm (GA); advanced driver-assistance systems 

(ADAS); forward collision warning system (FCWS) 
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1. Introduction 

As an important component of ADAS, FCWS has received considerable attention in recent decades 

due to the fact many accidents are caused mainly by drivers’ lack of attention or fatigue. FCWS is an 

on-board system which can warn the driver of a potential vehicle collision risk in front of the host 

vehicle. If car drivers have a 0.5-second additional warning time, about 60% of rear-end collisions can 

be prevented. An extra second of warning time can prevent about 90% of rear-end collisions [1]. Thus, 

FCWS has been considered as an important application for improving traffic safety and accident prevention. 

Since the forward vehicle detection plays a more important role in FCWS, which has been extensively 

studied using various sensors. Researches indicate that the sensors used widely can be roughly classified 

into two main types: active sensors and camera sensors. In early stages, active sensors such as radar and 

LiDAR are used [2,3]. The main advantage is that the sensors can achieve a reliable distance even in 

rain or fog, where average drivers have a visibility of 10 m or less. However, on the contrary, the high 

cost, low spatial resolution, narrow field of view and unitary information have restricted their use in 

practical applications. In recent years, camera sensors are being widely used due to the reasons 

mentioned above [4,5]. This method overcomes the limitations of active sensors and furthermore can be 

used in a wider range of applications, such as in lane departure warning systems and event video 

recorders. These advantages are conducive not only to achieving more robust detection result, but also 

to the ADAS equipment integration with multifunction in the future. 

Vehicles have a wide variety of appearances such as shape, color, size and textures, etc. How to use 

these information and enhance the system efficiency is a big challenge in practical applications. 

Therefore, at present, very few products are developed for real driving environments even if there are so 

many researches and huge market demands.  

Generally, previous researches extract the vehicle features with prior knowledge cues and then verify 

the candidates with conventional classification algorithms. In which, reasonable and effective feature 

extraction is important for the detection phase. For this purpose, various prior knowledge such as shadow, 

symmetry, color, edge and texture are used [6–10]. In ref [6], shadow and edge information are used. 

Several sequences from real driving environments have been tested and have obtained highly accurate 

results. However, the most serious drawback of this research is that it may be unreliable in the scenes 

with low sun, making vehicles cast long shadows, and leading to interference from shadow of leaves. 

Mithun [10] proposed a novel detection and classification method by utilizing the shape-based,  

shape-invariant and texture-based features. Experimental results demonstrate that the proposed method 

provides a significant improvement in counting and classifying the vehicles in terms of accuracy and 

robustness alongside a substantial reduction of execution time. In fact, this method belongs to the  

video-based method for moving object detection [11,12]. In addition, generally, texture feature 

extraction is a time-consuming task due to the complex computation process. Thus, this method is 

impractical for a real-time application. However, the accurate and effective demonstration for object 

detection motivates us to apply it into this paper’s research tasks. How to reduce the computation 

complexity so as to improve the system performance is a primary problem to be solved. 

Once the robust features for vehicle detection are obtained, the next step is identifying the candidates 

extracted with a classification method such as artificial neural network, SVM, and AdaBoost. SVM, a 

novel supervised learning method used for classification and regression, has been recently proved to be 
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a promising tool for both data classification and pattern recognition [13–15]. SVM has been shown to 

be very resistant to the over-fitting problem, achieving high generalization performance in solving 

various time series forecasting problems, which has been applied in prediction of time series [16,17]. 

These successful applications motivate us to apply SVM in this paper’s research. 

The purpose of this paper is to establish an adaptive GA-SVM model for forward vehicle detection 

in real driving environments. Within the proposed model, in order to enhance the system robustness, 

several features including invariant moments and textures are considered. During the model training 

process, this paper adopts an improved GA algorithm to improve the training efficiency. This paper aims 

to make two contributions to the literature. Firstly, it attempts to make the proposed model adaptive to 

various lighting conditions, even in the environment with interference of leave shadows. Secondly, it 

tries to promote the model training efficiency with an improved SVM model. It is expected to help 

enhance the model accuracy with limited experimental data. 

2. System Overview 

2.1. On-Board System Setup  

To obtain the road scenario, an image acquiring system will be needed. The configuration for the 

proposed system consists of a camera and on-board computer, as shown in Figure 1. When the system 

is started, the camera mounted on the windshield captures the road image and transmits it to a computer 

in real time. Then, the image is processed using the proposed algorithm. 

 

Figure 1. Hardware configuration for the proposed method. 

2.2. Overview of the Proposed Method  

Considering the performance required in practical applications, the proposed program refined vehicle 

detection algorithm is shown in Figure 2. 

Firstly, image preprocessing steps dedicated to reduce Gaussian and Pepper noise are applied. Then, 

the region of interest (ROI), in which vehicles possibly appear, is defined based on lane detection. In 

this region, many unnecessary influences (e.g., lamps, traffic lights, signs, etc.) outside the ROI are 

excluded. In order to improve detection accuracy, the moment and texture features of candidates are 

used for the proposed SVM model. For the system tracking process, Camshift algorithm is adopted to 

find the “target” in the ROI effectively. 
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Figure 2. Flow chart of the forward vehicle detection. 

3. Vehicle Detection Using SVM 

3.1. Hypothesis Generation  

In the hypothesis generation step, image preprocess steps are conducted in order to reduce the 

interference from Gaussian and Pepper noise which occurs commonly in real-driving environments. 

Within the defined ROI, based on the common features that vehicles always cause shadow on the road [18], 

the shadow underneath the vehicles is detected. Then, the vehicle bottom lines, where the vehicle and 

road meet, are extracted. With these lines, vehicle candidates can be successfully extracted. Figure 3 

shows the overall process for candidates’ extraction in the hypothesis generation step. 

 

Figure 3. Flow chart of the forward vehicle candidate detection. 
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3.1.1. Hypothesis Generation: Image Preprocess and Segmentation 

To reduce Gaussian and Pepper noise, tests are carried out with various filters. From Table 1, it can 

be seen that the median filter is effective for reducing the pepper noise and wavelet filter for Gaussian. 

So, in this paper, median and compromise threshold wavelet filters are adopted. 

Table 1. Statistical analysis result. 

Filter Mask size SNR (db) RMSE 

Original image —— 5.51 0.24 

Median filter 3 × 3 5.94 0.22 

Mean filter 3 × 3 5.54 0.23 

Wiener filter 3 × 3 5.98 0.22 

Wavelet filter 

Soft threshold 7.83 0.31 

Hard threshold 12.37 0.19 

Compromise threshold 31.07 0.02 

In computer vision and image processing, Otsu’s method is used to automatically perform histogram 

shape-based image segmentation or the reduction of a gray image to a binary image. In addition, it is 

proved one of the best methods for threshold selection [19]. Therefore, in this paper, we segment the 

vehicle image with L component in Lab color space based on this method. 

3.1.2. Hypothesis Generation: Lane Detection and ROI Defining 

Previous research shows that Hough transform (HT) is not sensitive to noise and handles the 

incomplete or partially covered target [20]. For real time application, there are two key steps that need 

to be undertaken. One is the robust edge map extraction and the other is HT parameters’ range design. 

The former is the basis for correct lane detection and the latter can improve the efficiency of the 

parameter search process. 

In a real driving environment, horizontal and vertical edge maps should be responsive to illumination 

changes. So, the proposed method computes the 1st-order derivative of image intensity, followed by the 

adaptive threshold. As the contrast tends to be proportional to illumination, the local mean intensity is 

used to set the adaptive threshold value. The edge maps are calculated as follows:  
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(2) 

where ( )HEM p  and ( )VEM p  represent the horizontal and vertical binary edge maps at pixel p, 

respectively. ( )HG p  and ( )VG p  are the results of Sobel edge detectors.   is the neighborhood set of 

the Sobel filter, m is the number of pixels in the neighborhood set, and a is a constant to adjust the 

sensitivity of the edge response. The proposed method is able to build the binary edge maps robustly 

even if the illumination condition has been changed. 
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Since the parameters range design is important for lane detection using HT method. In this paper, the 

image is divided into two regions; the origin point is set at the bottom center, as shown in Figure 4. For 
each region, given line equation y kx b  , the HT is carried out by the following equation: 

    sincos yxr  (3) 

where, (r, θ) is the vector from the origin to the nearest point of line y kx b  . According to our 

experience, the range of parameter θ is set with [15 ,75 ]  . With the proposed method, several samples 

obtained from a real driving environment are conducted. Results show that, in tracking mode, the method 

can detect lane with an average accuracy 90% and 30 ms time-consumption per frame. 

 

Figure 4. Flow chart of the forward vehicle candidate detection. 

In a real driving environment, most collision accidents are rear-ending collisions in the current lane. 

Thus, the ROI (defined as Figure 5) near the vanishing point is set to minimize the impact from other 

objects and improve system performance. The left and right boundaries are defined as the boundary 

which are 1.5 times the distance from vanishing point to intersection point, respectively. 

 

Figure 5. Vanishing point and ROI definition. 

It is important to note that the intersection points are important cues for the subsequent initial vehicle 

bottom line extraction. For example, when the low sun castes long shadows underneath the vehicle, the 

proposed method based on shadow detection always achieves a failed result. So, subject to the constraints 

of intersection point mentioned above, we can achieve a more accurate shadow detection result than the 

method in [6]. Furthermore, this paper defines the ROI area differently from the reference due to the fact 

that in the lower-triangular area (as ref [6] used), the process complexity can be reduced efficiently, but 

more useful information such as the vehicle rear-end texture is lost. Unfortunately, these cues are 

essential for the vehicle verification step. 
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3.1.3. Hypothesis Generation: Shadow Detection 

Vehicles may have many shapes and colors. One important feature in common is that they always 

cause shadow on the road surface. Vehicle candidates can be extracted by detecting the shadows 

underneath vehicles [18]. Potential shaded areas are the region with significant darker intensities than 

the road. In the ROI defined above, most of the impact of background is neglected and the darker area 

can be detected easily. Here, an adaptive K-Means algorithm for image segmentation is presented. The 

improvement of this method with traditional K-Means [21] is that the initial cluster centers and numbers 

are determined based on the histogram analysis. 

Traditional K-Means algorithm has the advantages of being simple, easy to realize and stable, so it 

has become the most widely used method in research of cluster analysis. However, it is time-consuming 

and does not always guarantee unique clustering results. In this paper, we improved the algorithm in the 

following aspect. Instead of using random initialization, we follow a novel approach to provide initial 

cluster centers. Firstly, the histogram of L component in Lab color space is acquired, shown as Figure 6. 

It is clear that there are several peaks and valleys, and peaks always correspond with the maximum 

accumulation value of L component. Secondly, instead of providing random cluster centers, we choose 

the L value according to the peak as centers and the number of peaks as cluster numbers. According to 

Figure 6, there are three clusters with initial centers as 69, 82 and 89, respectively. 

 

Figure 6. Histogram of L component. 

Table 2 shows the comparison results between two algorithms. It is indicated that the iteration and 

time-consumption are all improved greatly. 

Table 2. Comparison of the different clustering algorithm. 

 Traditional method Improved method 
Experiment No. 1 2 3 4 5 
Iterations times 28 25 18 23 9 
Time consuming (s) 1.9 1.7 1.3 1.5 0.15 

3.1.4. Hypothesis Generation: Extracting Bottom Lines for Vehicle Candidates 

In real-driving environments, it is hard to obtain real bottom lines in the scenes with low sun, making 

vehicles cast long shadows, shown as Figure 7. This motivates us to solve it through other cues. Here, 

the vertical edges are in full used for refining the bottom lines detected with shadow information. 

Histogram statistics 
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Figure 7. Vehicles cast long shadows in the scenes with low sun. 

Firstly, in the ROI defined above, vertical edge points are obtained with Equation (2). Then, the edges 

are extracted with an improved line detection method based on HT. The improvement is that not only 

the edge but also the tip point of each line can be detected respectively. In order to obtain the tip point, 
the coordinates of each point used for HT are recorded in a link list while the parameters ( , )   are 

accumulated. With the proposed method, the vehicle vertical edge can be extracted accurately; examples 

are shown as Figure 8. 

 

Figure 8. Examples for vertical edges detection. 

Based on the extracted vertical edge, the proposed method refines the left and right boundary on either 

side of the initial bottom line and finds the lowest tip points, respectively. Then, the length of initial 

bottom line is adjusted equal to the length between the lowest tip point in the left and right boundary. 

After adjusting, the length and vertical position of initial bottom lines that have an excessively short or 

long length are removed. 
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3.1.5. Hypothesis Generation: Extracting Bounding box for Vehicle Candidates 

With above process, the bounding boxes for vehicle candidates are extracted easily. The left and right 

boundary of the boxes is set to the edges detected with refining method in Section 3.1.4. The height is 

set equal to the height of the left or right edge lines. In fact, in this paper, only the bottom is important 

for the following range estimation steps. However, the other boundaries of the box can provide cues for 

verification steps. Therefore, for convenience, only the bottom is shown in the real experiments. 

3.2. Hypothesis Verification 

In this step, the proposed method identifies a candidate using several features. Potential vehicles can 

be located using the method as discussed above. Once the bounding box corresponding to potential 

vehicle is defined, the verification search process is triggered. 

3.2.1. Hypothesis Verification: Features Extraction 

Vehicles have many appearance features such as symmetry, rectangle, aspect ratio, textures etc. In 

this paper, a combined invariant feature named C-Moment is adopted. Furthermore, in order to reduce 

the influences caused by leaves, texture features are used for describing the shadow gray distribution 

properties underneath the vehicle. 

(1) Composition of C-Moment features 

Moments are designed to capture both global and detailed geometric information about the image. 

Hu [22,23] and affine invariant moment [24] are important features which are not sensitive to translation, 

stretch and rotation. In this paper, according to experimental results, the combined-moment invariants 

(including three improved Hu moments and three affine invariant moments) is designed for  

vehicle verification. 

Figure 9 shows a statistic experiment for the extracted features R1~R5 and I1~I3. It indicates that the 

differences of R2, R3, R5, I1, I2 and I3 are obvious between vehicle and non-vehicle samples. Thus, they 

are considered as the most important features for identification. So, the combined features vector used 

for verification is defined as: 

 2 3 5 1 2 3, , , , ,
T

v R R R I I I (4) 

 

Figure 9. Cont. 
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Figure 9. Statistics of the moment with different samples. 

(2) Texture features extraction 

According to previous research, we found that some cases may lead to mistake recognition result only 

based on the shadows beneath the vehicle, especially in the real-driving environment with interference 

from shadow of the leaves, shown as Figure 10. Analysis indicates that there exist some similar 

properties between the shadows caused by vehicle and leaves, such as the dark intensity and edge 

gradient features. This is the main factor that leads to error. Therefore, this problem motivates us to solve 

it from the other aspects such as “target” internal texture characteristics. Considering time costs, texture 

feature extraction must be carried out in an area as small as possible. So, we extract the features in the 

bounding box for vehicle candidates described above. 

 

Figure 10. Statistics of the moment with different samples. 

Gray-level co-occurrence matrix (GLCM) is an important reflection of the changing rule of the image 

pixels on the directions and intervals. Previous research shows that there are 14 features obtained through 

GLCM which can be used for describing the image textures [25]. Of this, four features, including Energy 
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(T1), Contrast (T2), Correlation (T3) and Entropy (T4), are uncorrelated and they can give out higher 

classification accuracy than the others. They are described as: 
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(5) 

where, d represents the distance and direction between two pixels. L is the gray level of the image and i, 
j are the gray value of current pixels. So, ( , )dp i j  reflects a probability that, along the given spatial 

location relationship d (distance and direction), one pixel with gray value i reaches to the pixel with gray 

value j. 

In order to verify the validity of texture features used for classifying the shadows caused by vehicle 

and leaves, experiment about f1~f4 is conducted, which is shown as Figure 11. From the statistical results, 

some cues can be inferred. Firstly, the property distribution of leaves shadows shows that there are some 

convergences within the four features, especially in the contrast, correlation and homogeneity. Secondly, 

the property of vehicle shadow shows a certain dispersion property besides the homogeneity distribution. 

However, in respective statistical figures, the differences between vehicle and leaves shadow are obvious 

and can be classified with certain methods. Therefore, these texture features can be considered as 

important cues for identifying the shadows from the vehicles or leaves. 

 

Figure 11. Texture property distribution statistics. 
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3.2.2. Hypothesis Verification: Vehicle Candidate Verification by SVM 

As a new and promising technique for classification problem tools, SVM has been successfully 

applied widely since its introduction [26]. In real applications, the parameters need to be optimized which 

greatly impacts the performance of SVMs. Improper selection of the parameters could cause either the 

over-fitting or under-fitting of the training data points. These parameters mainly include the penalty 

factor C and the parameters of kernel function (for instance, parameter γ of RBF kernel function). At 

present, grid search algorithm [27] is the most reliable method for the off-line data training process. 

However, for large scale or real-time feature practice application, the considerable searching time cannot 

be accepted. Therefore, many studies have been devoted to improving the efficiency of the parameter 

optimization in SVM by using heuristic algorithms. 

This paper aims to build a hybrid model for vehicle candidate verification, which is named the SVM-GA 

model. The architecture of the solution consists of three modules: PCA unit, SVM unit and GA unit. The 

hybrid model can be described as in Figure 12. 

 

Figure 12. Flow-chart of the hybrid model. 

(1) Support vector classification 

The training procedure of SVM is finding the hyper-plane which optimally separates two classes with 
maximum margin. Given a training set of instance-label pairs (xi, yi); i = 1, …, l, where xi∈Rn and y∈l, 

the SVM requires solution of the following optimization problem: 
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where training vectors xi is mapped into a higher (maybe infinite) dimensional space by the kernel 

function Φ. SVM finds a linear separating hyper plane with the maximal margin in this higher 

dimensional space. C > 0 is the penalty parameter of error term. 
The dual optimization problem is obtained with Lagrange multiplier i , shown as following: 
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Then, the SVM decision function is: 

)),(sgn()(
1




l

i
ii bxxkxf (8) 

In this paper, the SVM model constructed will be trained with 10 related features demonstrated above 

and then it will be used to recognize the vehicles with the validation dataset. The structure of the SVM 

model is shown as Figure 13. 

 

Figure 13. Flow-chart of the hybrid model. 

(2) GA for parameters optimization 

Although SVM is feasible and applicable for vehicle candidate verification, there are some 

parameters, which greatly impact the performance of SVMs, that need to be optimized. In general, for 

the RBF kernel, as a nonlinearly kernel function, the parameters such as ܥ,  are the key elements ߝ	݀݊ܽ	ߛ

and they directly determine the prediction performance of SVM. Thus, the parameter optimization is 

important for improving the prediction accuracy. In this paper, a genetic algothrim is used for finding 

the best parameters for the presented SVM model. In general, the process of GA can be briefly described 

as follows: 

 Encoding of chromosome: In GA, a standard representation of each candidate solution is as a 

chromosome that is composed of “genes”. For the SVM parameters optimization problem in this 

paper, the real encodings were adopted since the parameters ܥ,  are continuous-valued. Each ߝ	݀݊ܽ	ߛ
chromosome consists of ݃݁݊݁ଵ

௚ , ݃݁݊݁ଶ
௚  and ݃݁݊݁ଷ

௚ , which represent the three parameters, 

respectively. Here, g is the current generation. In order to reduce the search space, the previous 

literature has given out the recommended searching space which respectively attribute to the range 

ܥ ∈ ሾ2ିହ, 2ହሿ, ߝ ∈ ሾ2ିଵଷ, 2ିଵሿ and ߛ ∈ ሾ0,2ሿ. 
 Fitness function: A fitness function is a particular type of objective function that is used to 

summarise how close the possible solution is to achieving the set aims. For the SVM parameters 

optimization problem in this paper, considering that GA is always finding the maximum fitness of 

the individual chromosome, mean squared error (MSE) is adopted. 

ݏݏ݁݊ݐ݂݅ ൌ
1
݈
෍ሺ݂ሺݔ௜ሻ െ ௜ሻଶݕ
௟

௜ୀଵ

(9) 

where, ݂ሺݔ௜ሻ is the prediction value by the SVM model; ݕ௜ is the observed value; ݈ is the number of 

observation variables. 
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 Selection operation: During each successive generation, a proportion of the existing population is 

selected to breed a new generation. Individual solutions are selected through a fitness-based process, 

where fitter solutions (as measured by a fitness function) are typically more likely to be selected. In 

this paper, the roulette selection strategy is adopted. Based on the fitness calculation results, the sum 

fitness value of the entire population and then the ratio corresponding to each chromosome are 

obtained. In the next step, a random number (range from 0 to 1) is used for determining the range 

of the cumulative probability. The chromosome falling within the expected range is selected out.  

 Genetic operators: For each new solution to be produced, a pair of “parent” solutions is selected 

for breeding from the pool selected previously. A second generation population of solutions is 

generated from those selected through a combination of genetic operators: crossover (also called 

recombination), and mutation. Crossover is a genetic operator used to vary the programming of a 

chromosome or chromosomes from one generation to the next. It is analogous to reproduction and 

biological crossover. Cross over is a process of taking more than one parent solution and producing 

a child solution from them. In literature [28], an arithmetic crossover operator is used. 

݃݁݊௞,ூ
௧ ൌ ௜݃݁݊௞,ூߙ

௧ିଵ ൅ ሺ1 െ ௜ሻ݃݁݊௞,ூூߙ
௧ିଵ

݃݁݊௞,ூூ
௧ ൌ ௜݃݁݊௞,ூூߙ

௧ିଵ ൅ ሺ1 െ ௜ሻ݃݁݊௞,ூߙ
௧ିଵ (10) 

where, ݃݁݊௞
௧ିଵ  is the “parent” chromosomes; ݃݁݊௞

௧  is the “child” chromosomes; ߙ௜  is a random 

probability value with range (0,1). 

Mutation is a genetic operator used to maintain genetic diversity from one generation chromosome 

to the next. Mutation occurs during evolution according to a user-definable mutation probability. A 

very small mutation rate may lead to premature convergence of the genetic algorithm and a very 

high rate may lead to loss of good solutions unless there is elitist selection. In general, the mutation 

rate is defined with the range [0.001, 0.1]. In this paper, according to the previous literature, the 

mutation rate is set to 0.05. 

 Termination: This generational process is repeated until a termination condition has been reached. 

In this paper, the search loop continues until ܧܵܯ௡ െܧܵܯ௡ିଵ ൏ 0.0001  or the number of 

generation reaches the maximum number of generations ௠ܶ௔௫. 

(3) PCA for reducing the dimensionality of input data sets 

In order to speed the velocity of SVM training and prediction with maintaining the main information 

of samples and not changing the distribution characteristics, in this paper, PCA method is used before 

the variables is input into the SVM model for training and prediction. In PCA, which kind of data is used 

will has a great influence for the result of the analysis. Existing literature shows that the analysis results 

are different when the covariance matrix and the correlation matrix are used for PCA, respectively. In 

this paper, the various features variables can reflect the vehicle candidate from different aspects. Thus, 

there exists some relevance between the variables. Meanwhile, the dimensional of each variable is 

different. Therefore, based on the above analysis, we consider using the correlation matrix for the 

subsequent PCA process. 
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4. Range Estimation 

Once the forward vehicle is detected, the system will start to estimate the distance from the vehicle 

to host vehicle. In this paper, we establish a distance estimation model based on the assumption that road 

surface is similar to a plane. The parameters of the model can be recognized through off-line calibration 

with regression analysis. The position of the bottom line detected taking the above steps is utilized to 

estimate the longitudinal distance to the preceding vehicle. Within the calibration, firstly a calibration 

scene is established with some control points (shown as Figure 14). In which, the distance between each 

point and the mounted camera is known in advance. Once the position of the control points in the image 

is obtained, then the perspective projection model can be established through data regression analysis. 

 

Figure 14. Calibration process of the range estimation model. 

In the calibration step, the interval distance between each control points is 3 m and the distance from 

control point to camera can be inferred respectively. According to the binary image, the horizontal line 

which control point belongs to is detected with image processing. Therefore, the control point 

coordination in the image can be obtained and the perspective projection can be calculated through 

regression analysis. Figure 15 is the regression result for range estimation. The accurate mathematic 
model of the curve is ( ) ( )bx dxy ae ce   , in which vector [ , , , ]Ta b c d   for this model is 

6[3.59 10 , 0.06337, 336.3, 0.01042]T    and the root mean square error is 0.206. 

 
(a) Experiment data. (b) Regression curve. 

Figure 15. The range estimation regression analysis. 

Based on the established range estimation model, the distance to the forward vehicle can be achieved. 

Part of the verification samples can be found in the Experimental Section. 
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5. Experimental Results 

Based on the above proposed model, in this section, the evaluation results are presented. 

5.1. Performance Evaluation of Improved SVM  

In order to measure performance of the presented method on real-world data, 160 samples (including 

80 positive and 80 negative samples) from real-driving environment are selected. At first, each sample 

is grouped according to their type (positive or negative), respectively. Then, the feature vectors 

 2 3 5 1 2 3 1 2 3 4, , , , , , , , ,
T

iv R R R I I I T T T T   corresponding to each samples is calculated. Figure 16 is the 

features distribution statistical result with boxplot method. It can be seen that most of the samples fall 

within the range between the 25th and 75th percentile. Several outlier points correspond to each negative 

sample. Furthermore, for the purpose of testing the performance of the proposed SVM model with 

optimized parameters, the dataset is divided into two subsets, 80% of the samples are used for training 

and 20% for testing. 

 

Figure 16. Calibration process of the range estimation model. 

During the SVM model training process, the parameters selection, mainly including penalty factor c 

and g of kernel function, greatly impacts the performance of SVM classification, which needs to be 

optimized and set by users. To properly optimize the parameters, based on the proposed SVM-GA model 

in Section 3.2.2, tests were conducted on the sample data respectively. The results are shown as Figure 17 

and detailed information is listed in Table 3. In which, CG-SVM refers to that parameters are optimized 

with the cross grid searching method, GA-SVM refers to gene algorithm searching method and PSO-SVM 

refers to the particle swarm optimization method. 



Information 2015, 6 355 

 

 

 

Figure 17. Parameter search with different optimization methods. 

Based on the above analysis results, it is indicated that the accuracies of GA and PSO methods are 

very close to that of the CG method which is a common algorithm used for SVM parameter searches. 

However, on the contrary, the time cost is significantly different for the SVM model’s parameter 

optimization. There are great advantages in the GA-SVM method for improving calculation speed. In 

addition, the number of support vectors is tremendously different between CG, GA and PSO search 

methods. The GA method can achieve the same classification performance with the traditional CG 

method as well as enhance the operation speed of the algorithm greatly. 

Table 3. Comparison with different parameter search results. 

Method Best c Best g 
Accuracy 

Testing time Tmax SVTotal 
Train Test 

CG-SVM 9.1896 0.1088 99.22% 96.8% 5.3 ms -- 16 

GA-SVM 4.0338 0.1859 99.22% 96.8% 0.42 ms 50 19 

PSO-SVM 0.1 2.2778 98.44% 96.8% 2.47 ms 50 71 

5.2. Performance Evaluation of Range Estimation 

Before testing on the public road, the proposed range estimation method was tested on the proving 

ground. The longitudinal distance was measured by way of changing the relative position between the 

host and target vehicle. The platform for the range estimation test is shown as Figure 18. In which, the 

ground truth distance was obtained through the LIDAR sensor (SICK LMS-211) mounted on the front 

Parameters searching process 

Classification results 
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bumper of the host vehicle and the estimation distance was achieved with the proposed model discussed 

above. Figure 19 shows the result of range estimation. 

 

Figure 18. Platform for range estimation test. 

 

Figure 19. Range estimation results on the proving ground. 

From the test results in Figure 19, some cues can be inferred. Firstly, the absolute error increased with 

the distance extended. It can be explained in such a way that during the establishment of the range 

estimation model, the farther control points are presented in the image with lower resolution, shown as 

Figure 14. So, the precision of the established model depends closely on the distribution of the control 

points. Secondly, analysis result shows that the average range error is 5.18%. This level of precision is 

enough for a driver assistance system in practical applications. 

5.3. Model Verification in a Real-Driving Environment 

In this section, the test results in a real driving environment are presented. The proposed system was 

implemented on a vehicle-mounted computer platform (1600 MHz, 512 RAM) with a few peripheral 

devices such as LCD screen and USB etc. An AVT camera was connected to the platform with a USB 

interface and mounted in the front windshield of the host car to acquire an image with resolution 320 × 240 

SICK LMS-211 

Camera
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at 100 fps. The experiment was conducted on the Highway G15 in China (shown as Figure 20) from 

Dalian to Bayuquan, in the daytime with various environments such as sunlit and rainy. The public roads 

where the test vehicle is driven included cluttered backgrounds, such as trees and poorly illuminated places. 

 

Figure 20. Experiment site of Dalian-Bayuquan district. 

During the experiment, vehicles including sedan, minivan, and truck are tested. Based on the 

experiment analysis, the results show that the average vehicle detection rate is above 95%. Detailed 

information about the experiment is listed in Table 4. 

Table 4. Detection results on the public roads. 

Weather Sunlit Rainy 

Vehicle type Sedan Minivan Truck Sedan Minivan Truck 

# of sampled frame 1450 1080 1260 1150 980 1100 

# of detection 1408 1030 1190 1108 949 1020 

# of false positive 72 65 58 35 27 52 

Detection rate (%) 97.1 95.37 94.44 96.34 96.83 92.73 

During the entire experiment, the proposed method was processed fast enough for FCWS. The 

minimum processing time (tracking mode) is 20 ms/frame, the maximum processing time is 35 ms/frame, 

and the average processing time is 26.3 ms/frame. Therefore, it is indicated that the proposed method 

has a good reliability with low cost computation and strong potential effectiveness to be applied to the 

driver assistance system. Figure 21 presents the detection results for various kinds of interference. In 

which, the indicating lamp is set with different colors according to the distance estimated through the 

system model. When the distance was less than the default threshold, then the lamp was set with green, 

yellow or red color, respectively, according to different warning levels. During the experiment, the 

detected “target” (sedan, truck or minivan) footprint was distinguished by a green line and the alert, 

warning threshold was shown with yellow and red lines in order to display the warning results. 
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(a) The sedan car tracking experiments. 

 

(b) The truck tracking experiments. 

Figure 21. Partial tracking result with different interference. 

6. Conclusion and Perspective  

A camera-based forward vehicle detection method is proposed in this paper. As such, the road scene 

is acquired with a color camera, and the vehicle candidate is extracted using the shadow underneath the 

vehicle. In order to reduce the interference of the leaves’ shadow, texture features of the shadow are used 

for shadow recognition cues. In verification steps, various features consisting of three Hu moments, three 

affine invariant moments and four texture features are fused with an improved SVM model. The system 

also provides distance information in order to provide a safe range warning. Finally, the proposed method 

is successfully implemented on a test car and tested on Highway G15 in China, and its effectiveness is 

verified. Experimental results show the reliability in terms of both detection rate and potential 

effectiveness when applied in a real-driving environment. 

Since in the real-driving environment there are so many affecting factors for vehicle detection, for 

further studies, more environmental factors such as night driving must be considered to optimize system 

performance and make the system more robust. 
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