
Information 2015, 6, 275-286; doi:10.3390/info6020275

information
ISSN 2078-2489

www.mdpi.com/journal/information

Article

ODQ: A Fluid Office Document Query Language

Xuhong Liu 1,2,*, Ning Li 1,2, Yunmei Shi 1,2 and Xia Hou 1,2

1 School of Computer, Beijing Information Science & Technology University, Beijing 100101,

China; E-Mails: ningli.ok@163.com (N.L.); sym@bistu.edu.cn (Y.S.); houxia@bistu.edu.cn (X.H.)
2 Beijing Key Laboratory of Internet Culture and Digital Dissemination Research, Beijing 100101, China

* Author to whom correspondence should be addressed; E-Mail: liuxh0315@126.com;

Tel.: +86-10-6487-9089.

Academic Editor: Willy Susilo

Received: 30 December 2014 / Accepted: 2 June 2015 / Published: 11 June 2015

Abstract: Fluid office documents, as semi-structured data often represented by Extensible

Markup Language (XML) are important parts of Big Data. These office documents have

different formats, and their matching Application Programming Interfaces (APIs) depend on

developing platform and versions, which causes difficulty in custom development and

information retrieval from them. To solve this problem, we have been developing an office

document query (ODQ) language which provides a uniform method to retrieve content from

documents with different formats and versions. ODQ builds common document model

ontology to conceal the format details of documents and provides a uniform operation

interface to handle office documents with different formats. The results show that ODQ has

advantages in format independence, and can facilitate users in developing documents

processing systems with good interoperability.

Keywords: fluid office document; query language; common document model;

information retrieval

1. Introduction and Motivation

Big Data is recognized as the hot topic in the cloud-computing area, and has received increasing

attention by researchers. Big data is high volume, high velocity, and high variety information that

requires new forms of processing to enable enhanced decision making, insight discovery and process

optimization. Big data usually includes structured data, semi structured data and unstructured data.

OPEN ACCESS

Information 2015, 6 276

Office documents include fixed office documents and fluid office documents, they account for a

considerable proportion of semi structured data. Lots of logic information is implicated in them and their

value needs to be further developed. Due to the wide range of document formats, extracting valuable

information from these documents by the same method is now an issue that needs to be addressed as a

matter of urgency.

UOML is a universally representative operating language for the abstract description of fixed

documents, with features including document organization, page description, index and search, content

extraction, font management, etc. [1]. UOML was approved as an OASIS Standard in 2008 [2]. UOML

is vendor-neutral, document-format-neutral, application-neutral, platform-neutral and programming

language neutral. However, UOML can only extract content from a fixed office document.

As for fluid office document area, three major open document formats are often used at present,

namely: Office Open XML (OOXML), Open Document Format (ODF) and Unified Office Document

Format (UOF) [3–5]. Since they are all XML-based formats for office documents, you can extract

information from them by using a query language for XML such as XQuery [6]. An integration technique

of multiple document formats by using XQuery was put forward in the literature [7]. However, the query

language for XML has currently only been designed for querying XML documents, they cannot provide

the ability to query the following function points such as meta data, paragraph, section, table and so on.

Moreover, the XPath used by XQuery to check the lexical properties of the source data is long and

complex, so is hard for general users to understand and use.

For this reason, some organizations for standardization and office software manufacturers provide

APIs for accessing the documents with corresponding format, such as OOXML API, UOF API and ODF

API. The document manipulations are wrapped in these APIs, which makes it much simpler to access

documents than XQuery does. However, API contains some intrinsic defects, mainly reflected in the

following aspects [8]: (1) The APIs are designed to be dependent on document formats and development

environment. For instance, ODF API depends on UNO component technology, while OOXML API

needs VBA/.NET and windows environments; (2) differences exist between the different versions APIs

of the same document format standard; (3) the APIs are complex and difficult to use.

Additionally, web information retrieval technology can also be used to access the fluid office

documents, it focuses on text retrieval while the most important structured information is often lost

during preprocessing [9]. For example, it is hard to extract content of a given paragraph from an article

by web information retrieval technology.

Above all, the fluid document area lacks a uniform, simple and platform-independent technology to

retrieve content from documents with different formats.

To solve this problem, we present in this paper a technique, that we call Office Document Query

(ODQ) language, to build a uniform interface to query fluid office documents with different formats for

user. We build an ontology-based common document model to hide differences between office

document standards. ODQ encapsulates the document APIs and conceals their operation details. The

simple, uniform and platform-independent interface enables interoperability between different document

format standards.

Information 2015, 6 277

2. Design of ODQ

2.1. Design Principles

To solve the problem mentioned in the previous section, six requirements of ODQ are elicited, as

shown below.

(1) ODQ should be a non-procedural query language without branch and loop structure for fluid

office documents, so can easily be embedded in any high-level language.

(2) ODQ can be used to access fluid office documents directly without any office software, so can

easily be integrated in fluid office document application development.

(3) A common document model is required to conceal the format details between different

document format standards and improve document interoperability.

(4) Common functions should be provided to meet the various needs of users. For instance, query,

update and delete operations for metadata, paragraph, section, table, and so on.

(5) Independent from platforms, document formats and versions, programming languages

and applications.

(6) Syntax should be as simple as possible to reduce the difficulty of learning for developers.

According to the principles above, the functions of ODQ are similar to those of Structured Query

Language (SQL). As illustrated in Figure 1, database applications in the application-tier, such as finance

application, ERP system and so on, access data in different database management system by the uniform

SQL command. Similarly, various office applications in the application-tier, such as web office and

information retrieval, can use the uniform ODQ command to extract, modify, or store information in

fluid office documents regardless of their formats. ODQ provides a uniform interface to conceal the

details of APIs and the difference between document formats; this makes the application-tier completely

separated from the physical-tier. In this way, ODQ frees up application developers by letting them

concentrate on building new applications without concern regarding the underlying document formats.

Therefore, this process is similar to a database management system (DBMS), where ODQ acts in a role

similar to SQL.

Figure 1. Structured query language (SQL) vs. office document query (ODQ).

2.2. Ontology-Based Common Document Model

Just like SQL is a query language designed specifically for relational data model and XQuery is for

hierarchical data model, ODQ needs a common document model appropriate for querying fluid office

document. The design of a common document model follows these two principles.

Information 2015, 6 278

(1) As each fluid office document format has its own document model, the common document

model should not only extract common function points from them, but also hide differences

between them.

(2) The common document model should be as flattened as possible, which ensures the path

expression in ODQ statement simple enough. A method proposed in the literature [7] can make

the common document model flatten enough.

This paper adopts ontology to construct common document model. Ontology formally represents

knowledge as a hierarchy of concepts within a domain, uses a shared vocabulary to denote the types,

properties and interrelationships of those concepts [10].The ontology is a structural framework for

organizing information and can be used to extract common function points from various fluid office

document formats.

The common document model established in this research is 5-tuple	O ൌ ሺC, Aେ, R, O, A୓ሻ, where:

(1) The set of function points C which includes most commonly used function points. For example,

the document function point represents the whole document and the paragraph function point

represents a certain paragraph in a document.

(2) The property set of function points 	Aେ	 which includes all properties of function points defined

in C. Each function point has multiple properties. Table 1 lists part properties of the paragraph

function point.

(3) The set of relationships R which contains not only relationships between function points, but

relationships between a function point and its properties.

 Part-of relationship which describes a function point that is a part of another one. For

instance, ݐݎܽ݌ െ ,݄݌ܽݎ݃ܽݎܽ݌ሺ݂݋ .ሻ represents paragraph is a part of documentݐ݊݁݉ݑܿ݋݀

 Property-of relationship which describes the property that a function point has, for example,

ݕݐݎ݁݌݋ݎ݌ െ ,݁݉ܽܰݐ݊݋ሺ݂݂݋ ሻ݄݌ܽݎ݃ܽݎܽ݌ shows that paragraph function point has a

fontName property.

(4) The resources O which includes all function points in various fluid document models.

(5) A୓ ⊂ C ൈ O maps function points in common document model to those in a particular

document model. For example, ݉ܽ݌ െ ,݄݌ܽݎ݃ܽݎܽ݌ሺ݋ݐ :݈݉ݔ݋݋ ሻ represents the mapping of݌

paragraph in common document model to the element p in OOXML document model.

The whole common document model extraction framework is divided into conceptual-tier and

resource-tier. As illustrated by Figure 2, the common document model in the conceptual-tier is created

by extracting the most commonly used function points from various fluid document models in the

resource-tier. The part-to relationships between function points in the common document model

organize them into a tree structure. For example, the meta, section, paragraph, etc., are children of

document. The property-of relationship specifies the properties of a function point, for instance, the

fontName, fontColor, etc., are properties of paragraph. The function points and properties in common

document model are mapped to the function points in different fluid document models in the resource-tier

by map-to relationship. For example, the paragraph in common document model can be mapped to the

element p in OOXML document model and text:p in ODF document model.

Information 2015, 6 279

Table 1. Partial properties of paragraph.

Properties Description

text Textual Content of a Paragraph
indentLeft Left Indent Value of a Paragraph

indentRight Right Indent Value of a Paragraph
lineSpaceType Line Space Type of a Paragraph
lineSpaceValue Line Space Value of a Paragraph

fontName Font Name of a Paragraph
fontSize Font Size of a Paragraph

fontColor Font Color of a Paragraph

……

property-of

document

meta section …… paragraph

part-of

paragraph table ……

part-of

…… ……

fontName

fontColor

……

OOXML

p

family color

……

ODF

text:p

style:font-face

……

Figure 2. Common document model extraction framework.

Each function point in common document model has multiple properties. Table 1 lists part of

properties of the paragraph function point. The text property represents the textual content of a

paragraph without any style information. However, there is no text property in any document model; it

is provided to facilitate query content from a certain paragraph.

The ODQ commands are designed to operate the common document model, but the results come

from the underlying fluid office document.

2.3. ODQ Syntax Design

Considering that most developers are familiar with SQL syntax, ODQ refers to SQL. The simple

syntax makes ODQ easy to learn. We use EBNF grammar to describe ODQ language. As an illustration,

the SELECT command syntax for querying document, paragraph, meta, is list as follows.

Information 2015, 6 280

(1) SELECT_STATEMENT :: = “SELECT”<AttributeList> | <NodeList>“FROM”<URL>

[“WHERE”<ConditionList>]

(2) <AttributeList> :: = <Attribute> | <AttributeList>, <Attribute>

(3) <URL> :: = <NodeList> [“of”<NodeList>]*

(4) <ConditionList> :: = <Condition> [“AND” |“OR”<Condition>]*

(5) <Attribute> :: = <DocumentAttribute> | <MetaAttribute> | <SectionAttribute> | <PargraphAttribute>

(6) <DocumentAttribute> :: = “text” |“fontName” | “fontSize” | “fontColor”

(7) <MetaAttribute> :: = “Author” | “Title” | “Creator” | “CreationDate”

(8) <SectionAttribute> :: = “text” |“fontName”| “fontSize” | “fontColor”

(9) <PargraphAttribute> :: = “text” | “indentLeft” | “indentRight” | “fontName”| “fontSize” | “fontColor”

(10) <NodeList> :: =<Node> [<NumberRange>] | <NodeList>, <Node> [<Range>]

(11) <Node>:: = “document” | “section” | “paragraph” | “table” | “run” | “meta”

(12) <NumberRange> :: = “all” | <Range> | <NumberList>

(13) <Range> :: = <NumberList> “-”<NumberList>

(14) <NumberList> :: = <Number> | <NumberList><Number>

(15) <Number> :: = “1” | “2” | “3” | “4”| “5” | “6” | “7” | “8” | “9” | “0”

(16) <Condition> :: = <Attribute>“=”<AttributeValue>

(17) <AttributeValue>::=<TextValue>|<FontNameValue>|<FontSizeValue>|

<FontColorValue> | <IndentLeftValue>

(18) <TextValue> :: = <String>

(19) <FontNameValue> :: = “宋体”| “黑体” | “Times New Roman”

(20) <FontSizeValue> :: = <NumberList>

SELECT command includes three main clauses.

(1) SELECT clause lists the contents that should be returned by the query. All function points here

are from common document model, but the results are fetched from the underlying fluid office

document by map-to relationship.

(2) FROM clause includes a path expression indicating the document from which content should

be obtained. Path expression contains series function points with the OF keyword between them.

(3) WHERE clause is optional and indicates the conditions under which information will be

included in the result.

Moreover, the query result to user is surrounded by XML tags which can easily be integrated in HTTP

protocol. The names of the tags are the same as the properties that user queries. For example, a result

surrounded by <fontName> tag will be returned if the user queries the font of some paragraph.

The following examples illustrate how to use SELECT command to query function points and

their properties.

 Example 1: Query text property. Query text property of document function point to fetch the

textual content of sample.uot.

SELECT text FROM sample.uot;

 Example 2: Query style property. SELECT fontName and fontSize property of the second

paragraph in the second section of sample.docx.

Information 2015, 6 281

SELECT fontName, fontSize FROM paragraph[2] of section[2] of sample.docx;

 Example 3: Query function point. Get the second paragraph in the second section of document

sample.odf, and the results will include all properties of the second paragraph.

SELECT paragraph[2] FROM section[2] of sample.odf;

 Example 4: Conditional query. Get all paragraphs whose font name is “Times New Roman”.

SELECT paragraph FROM sample.docx Where fontName = “Times New Roman”;

3. Query Parsing and Result Generation

ODQ is a non-procedural query language without branch and loop structure, so can easily be

embedded in any high-level language. The office applications can easily use ODQ to access documents

of different formats. Figure 3 illustrates the application framework integrated with ODQ. ODQ query

engine parses the ODQ command submitted by the application and generates execution plan according

to the document format. The runtime system implements execution plan and access the underlying

document by calling the corresponding document standard APIs. The working process is as follows.

The application submits an ODQ command to ODQ parser. The lexical analyzer converts ODQ

command into a sequence of tokens and gives prompt if there is any syntactic error.

The parser reads the tokens and performs semantic checking, if there are no mistakes, a query tree

will be generated.

The code generator explores query tree, and then output an execution plan. The adapter in the code

generator converts the query according to the common document model and then further maps into the

actual document model, e.g., UOF. The execution plan includes a series of APIs that associated with the

particular fluid document format and versions. The series API functions are called by the runtime system

to access and manipulate the data inside a fluid office document. Finally, the results will be returned to

the application.

Figure3. Application framework integrated with ODQ.

Information 2015, 6 282

For example, if a user wants to fetch text content of the first paragraph in the first section of a UOF

document test.uot, the user needs to submit “SELECT text FROM paragraph[1] OF section[1] OF

test.uot” to ODQ query engine. Part of the execution plan is as follows:

IDocument * doc = new IDocument();

ISectionSet* sections = doc->getSectionSet();

ISection* section = sections->getItemByID(1)

…….

The interface functions involved in above execution plan are defined in UOF API. The execution plan

will call the interface functions in the OOXML API or ODF API if the user accesses an OOXML

document or an ODF document.

Runtime system performs the execution plan and accesses the actual document, then returns the

results to the user.

For those query accessing different parts and different document formats, code generator generates

different execution plan. In this way, ODQ hides operation details of APIs and format differences,

thereby providing a uniform query interface for user.

4. Experiments and Evaluation

The ODQ parser in our prototype is built on ANTLR. Figures 4 and 5 show how to fetch text content

of the first two paragraphs respectively from an OOXML document and an UOF document by the similar

ODQ command.

Figure 4. Fetch text content from the first two paragraphs from an OOXML document.

Information 2015, 6 283

Figure 5. Fetch text content from the first two paragraphs from an UOF document.

The above experiments show that ODQ provides a uniform interface for user to access documents

of different formats.

Furthermore, ODQ has a simple syntax similar to SQL. For the same function, ODQ provides more

compact code than those using APIs. We illustrate three kinds of code to fetch text from the first two

paragraphs of a document, i.e., by ODQ command, by OOXML APIs, and by UOF APIs.

Table 2. Comparison of code to fetch text of the first two paragraphs by three ways.

ODQ Command
SELECT text FROM paragraph[1–2] of filename

(note: can access document with any format)

OOXML API

(note: can only access

OOXML document)

for (inti = 1; i<= 2; i++)

{

Paragraph p = doc.Range().Paragraphs[i];

text += p.Range.Text;

}

UOF API

(note: can only access

UOF document)

for(inti = 0; i< 2; i++)

{

IParagraph p = (IParagraph) textDoc.getParagraphs().getItemByIndex(i);

ITextRunSet runs = p.getTextRuns();

for(int j = 0; j <runs.getCount(); j++)

{

ITextRun r = (ITextRun) runs.getItemByIndex(j);

text += r.getTextContent();

}

}

Table 2 shows that it is much easier to access document by ODQ command than by calling document

APIs. We select 13 frequently used queries against meta, paragraph, section and table, then implement

Information 2015, 6 284

them respectively by ODQ commands, by OOXML APIs, and by UOF APIs. The amounts of code of

three ways are list in Table 3.

Table 3. Amounts of code of three methods.

Testing Functions OOXML API UOF API ODQ

Get author of a given document 1 1 1

Get title of a given document 1 1 1

Get creator of a given title of a document 4 4 1

Get creation time of a given title of a document 4 4 1

Get text content of a given document 4 10 1

Get text content of a given section 4 10 1

Get text content of a given paragraph 1 7 1

Get all paragraphs whose font name are “Times New Roman” 4 14 1

Get text content whose font name is “Times New Roman”
from the first section.

4 15 1

Get font name of a given paragraph 4 4 1

Get a given paragraph 1 1 1

Get a given table 1 1 1

Get a cell from a given table 2 2 1

Moreover, web information retrieval is a commonly used technology to extract information from fluid

office documents. The format information is lost during the preprocessing, so queries related to format

cannot be implemented. For example, it cannot perform the last six functions in Table 3.

Using query language for XML such as XQuery can also retrieve content from fluid office documents.

However, the XQuery grammar is more complex than ODQ as illustrated in Table 4.

Table 4. Comparison of code to fetch text of the first two paragraphs by ODQ and XQuery.

ODQ Command SELECT text FROM paragraph[1–2] of filename

XQuery

declare namespace

w="http://schemas.openxmlformats.org/wordprocessingml/2006/main";

for $x in doc("document.xml")/w:document/w:body/w:p[2]/w:r

for $y in $x/w:t

return xs:string($y)

5. Conclusions

This paper presented a query language ODQ for accessing fluid office document. Based on the

framework proposed, a prototype system is designed and implemented. Experiment results show that

ODQ has following four major advantages over others.

 It hides differences between fluid office document formats and facilitates interoperability among

all kind of office documents.

 It offers a united interface for user to handle different format documents.

Information 2015, 6 285

 Thanks for the features of ODQ, e.g., non-procedural, platform- and language-independent, it is

easy to embed into document-based applications to access the fluid office documents either

remotely or locally.

 It has simple syntax, thus is very easy to use.

As for further studies, it is necessary to improve query efficiency and accomplish more functions.

These studies are in progress and are expected to present results in the future.

Acknowledgments

The authors are grateful to Scientific Research Fund Project of Beijing Education Commission

(KM201511232012) for funding this research. This research is also supported by the Opening Project

of Beijing Key Laboratory of Internet Culture and Digital Dissemination Research (ICDD201409).

Author Contributions

Ning Li designed research; Xuhong Liu, Yunmei Shi and Xia Hou performed research; Xuhong Liu

wrote the paper. All authors have read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Wang, D.L.; Jiang, H.F.; Zhang, C.Y. UOML: An unstructured operation markup language.

Inf. Technol. Inf. 2007, 3, 121–125.

2. OASIS. Information Technology—UOML (Unstructured Operation Markup Language) Part 1

Version 1.0. Available online: http://docs.oasis-open.org/uoml-x/v1.0/os/uoml-part1-v1.0-os.html

(accessed on 3 October2013).

3. ISO/IEC. Information Technology—Open Document Format for Office Applications

(OpenDocument) v1.0. Available online: http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=43485 (accessed on 12 August2014).

4. ISO/IEC. Information Technology—Office Open XML file formats. Available online:

http://www.iso.org/iso/news.htm?refid=Ref1181 (accessed on 12 August2014).

5. Specification for the Chinese office file Format (GB/T). Available online:

http://doc.csres.com/showdoc-2541-44390.html (accessed on 2October2014).

6. Tang, Y.; Tian, Y.A.; Li, N. Analysis of methods to access XML-based fluid office documents.

Comput. Eng. Design 2014, 4, 1458–1464.

7. Sun, Q.G.; Zhu, W.; Liu, H.J.; Zhang, P. Data integration of open document format on XQuery.

Comput. Syst. Appl. 2008, 7, 32–34.

8. Ling, F.; Liu, X.H.; Tian, Y.A. Flatten design of open document query. In Proceedings of the

International Conference on Cyberspace Technology (CCT2013), Beijing, China, 23 November

2013.

Information 2015, 6 286

9. Li, N.; Liang, Q.; Shi, Y.M. The function of format information in document understanding.

J. Beijing Inf. Sci. Technol. Univ. 2012, 6, 1–7.

10. Wang, H.; Gu, J.; Su, X.N. Research on the Model and Its Application of Ontology-driven

Knowledge Management System. J. Libr. Sci. China 2013, 3, 98–110.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

