
Information 2014, 5, 305-318; doi:10.3390/info5020305 

 

information 
ISSN 2078-2489 

www.mdpi.com/journal/information 

Article 

Facial Expression Recognition via Non-Negative Least-Squares 

Sparse Coding 

Ying Chen, Shiqing Zhang* and Xiaoming Zhao 

Institute of Image Processing and Pattern Recognition, Taizhou University, Taizhou 317000, China;  

E-Mails: ychen222@163.com (Y.C.); tzxyzxm@163.com (X.Z.) 

* Author to whom correspondence should be addressed; E-Mail: tzczsq@163.com;  

Tel./ Fax: +86-576-8513-7178. 

Received: 24 January 2014; in revised form: 3 April 2014 / Accepted: 21 April 2014 /  

Published: 15 May 2014 

 

Abstract: Sparse coding is an active research subject in signal processing, computer vision, 

and pattern recognition. A novel method of facial expression recognition via non-negative 

least squares (NNLS) sparse coding is presented in this paper. The NNLS sparse coding is 

used to form a facial expression classifier. To testify the performance of the presented 

method, local binary patterns (LBP) and the raw pixels are extracted for facial feature 

representation. Facial expression recognition experiments are conducted on the Japanese 

Female Facial Expression (JAFFE) database. Compared with other widely used methods 

such as linear support vector machines (SVM), sparse representation-based  

classifier (SRC), nearest subspace classifier (NSC), K-nearest neighbor (KNN) and radial 

basis function neural networks (RBFNN), the experiment results indicate that the presented 

NNLS method performs better than other used methods on facial expression recognition tasks. 

Keywords: non-negative least-squares; sparse coding; local binary patterns; facial 

expression recognition 

 

1. Introduction 

Facial expression is a crucial channel for human communication. It plays a critical role in 

perceiving human emotional states. Since Ekman and Friesen [1] developed a kind of Facial Action 

Coding System (FACS) characterizing facial expression, there has been great progress in the field of 

computer vision in facial expression recognition applications in recent years. The main motivation of 
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facial expression recognition is to make communication in human-machine interaction more natural, 

and more effective [2–4]. In addition, facial expression recognition can be applied to automatically 

smile detection by using digital cameras used in consumer electronics [5]. Since facial expression 

recognition plays a very vital role in the process of human computer interaction (HCI), in the past two 

decades, facial expression recognition has attracted extensive attentions in the engineering area [6]. 

The basic framework of facial expression recognition contains three critical steps [7]: (1) face 

expression acquisition, (2) facial feature extraction and representation, (3) facial expression 

recognition, as described as follows. 

As a preprocessing step, face expression acquisition aims at automatically detecting or locating the 

facial image regions. A few approaches of face detection are presented to automatically detect faces. 

By Viola and Jones [8], a widely used robust online face detector on a basis of rectangle features was 

developed to detect faces real-time. Chuang [9] declared to recognize six types of facial expressions. 

Xue et al. [10] presented an approach which could distinguish 25 types of facial expressions.  

Hoai et al. [11] developed max-margin early event detectors based on a structured output support 

vector machine (SVM) that can recognize partial human motion events including facial expressions, 

enabling early detection. El-Bakry [12] presented a method of face detection based on principal 

component analysis (PCA) by performing cross-correlation between eigenvectors and the input images 

in the frequency domain. 

Facial feature extraction and representation focus on extracting facial features from original face 

images so as to characterize the variations of facial expressions. There exist mainly two kinds of 

features: geometric features as well as appearance features, which are widely adopted for facial 

representation [4]. The former features, i.e., geometric features, demonstrate the locations and shapes 

of facial local ingredients, like brows, eyes, nose, and mouth. As one of the most representative 

geometric features, fiducially facial feature points are often used for facial representation. In [13,14], 

the detailed geometric positions of 34 fiducially points on a facial image are adopted to facial 

representation. Even so, extracting the geometric feature still needs facial feature detection to be 

precise and reliable. However, actually it is hard to keep a high accuracy and a good reliability in real-

time practical sceneries. In addition, geometric features probably could not effectively encode the 

changes of skin texture, like wrinkles and furrows that are very crucial to model facial expression. In 

contrast with geometric features, appearance features is able to reflect the variations of skin texture. 

The popular appearance features are Gabor wavelets representation [15,16], Eigenfaces [17], 

Fisherfaces [18] as well as the raw pixels of facial images. During the past few years, local binary 

patterns (LBP) [19], as a newly-developed face descriptor, has received increasing interest. So far, 

LBP is widely employed as appearance features for facial expression classification [20–22] owing to 

its tolerance against the variations of illumination and simple computation. 

Facial expression recognition aims to recognize different expressions with using the extracted facial 

features. Facial expression recognition methods are categorized into frame-based or sequence-based hinge 

on whether the temporal information being considered or not. The former frame-based method aims to 

employ the facial features deriving from a single image to identify the expression category of that 

image. Nevertheless, this method fails to make use of the temporal dynamic information from the input 

facial images. The latter sequence-based method tries to obtain the temporal dynamic pattern 

information in an image sequence to identify the expression categories of a few images. At present, 
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different kinds of classification methods have been adopted for frame-based facial expression 

recognition, including SVM [23], the nearest neighbor (NN) or K-nearest neighbor (KNN) [24,25], 

artificial neural network (ANN) [26], and so on. The used classification methods for sequence-based 

facial expression classification include hidden Markov models (HMM) [27], dynamic Bayesian  

networks [28], etc.  

In recent years, based on the recently-emerged compressive sensing (CS) [29] theory, sparse 

representation methods have become a hot topic and drawn extensive interests in many fields like 

signal processing, pattern recognition, etc. In our reported work [30], sparse representation-based 

classifier (SRC) on a basis of the CS theory is developed for facial expression classification due to its 

promising performance. It is noted that in SRC the 1l -least squares ( 1l LS) sparse coding model is 

widely used for solving the 1l -norm minimization problem. Since the 1l LS sparse coding model is 

regarded as a symmetric model with two-side, the sparse representation coefficients are hence 

negative, positive, or zero [31]. In SRC, without any constraint the obtained coefficients by the 1l LS 

sparse coding model are arbitrary. However, in practice the 1l -regularized least squares sparse coding 

model is more effective than the conventional 1l LS sparse coding model [32]. In [32], by using the  

1l -regularized least squares sparse coding model, only the non-negative coefficients are obtained and 

employed for classification, which gives rise to the so-called non-negative least-squares (NNLS)-based 

classification method. So far, the recently-emerged NNLS method has been used for microarray gene 

classification [33,34]. Inspired by the deficiency of studying on investigating the facial expression 

classification performance of the NNLS method, in this work we give a new approach of facial 

expression classification on a basis of the NNLS sparse coding method. Additionally, we also give a 

comprehensive comparison among various used facial expression classification methods, including 

NNLS, linear SVM, SRC, nearest subspace classifier (NSC), KNN, as well as radial basis function 

neural networks (RBFNN). 

The remainder of this paper is structured as follows: Section 2 gives the details of NNLS sparse 

coding used as a classifier of facial expression recognition. Section 3 shows the facial feature 

extraction of LBP. In Section 4, the Japanese Female Facial Expression (JAFFE) database [35] used 

for experiments are illustrated and the experimental results are also given. Finally, the concluding 

remarks are drawn in Section 5. 

2. Non-Negative Least-Squares Sparse Coding 

The NNSL [32] method recognizes data through sparse coding. In other words, the sparse codes of 

new samples are produced through non-negative constraints, i.e., the new samples with uncertain class 

label will be linearly approximated via a non-negative combination on the training samples. To be 

specific, firstly, training samples are used to constitute a dictionary. Secondly, a new sample can be 

regressed by means of the 1l LS method. In consequence, its sparse coefficient vector is achieved. Next, the 

computed residual of this sample for each class is obtained, and then the class label of this sample is 

decided by the class label with the minimum residual. 

Given a new sample 1mb  with unknown class label and the training samples m nA (m > n), formed 

by m  features and n  samples. Then there is 1

n

i i ix b a Ax , in which the coefficient vector meets 
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the condition 0x . Since A  is an under-complete matrix, b Ax  is frequently over determined. So it 

does not have a non-negative solution x . Therefore, obtaining x  occurs to be a single-left-hand-side 

NNLS sparse coding problem, which can be rewritten as the following: 

2

2

1
min || ||          subject to  0

2x
 b Ax x  (1) 

Owing to the above-mentioned non-negativity constraints, the combination coefficients will be 

sparse, which gives rise to the so-called NNLS sparse coding model. NNLS owns two merits in 

comparison with 1l LS. Firstly, under some circumstances, compared to the coefficient vector of mixed 

signs, the obtained non-negative coefficient vector by NNLS can be interpreted more easily. Secondly, 

the NNLS model is not a parametric model. 

If there are more than 2p   new samples, batch jobs can be done to solve the NNLS problems 

instead of one by one as in Equation (1). The approximation becomes B AX , where B  is of 

size m p , X  is of size n p , and 0X . Each column of B  represents a new sample data. The 

coefficient vector of jx , the j -th column of X , is equal to the j -th new sample, jb . So we get 

j jb Ax , and the following multiple-left-hand-side NNLS minimizing problem: 

21
min         subject to 0.            

2 FX
 B AX X  (2) 

where X  must be non-negative. 

This is equal to 

2

1

1
min         subject to  0.        

2

p

i i FX
i

x


  b A X  (3) 

Once achieving the sparse coefficients, a sparse interpreter is needed to be employed to determine 

the class label of unknown samples. Generally there are two types of rules for interpretation: MAX-rule 

and NS-rule, as described below. 

MAX-rule distributes the class label of the training sample to the new sample in terms of the largest 

coefficient. This rule is inspired by the used non-negative matrix factorization (NMF) technique [33]. 

Wright et al. [35] developed the nearest-subspace rule (NS-rule) to give an interpretation of the sparse 

coding. The NS rule makes use of the discriminating property of sparse coefficients. The NS rule is 

thus more robust to noise than the MAX-rule.  

Two steps are involved in the used NNLS-based classifier, as described in Algorithm 1. We first 

need to produce the non-negative coefficient matrix X . Next we are able to predict the class label of 

each new sample by means of a sparse interpreter as described previously.  

In Algorithm 1, the function MAX(X)  returns a vector p  from B . The i-th component of p  is 

defined as i Kp c , if KiX  is the maximum value in the i-th column of X , in other words 

1arg max ( )j n jiK X  . Given that there exist C  classes with labels 1l , . . . , cl . The i-th component of 

p  returned by function NS(X)  is defined as i Kp l , where 1arg min ( )rk iC K
K  
 b .  
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Algorithm1. NNLS-based classifier 

Input: 

m nA : the training set formed with m  features and n  samples,  

c : the class labels of the training set, 

m pB : p  new samples  

Steps: 

(1) sparse coding: solving the NNLS problem in Equation (2);  

(2) sparse interpreter: employing the MAX rule or the NS rule to determine the class labels of the 

new samples: = NS( )p X ( i iNS( )p y ) or = MAX( ) p X ( i iMAX( ) p y ); 

(3) Return p . 

Output: 

p : the identified class labels for p  new samples  

NNLS-based classifier can be regarded as one of instance-based learning approach, giving good 

performance when dealing with complicated distributions. In contrast with the so-called locally 

weighted linear regression method, NNLS-NS classifier seeks the approximation coefficients via NNLS, 

whereas locally weighted linear regression method often employs a distance-based weighting. In 

addition, NNLS-MAX classifier is deemed as a locally weighted classification method, as it employs a 

decision function based on the locally weighted regression, i.e., 
2

0 2

1
(arg min )

2
xg  b - AX , where 

( ) ( )g MAXx x denotes the decision function.  

The NS rule of NNLS makes use of the discriminating property of the sparse coefficients. It 

determines the class label of new samples according to the minimum regression residual. 

Mathematically, it is denoted by  1min i C irj b   in which  ir b  represents the regression residual 

related to the i-th class. In other words,     2

2|| ||i ir b b A x  . The single-left-hand-side NNLS sparse 

coding problem in Equation (1) is equal to a non-smooth unconstrained quadratic programming (QP) 

problem: 

1
min H   

2

T T

x
x x + g x  (4) 

where H T

k K = A A , and - T bg = A . Actually the 1l LS problem is equal to a 1l QP problem, and could 

be reformulated to a smooth constrained QP problem: 

,

1
min H subject to

2

T T

x u
 x x + g x     - u x u  (5) 

where u  is used to suppress x to zero. 

To solve the constrained QP problem, two typical methods, including the interior-point (IP) [36] 

algorithm and the active-set (AS) [37] algorithm, can be employed. The AS method has more simple 

computation and more precision than the IP method. The latter IP [36] algorithm utilizes the 

conjugating gradients to work out the search direction, and is able to solve tremendous sparse 

problems including a large number of variables and observations. Generally, the basic idea of the AS 

method for constrained QP presented in [37], is that until it becomes the true active set, which is just a 
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working set updated iteratively. For each iteration, a new solution tx  corresponding to the QP 

constrained problem could be achieved only by the current working set. When the updated step, i.e., 

1t t tp  x x , equals to be zero, the well-known Lagrangian multipliers can be calculated for the 

current active inequalities. If the whole multipliers on the working set become nonnegative, this 

method will be stopped through an optimal solution. As the QP optimization problems just needs inner 

products between the instances rather than the primitive data, the IP algorithm and the AS algorithm 

could be spontaneously employed to figure out the kernel sparse coding problem in which inner 

products are replaced by a kernel matrix. Similarly, the NS rule adopted in Algorithm 1 also requires 

only inner products. Therefore, the NNLS-based classifier in Algorithm 1 could be also developed to 

its kernel version. 

3. Facial Feature Extraction  

As one of the widely-used facial feature representation, the extracted LBP features are described in 

this section. 

LBP [38] are introduced for local shape analysis robust to illumination change. The basic principle 

of LBP operator was based on the assumptions that a texture has a pattern and its intensity. As the 

texture pattern is more important and needs to be encoded invariant to the intensity variations, relative 

strength of neighbor points are described using binary patterns compared with central point. 

In the LBP operator, labeling the pixels P (P 0,...,7)f   of an image is realized with the aid of 

thresholding a 3 3  neighborhood of every pixel through the value of the center pixel Cf , taking the 

final result as a binary number ( )P CS f - f , which can be formulated as 

1
( )

0

P C

P C

if f f
S f - f

otherwise


 


 (6)  

Then, a binomial factor 2 p
 is used to assigned for every ( )P CS f - f , and the LBP features are obtained by: 

7

0

( )2p

P C

P

LBP S f - f


  (7)  

Figure 1 shows a simple example of LBP patterns for rectangles. As in Figure 1, the threshold 

values are computed by comparing with the middle value 7. Weights are used to convert a threshold 

binary number to a decimal number. The disadvantage of the basic LBP operator lies in the fact that 

the used 3 3  neighborhood is too small to reflect the dominant feature information with a big scale 

structure. In consequence, when dealing with the texture at various scales, the basic LBP operator was 

developed to a multiscale using variations of radius of the sampling points and rotation invariance 

using circularly rotated code mapping into its minimum value.  

Ojala et al. [19] developed an extended version of the basic LBP operator by means of using 

different neighborhoods, so as to reflect dominant feature information at various scales. Notation 

( , )LBP P R  represents a neighborhood size of P  uniformly spaced downsampling points on the circle 

of radius R . Figure 1 gives an illustration of the basic LBP  operator when 8P   and 1R  . Uniform 

patterns denote that when using a subset of the 2 p  patterns characterizing the most part of the image 
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texture. Concatenating all the patterns exceeding 2 transitions into a single bin produces an LBP  

operator, 2
,

u
P RLBP , with at most 2P

 bins.  

Figure 1. An illustration of the basic local binary patterns (LBP) operator. 

7 6 5

7 7 4
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1 0 0

1 0

1 1 1
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Pattern=11110001
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1 2 4

128 8

64 32 16
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The extracting procedure of LBP features can be described below in brief: First, a face image is 

split into some blocks with non-overlapping. Second, for each split block, the LBP histograms are 

calculated accurately. Finally, by concatenating all the block LBP histograms, a single vector, i.e., the 

LBP code is obtained. 

4. Experiment verification 

To testify the performance of NNLS-based classifier, the benchmarking JAFFE database [35] 

widely used for facial expression recognition, are employed in our experiments. We explore the 

performance of the proposed method by using two kinds of facial features, such as the raw pixels and 

LBP. The performance of NNLS-based classifier is compared with linear SVM, SRC [35], nearest 

subspace classifier (NSC) [40], KNN, and radial basis function neural networks (RBFNN). For NNLS, 

the NS rule is adopted to identify the class labels of the new samples. We use three kinds of kernel 

functions, such as the linear kernel function, the polynomial kernel function and the RBF kernel 

function, to implement the kernel version of NNLS. The IP algorithm and the AS algorithm for the QP 

optimizing problem of NNLS are also investigated. For KNN, the best value of K is obtained by using 

an exhausting search in the range of [1,15]. In our experiments, we used a 10-fold cross validation 

scheme to perform 7-class facial expression classification and presented the mean classification results.  

4.1. Facial Database 

The JAFFE database used for experiments consists of 213 female images. There are seven facial 

expressions, including joy, anger, sadness, surprise, disgust and fear. Resolution of the original facial 

image is 256 × 256 pixels. Each subject has almost the same number of images for each facial 

expression. Some of them are illustrated in Figure 2. In our experiments, the raw pixels facial features 

are directly extracted by resizing the original 256 × 256 image to the 32 × 32 image. The LBP feature 

extraction for the JAFFE database is described below. 
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Figure 2. A few samples of facial expression on the JAFFE database [35]. 

 

Figure 3. (a) two eyes location on the original image (b) the cropped image of 110×150 

pixels from the original image. 

 

As done in [3,20], with the aid of normalization we fix the eye distance of all facial images to a 

stationary distance of 55 pixels when the center values of two eyes were detected. It’s well-known that 

the width of a facial image is almost double of the eye distance, whereas its height is almost triple of 

the eye distance. When we obtain the center values of two eyes, cropping the original image into facial 

images of 110 × 150 pixels can be finished. In order to accurately work out the center values of two 

eyes, we employed a kind of automatic face registration to perform the robust real-time face detection [8]. 

With the aid of automatic face detection, the location, the width as well as the height for each image 

can be achieved, and then two square bounding boxes corresponding to two eyes were automatically 

produced separately. As a result, we can figure out the precise center locations of two eyes by means 

of the center values of two square bounding boxes. Figure 3 demonstrates the process of two eyes 

location and the final cropped image. In order to obtain satisfactory accuracy of detecting eyes, as done 

in the previously published work [3,20], when finishing the process of image preprocessing, the results 



Information 2014, 5 313 

 

 

of locating the eye centers, are used to verify the effectiveness of the extracted LBP features without 

any face registration error. 

The facial images of 110 × 150 pixels cropped from the original images include the main 

components of a face image, including brows, eyes, noses, and mouth. The extracted LBP features are 

produced by means of the basic LBP operator on the entire region of the cropped facial images, rather 

than the local region. Similar to the settings in [2,19,21], the 59-bin operator 2

,

u

P RLBP was adopted in 

our experiments. As a result, the 110 × 150 pixels facial images can be split into a few same regions 

with 18 × 21 pixels. This can make sure that we can keep a good trade-off between classification 

performance and feature size. Hence, 42 (6 × 7) regions are yielded from the original facial images and 

a feature size of 2478 (59 × 42) denoted by the LBP histograms is obtained. 

4.2. Experimental Results and Analysis 

We used various types of NNLS to observe the recognition performance of the NNLS-based 

classifier for facial expression classification experiments. In detail, for NNLS, the NS rule is adopted 

to identify the class labels of a new sample, three typical kernel functions, including the linear kernel, 

the polynomial kernel and the RBF kernel, are used to perform the kernel version of NNLS. The IP 

algorithm and the AS algorithm for the QP optimizing problem of NNLS are also investigated. Table 1 

and Table 2 separately give the classification results of NNLS when using the raw pixels and the  

LBP features. 

From the classification results in Table 1 and Table 2, we can see that 1l NNLS-IP with the 

polynomial kernel obtains the best performance with an accuracy of 87.14% when using the raw 

pixels, and NNLS-IP with the linear kernel achieves the highest accuracy of 86.67% when using the 

LBP features. 

Compared with NNLS, five typical methods are widely used for facial expression classification 

experiments, such as linear SVM, SRC, nearest subspace classifier (NSC), KNN, and radial basis 

function neural networks (RBFNN), are used for experiments. Table 3 presents the corresponding 

facial expression classification results of various used methods when using the raw pixels and the LBP 

features. It can be seen from the results of Table 3 that NNLS clearly obtains better performance than 

other used methods. This confirms the effectiveness of NNLS for facial expression recognition. 

The recognition accuracy of NNLS (87.14% with the raw pixels and 86.67% with the LBP features) 

in the seven class facial expression classification experiments is much higher than some reported 

results on the JAFFE database. In [14], the author reported the seven class classification accuracy of 

87.51% by using Gabor wavelet representations and learning vector. In [20], they reported the best seven 

class recognition performance with an accuracy of 81.0% when using the SVM classifier and the LBP 

features. In [41], the author obtained the best performance of 85.4% with the SVM classifier and the 

local directional pattern (LDP) features, which is an advanced version of LBP features.  
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Table 1. Recognition results obtained by NNLS-based classifier with the raw pixels. 

7-class facial expression recognition 

NNLS type 
Accuracy (%) 

Linear kernel Polynomial kernel RBF kernel 

NNLS-AS 79.52 84.28 84.28 

1l NNLS-AS 78.09 80.95 85.24 

NNLS-IP 84.76 80.00 79.52 

1l NNLS-IP 86.67 87.14 83.81 

Table 2. Recognition results obtained by NNLS-based classifier with the LBP features. 

7-class facial expression recognition  

NNLS type 
Accuracy (%) 

Linear kernel Polynomial kernel RBF kernel 

NNLS-AS 83.33 81.90 83.80 

1l NNLS-AS 82.38 82.86 82.38 

NNLS-IP 86.67 82.56 82.38 

1l NNLS-IP 81.90 83.33 82.86 

Table 3. Recognition accuracy (%) of various used methods when using the raw pixels and the 

LBP features. 

Methods SRC NSC SVM KNN RBFNN NNLS 

Raw pixels 80.32 80.78 80.45 81.24 70.62 87.14 

LBP 84.76 81.74 79.88 80.00 68.09 86.67 

To further investigate the recognition performance for each facial expression when NNLS obtains 

the best results, Tables 4,5 separately shows the confusion matrix of facial expression classification 

results of NNLS when using the raw pixels and the LBP features. From the results in Tables 4,5, it can 

be seen that anger is classified best with the performance of 96.67%, while sadness is discriminated 

worst with the performance of less than 80%. 

Table 4. Confusion matrix of classification results when NNLS performs best with the  

raw pixels. 

  
Anger 

(%) 

Joy 

(%) 

Sadness 

(%) 

Surprise 

(%) 

Disgust 

(%) 

Fear 

(%) 

Neutral 

(%) 

Anger 96.67  0  0  3.33  0  0  0  

Joy 0  83.33  10.00  0  0  0  6.67  

Sadness 0  10.00  76.67  0  3.33  6.67  3.33  

Surprise 0  0  0  80.00  3.33  3.33  3.33  

Disgust 3.45  6.90  0  0  89.66  0  0  

Fear 0  0  0  3.13  9.38  84.38  3.13  

Neutral 0  0  0  0  0  0  100.00  
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Table 5.Confusion matrix of classification results of NNLS when performs best with the 

LBP features. 

  
Anger  

(%) 

Joy  

(%) 

Sadness  

(%) 

Surprise 

(%) 

Disgust 

(%) 

Fear 

(%) 

Neutral 

(%) 

Anger 96.67 0 0 0 3.33 0 0 

Joy 0 96.77 3.23 0 0 0 0 

Sadness 3.23 6.45 74.19 0 3.23 9.68 3.23 

Surprise 0 3.45 3.45 86.21 0 6.90  0 

Disgust 7.14 0 3.57 0 82.14 7.14 0 

Fear 0 0 3.23 3.23 3.23 90.32 0 

Neutral 0 0 10 10 0 0 80.00 

5. Conclusions and Discussions 

This paper gives a new method of facial expression classification via NNLS sparse coding. The 

results of experiments on the benchmarking JAFFE facial expression database indicate that the NNLS 

method gives promising performance (87.14% with the raw pixels and 86.67% with LBP features) on 

facial expression recognition tasks. This verifies the validity of the presented method for facial 

expression classification. It should be noted that in this work we focus on employing static images on 

the JAFFE database for facial expression classification. In addition, we do not take the temporal 

dynamic behaviors of facial expressions into consideration, which could be able to potentially promote 

facial expression classification performance. Hence, it is also an interesting subject to investigate the 

performance of the proposed method on the real-time dynamic video sequence in future direction. 

It needs to be noted that the accuracy of detecting eyes has inevitably more or less an impact on the 

accuracy of the presented method. As done in the previously published work [3,20], in our 

experiments, we detect the eyes location in terms of the results of automatic face registration, rather 

than directly eye localization [42]. In the future, we will explore the performance of the presented 

method when detecting eyes location by directly using eye localization. 
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