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Abstract

This paper presents a novel data-driven approach to structural health monitoring (SHM)
that uses Echo State Network (ESN) regression for continuous damage assessment. In
contrast to traditional classification methods that demand extensive labeled data on dam-
aged states, our approach utilizes an ESN, a powerful recurrent neural network, to directly
predict a continuous damage metric from sensor data. This regression-based methodol-
ogy offers two key advantages relevant to data science applications in SHM: (1) Reduced
Training Data Dependency: The ESN achieves high accuracy even with limited data on
damaged structures, significantly alleviating the data acquisition burden compared to
classification-based AI/ML techniques. (2) Enhanced Noise Resilience: The inherent reser-
voir computing property of ESNs, characterized by a fixed, high-dimensional recurrent
layer, makes them more tolerant of sensor noise and environmental variations compared to
classification methods, leading to more reliable and robust SHM predictions from noisy
data. A comprehensive evaluation demonstrates the effectiveness of the proposed ESN
in identifying structural damage, highlighting its potential for practical application in
data-driven SHM systems.

Keywords: neural network regression; noise resilience; time series analysis; continuous
damage assessment

1. Introduction

Structural Health Monitoring (SHM) is paramount for ensuring the safety, longevity,
and operational efficiency of civil infrastructure worldwide. Traditional SHM method-
ologies, often relying on periodic visual inspections or expensive, permanently installed
sensor networks, present significant limitations in terms of cost, scalability, and continuous
real-time assessment [1]. The pervasive availability and integrated sensing capabilities
of modern smartphones offer a compelling opportunity to overcome these challenges
by enabling ubiquitous, low-cost vibration monitoring. This paper introduces a novel
regression-based SHM system using neural networks and smartphone to provide a contin-
uous and nuanced assessment of structural integrity.

1.1. Traditional Structural Health Monitoring Methods

Historically, SHM has relied on several established methods, each with distinct charac-
teristics:
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Visual Inspection [2]: This is the most fundamental and widely used approach, in-
volving manual assessment by trained experts to identify visible signs of damage such as
cracks, corrosion, or deformation. While comprehensive for surface-level defects, visual
inspection is inherently time-consuming, labor-intensive, costly for large structures, and
highly subjective, relying heavily on the inspector’s experience. Crucially, it cannot detect
internal or nascent damage that is not visually apparent.

Strain Gauges and Accelerometers (Direct Measurement) [3]: These sensors are di-
rectly affixed to structures to measure physical responses like stress, strain, and vibration.
Strain gauges quantify deformation, while accelerometers measure dynamic acceleration
responses. They offer quantitative and precise data, providing direct insights into structural
behavior. However, their widespread deployment is often limited by intrusive installa-
tion requirements, high per-point costs, and the localized nature of their measurements,
which may not capture global structural behavior or damage occurring between sensors.
Maintenance and recalibration can also be significant challenges, hindering continuous,
long-term monitoring.

Vibration-Based Techniques [4]: These methods analyze a structure’s dynamic re-
sponse (e.g., natural frequencies, mode shapes, damping ratios) using specialized equip-
ment and analytical methods such as modal analysis and random decrement techniques.
The underlying principle is that changes in a structure’s physical properties due to damage
will alter its dynamic characteristics. While effective for global damage detection, these
techniques often require significant investment in high-fidelity instrumentation, complex
data acquisition systems, and specialized expertise for data interpretation and model updat-
ing [5]. Furthermore, environmental and operational variations can significantly influence
vibration characteristics, often masking or confounding damage-induced changes.

1.2. Classification-Based Data-Driven SHM Methodologies

The limitations of traditional methods have driven the development of more advanced
SHM approaches, particularly those using data-driven techniques and machine learning [6].
Broadly, SHM methodologies can be categorized into approaches like computer vision [7],
physics-based non-destructive testing (NDT) [8], and various machine learning-based and
data-driven methods [9]. While computer vision and physics-based NDT offer powerful
diagnostic capabilities, they often necessitate expensive and complex equipment, posing
challenges for installation and sustained maintenance, thus limiting their suitability for
continuous, long-term monitoring [5].

Consequently, a significant focus in modern SHM has shifted towards data-driven
systems that frame the damage detection problem as a classification task [10]. These
methods integrate modern signal processing techniques [11], advanced vibration analysis,
and machine learning algorithms [12], including various neural networks [13], to achieve
more efficient and accurate continuous structural monitoring [14]. Common classification
algorithms employed include Support Vector Machines (SVMs), Artificial Neural Networks
(ANNSs), and Decision Trees, which are trained to distinguish between “healthy” and
“damaged” states based on extracted features from sensor data.

However, a critical limitation of these classification-based techniques is their funda-
mental requirement for extensive labeled data representing both undamaged and various
damaged structural states. Acquiring comprehensive and representative labeled data for
a multitude of potential damage scenarios in real-world structures presents significant
practical challenges, often being costly, time-consuming, and sometimes even impossible.
This data scarcity can severely restrict the generalizability and robustness of classification
models, especially for detecting unforeseen or novel damage types.
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1.3. Regression-Based Data-Driven SHM Methodologies

To circumvent the challenges associated with labeled damage data in classification-
based approaches, some researchers have explored reframing the SHM problem as a
regression task. In these methodologies, the goal is to predict a continuous health index or
damage severity level, rather than a discrete class. Regression-based SHM using neural
networks has been demonstrated with various architectures, such as Long Short-Term
Memory (LSTM) networks [15] and Convolutional Neural Networks (CNNs) [16]. These
models are capable of learning complex nonlinear relationships within time series data to
estimate damage severity.

Despite their strong performance in learning complex patterns, a significant drawback
of these deep learning architectures (LSTMs, CNNs) is their high computational intensity.
Deploying such models on resource-constrained devices like smartphones is often impracti-
cal due to limitations in processing power, memory, and battery life [9]. This computational
burden can hinder their widespread adoption for real-time, on-device SHM applications.

1.4. Smartphone-Based Structural Health Monitoring

The ubiquity and affordability of smartphones, coupled with their increasingly so-
phisticated embedded sensors, have opened new avenues for cost-effective and readily
deployable SHM solutions. Prior research has demonstrated the feasibility of using smart-
phone sensor data for structural damage identification across various contexts:

(1) Vibration Monitoring: Data collected from smartphone accelerometers has success-
fully detected damage in building simulation testbeds [17], proving their capabil-
ity to capture dynamic structural responses [18], such as bridge structural health
monitoring [19].

(2) Alternative Sensing Modalities: Beyond accelerometers, studies have explored moni-
toring magnetic field intensity variations with smartphones for detecting damage in
steel plates through experimental and numerical studies [20], showcasing the versatil-
ity of smartphone sensors.

(3) Wireless Sensor Networks: Wireless structural vibration monitoring systems based
on Android smartphones have been designed and validated, achieving accurate
time-synchronized monitoring by forming wireless sensor networks with multiple
devices [21]. These systems often aim to diagnose building damage by aggregating
data from interconnected devices [22].

(4) Crowdsourcing & Multi-Sensor Systems: Community-based multi-sensor systems,
leveraging diverse smart devices including smartphones and tablets equipped with
cameras and vibration sensors [23], have also been explored for building damage
monitoring, highlighting the potential for large-scale, distributed SHM networks [24].

While smartphone-based SHM offers unparalleled accessibility and cost-effectiveness,
it also presents challenges [25]. These include the consumer-grade quality of embedded
MEMS sensors (higher noise, lower precision compared to dedicated sensors), potential for
inconsistent mounting, and battery life limitations for continuous operation. Despite these,
the ongoing advancements in smartphone technology continue to enhance their viability
for SHM applications.

1.5. Echo State Networks in Time Series Analysis and SHM

Echo State Networks (ESN) are a type of Recurrent Neural Network (RNN) based on
the “reservoir computing” paradigm [26]. A key characteristic of ESNs is that only the
weights connecting the reservoir to the output layer are trained, while the internal reservoir
weights are fixed and randomly initialized. This significantly simplifies the training process
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compared to other RNN architectures, making them computationally efficient and less
prone to vanishing /exploding gradient problems.

ESNs are particularly well-suited for processing complex time series data due to their
inherent “echo state property,” which allows the reservoir to implicitly capture and retain
a rich history of the input sequence. This makes them robust to noise and perturbations,
a critical advantage when dealing with potentially noisy and variable sensor data, such
as that acquired from smartphones. While ESNs have seen successful applications in
various time series prediction tasks, their specific application to continuous damage metric
regression in SHM, especially utilizing smartphone sensor data, remains an underexplored
area. This work aims to bridge this gap by demonstrating the efficacy of ESNs for this novel
SHM problem.

2. Data-Driven Structural Health Monitoring

In this paper, our Structural Health Monitoring (SHM) system is designed to detect
damage that alters the fundamental dynamic properties of the monitored structure, specifi-
cally its stiffness and, to a lesser extent, its mass and damping characteristics. Such damage
typically includes [1]:

e  Stiffness Degradation: This is the most common type of damage detectable by
vibration-based methods, resulting from phenomena like cracking, loosening of bolted
or welded connections, or material degradation. A reduction in stiffness leads to
changes in natural frequencies and mode shapes.

*  Mass Changes: While less common for damage, unintended mass additions or losses
could also be detected.

*  Boundary Condition Changes: Alterations in how the structure is supported or re-
strained can significantly impact its dynamic response.

2.1. SHM Using Residual Distance Method

The Residual Relative Error (RRE) calculates the relative error in the residual sequences
at each sensor for different structural conditions, in vector case

lEdllz = |[Exll2

rre =
| Eull2

1)
where, E, and E; represent the n-dimensional residual vectors corresponding to the un-
damaged and damaged states, respectively [27]. |||, represents the I, norm.

By utilizing the residual vectors of all sensors under damaged and undamaged con-
ditions, it is possible to construct a vector containing the RRE quantities in the following
manner:

RRE = [rreq, rrey, ... 1Teys) (2)

where 15 represents the number of sensors. During a test measurement, RRE consists of
ns elements, where each element corresponds to the RRE value at a specific sensor. In the
presence of structural damage, the residual samples tend to increase, allowing the RRE
index to effectively identify and detect the damage. The Mahalanobis squared distance is a
widely recognized and robust statistical metric used to quantify the similarity between two
multivariate datasets. This method is scale and amount invariant, computing similarity
based on the correlation between variables.

Let X € R™*" represent a multivariate feature matrix obtained from the undamaged
(healthy) state, where nr is the number of data rows (observations). From this healthy
reference data, we compute the mean vector y € R and the covariance matrix I' € ">,
where I is invertible and nr > ns. For any new observation vector z; which is a row vector
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from a test dataset Z € """, the MSD calculates its distance from the healthy reference
distribution as follows:

dmsp(l) = (z1 — )T Mz — )" 3)

For a set of new observations Z, the vector of Mahalanobis squared distances are given by:

Dumsp(Z | X) = [dmsp (1), dmsp(2), - ., dmsp (nr)]” 4)

Here, Dysp(Z | X) represents the distance of the dataset Z from the reference dataset X,
which can be effectively utilized to calculate the statistical distance between time series
data from damaged and non-damaged structural conditions [28]. A significant increase in
Dysp values for a new measurement, compared to the baseline, indicates a deviation from
the healthy state, signaling potential damage.

2.2. Pre-Processing and Analyzing Vibration Data

We have four smartphones at our disposal for data collection, enabling us to record
accelerations on each floor of the building along the X, Y, and Z axes, as shown in Figure 1.
The earthquake’s vibration is simulated by the acceleration of the XY-axis motor at the bot-
tom. Since the start times of different phones may vary, we utilize Dynamic Time Warping
(DTW) [29] to synchronize the start times. In the case where we have two time series,

G =181,82,83,+/8ir+ -, 8n)

H = [h1,ho b, By T

where 1 and m represent the lengths of time series G and H.

Figure 1. Platform of SHM system.

The DTW algorithm consists of three main stages:

(1) Local Distance Matrix Population: In the first stage, a local distance matrix 4 is
constructed. Each element d(i, ) in this n x m matrix is populated with the Euclidean
distance (or another suitable distance metric) calculated between each pair of points g;
from time series G and h]- from time series H. That is,

d(i,j) = |Igi — hjll
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(2) Warping Matrix Computation: In the second stage, a cumulative cost matrix,
referred to as the warping matrix D, is filled based on the DTW recurrence relation:

D(i,j) =d(i,j) + min[D(i—1,j),D(i—1,j—1),D(i,j — 1)] )

This matrix, having the same dimensions as the local distance matrix, represents the
minimum accumulated distance to align the prefix of G up to g; with the prefix of H up
to h]

(3) Optimal Warping Path and DTW Distance Calculation: Finally, the optimal warping
path W is determined by backtracking through the warping matrix D from D(n,m) to
D(1,1), following the path of minimum accumulated cost. The warping path is a sequence
of adjacent matrix elements:

W = [wy, wy, ..., wy], (6)

where k is the total number of elements in the warping path. wy = (i, jx) represents a pair
of indices from G and H, respectively, min{m,n} < K <m+n— 1. This path establishes
the nonlinear mapping between G and H that minimizes their overall alignment distance.
The warping path inherently possesses three critical attributes, guaranteeing its validity:

(1) Monotonicity: Any two adjacent elements of the warping path: wy = (i, j) and
wy_1 = (ix_1, jx_1), the indices must not decrease, i.e., iy > ix_1 and ji > jx_1. This ensures
that the alignment progresses forward in time for both series.

(2) Continuity: For any two adjacent elements of the warping path: wy = (i, jx) and
wy_1 = (ix_1, jx_1), the indices can only advance by at most one step, i.e., iy — iy < 1and
jx — jk—1 < 1. This prevents skipping points in the alignment.

(3) Boundary: The warping path must start from the first elements of both time series,
w1 = (1,1), and end at their last elements, wy = (1, m). The warping path starts from the
top left corner and ends at the bottom right corner.

The DTW distance between the two time series, DTW(G, H), is the cumulative dis-
tance along this optimal warping path, which is given by the value D(n,m) from the
warping matrix. To enable comparison between alignments of time series with potentially
different lengths or path complexities, this cumulative distance is commonly normalized
by the length of the warping path K:

D(n,m)
e )

DTWjcn) =

Furthermore, to improve identification accuracy, an additional step was taken to
implement a low-pass filter (LPF) [30]. The LPF is defined by the following discrete
difference equation:

X (kT) = e T, (k — 1)T) 4 (1 — e~ “0T)x;(kT) (8)

In the context of digital signal processing, x denotes the signal subject to filtration. x;
represents the signal value before the application of the low-pass filter, while x, represents
the signal value after the low-pass filter has been applied. wg denotes the cutoff frequency
of the low-pass filter, and T indicates the total number of iterations k, when the low-pass
filter is employed.

The SHM system comprises three steps. In the first step, we utilize DTW to align
the time axis and ensure consistent start times. The second step involves the use of
discrete low-pass filtering to enhance signal discrimination. The third step entails utilizing
the echo state network to model the damaged and undamaged structures separately.
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Furthermore, the subsequent section provides a description of the robust echo state network
under discussion.
The proposed method includes the following parts:

¢ Data Collection: It is the process of collecting data from smartphones using the
developed application. This includes sensor selection, calibration procedures (if any),
and data recording protocols. If using real-world structures, describe the selection
criteria for the structures and how damage conditions were assessed.

¢ Data Preprocessing: We use methods to clean and prepare the collected sensor data
for neural network training. This involve filtering techniques to remove noise, normal-
ization of data values, and potentially feature engineering to extract relevant features
from the raw sensor data.

¢ Neural Network Model Design: We use ESN for regression. The number of neurons,
activation functions, and relevant hyperparameters will be discussed in the next
session. The training process for the ESN model, including the training data used, the
chosen optimizer algorithm, and the loss function used to evaluate model performance
during training will also be discussed.

3. Echo State Network Regression for SHM

In this paper, we use the ground-based data [1], which are taken from sensors placed
on the ground or foundation of a structure. This data represents the input excitation to the
structure. This data is used as input for the network, with damaged or undamaged data
serving as the target for training.

This section initially addresses the reduction in classification problems to regression
problems. It then introduces a proposal for a robust echo state network.

3.1. Problem Definition

Linear Classification [31]: We assume that the training data consists of N data set
Y = (y1,...,Ym), D is the dimension of the feature space X,, € RP. Each data set has a
unique true label /,, € [—1,1]. The objective function for the 0 — 1 loss linear classification
problem can be defined as Ey_1(w) = Y.(sign(w”x) # 1,). Here, w is solved by W =
argminEy_1 (w). This problem has been shown to be NP-hard [32].

Linear Regression [31]: The objective function can be defined as E(w) = Y (w’x — y)?,
where y represents the vibration time series, w is solved by w = (X' X)~!XTy. Solving this
problem has an efficient analytic solution, which is easier than linear classification.

Our primary focus is continuous damage assessment via regression, it is theoretically
possible to derive a classification decision from the regression output by applying a thresh-
old. In such cases, a low regression error can provide a bound for the 0-1 classification error,
implying that Eg_1 < Eyeq. This suggests that robust regression performance can indirectly
support effective classification,

; 2 2eN 2
out < m - . ]F —

; 2 2eN 2
< mn - . - -
= Ercg + 2\/N (Vcdlm (F)lOg VCdim (]F) + logé)

where E°* represents the out-of-sample error, E" represents the in-sample error, N repre-
sents the size of the training set.

VCgin represents the Vapnik Chervonenkis (VC) dimension [31] of the classification
model F. VC dimension is a measure of the capacity or complexity of a machine learning
model. It indicates the maximum number of points that the model can classify in all
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possible ways. A higher VC dimension generally implies a more complex model with a
greater capacity to fit data, but also a higher risk of overfitting.

The following lemma asserts that the regression method is capable of completing the
classification task.

Lemma 1 ([31]). In binary classification, given function class F with Vapnik Chervonenkis (VC)
dimension V Cg;,y, (F), we have the following risk bound R(F) for any classifier f € F. When N >

VCyim(F)/2 and 6 > 0, the bound R(f) < Remp(f) + 2\/%(VCdim(F)log% + log%)
holds with probability at least 1 — 6.

In the field of structural health monitoring procedures, there is a scarcity of labeled
data, particularly for damaged instances. This limitation hampers efforts to diminish
the out-of-sample error, E° Moreover, achieving a favorable value for Eé’[l proves
challenging due to its association with NP problem and its consequent tight bounds. Our
objective is to employ regression for classification tasks, placing emphasis on efficiency
rather than strict boundary adherence. In (9), we can also observe that as long as the
regression is done well, the classification effect can also be achieved.

3.2. Echo State Network

The mathematical expression of ESN is

Xt = ¢[Winut + Wresxt—l]

10
Yi = Wourxs (10)

where the input to the ESN at time step ¢ is denoted by u; € R”, where 7 is the dimension-
ality of the input. The output of the network at time step ¢ is denoted by y; € R™, where m
is the dimensionality of the output. The state of the reservoir layer at time step ¢ is given by
x(t) € RN. The ESN has a reservoir layer consisting of N neurons, W;,, € RN*" is the input
weight matrix, Wyes € RN*N ig the recurrent weight matrix, Wy, € R™*N is the output
weight matrix, and ¢ is an element-wise activation function.
The recurrent layer is
xp=(1—a)x;_1+ax; (11)

where « is the leaking rate. The weights W;, and W, are randomly initialized with
fixed weights.

In batch cases, the weights of the output layer W, are adjusted using the least squares
algorithm

-1
Wour = (XTX + ,BI) xyT (12)

where X is the matrix of reservoir states x(t) for all time steps t, Y is the matrix of desired
outputs y; for all time steps ¢, B is a regularization parameter, and I is the identity matrix.
For time series modeling, Y is the target vector, X is historical data. This approach greatly
simplifies the training process and reduces the risk of overfitting, since the complexity of
the model is largely determined by the size and connectivity of the reservoir layer.

The hyperparameter selection methods include grid search, random search, and
evolutionary algorithm, provided the ranges or discrete values explored for each key
hyperparameter. The output weights obtained from the training process will be applied for
structural health monitoring, as depicted in Figure 2.
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Figure 2. Smartphone-based SHM.

3.3. Training of Echo State Network

The main focus of this section is to discuss the challenge in selecting an appropriate
learning rate to ensure fast learning during the process of gradient descent. Consider
following a discrete-time state-space nonlinear system.

x(k+1) = flx(k), u(k)] (13)

In the given equation, u (k) represents the input vector, x(k) denotes the state vector, and f
represents a general, nonlinear, smooth function.

x(k) = (1 —a)x(k—1) + ¢(Wiu(k) + Wiesx(k — 1)) (14)

The identified nonlinear system, denoted as Equation (14), is bounded-input and bounded-
output (BIBO) stable, with both x(k) and u(k) being bounded. Utilizing the Stone-
Weierstrass theorem, this nonlinear system can be expressed as follows:

x(k) = (1 —a)x(k — 1) + ¢[(Winu(k) + Wresx (k — 1)] + p(k) (15)
e(k> = woutx(k) - Woutx(k) (16)
From (14), (15) and (16)
e(k) = (1 —a)e(k — 1) + Wourp[Wip (k) + Wiesx (k — 1)]
— Wour[Wiu(k) + Wyeex (k — 1)] — (k)

= (1—a)e(k —1) + Wourx (k) — Wourx (k) — u(k)
= (1—a)e(k — 1) + Wouex (k) — p(k)

(17)

The training process of the smartphone-based SHM is shown in Figure 3.
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Figure 3. Training phase of the smartphone-based SHM.

Theorem 1. Suppose the neural network (14) is utilized for identifying a nonlinear plant. If «
is chosen such that 0.5 < a < 1, applying the following gradient updating law with a robust
modification ensures the boundedness of the identification error e(k).

Wour(k +1) = Woye (nk) — A(k)x(k)e(k)T

where A(k) satisfies

A = | T e+ Dl o) )
0 lle(k +1) < e(k)||

The proof is shown in the Appendix A.

4. Experimental Results
4.1. Smartphone-Based SHM Platform

The proposed Structural Health Monitoring (SHM) platform uses readily available
and affordable smartphones as sensing units. The main parts of this platform are:

1.  Smartphones: iPhone X devices were used as the main data collection tools because
they have good built-in accelerometers that work well.

2. Sensors: iPhone X has tri-axial accelerometers inside, which were used to measure
how the structure moved in three directions (X, Y, and Z).

3. Data Acquisition App: A special app we created was used to get the raw accelerometer
data. The app was set to record data 100 times per second for 90 s each time.

4.  Computing Platform: A computer with Windows 10 was used to manage communi-
cation with the smartphones, process and analyze the data, and run the trained ESN
to find damage (as shown in Figure 4).

5. Two-floor laboratory-scale structure: It is specifically designed for controlled exper-
imental validation and constructed entirely from aluminum. It stands 100 cm in
height, with a width of 40 cm and a depth of 30 cm. This choice of material and a
simplified, yet dynamically representative, configuration allows for precise control
over damage induction and ensures repeatable experimental conditions, which would
be prohibitively expensive and logistically challenging with full-scale structures. By
detailing these exact specifications, we aim to provide complete transparency regard-
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ing our experimental setup, enabling other researchers to accurately assess the context
and implications of our results for broader Structural Health Monitoring applications.

. PC
Building

Data

online data online data "

. transmission transmission storage
Acceleration

o R I - !

router

Data

A processing

Smartphones ¢
measurements

Damage

detection

Figure 4. Functioning blocks of the smartphone-based SHM system.

Smartphones have sensors inside, don not cost a lot, and are easy to move around to
collect data. We used both iOS (iPhone X) and Android phones, because they are partly
open-source, and there are tools that let you directly access the sensors like accelerometers
and gyroscopes. The data from these sensors was accessed using the phone’s built-in sensor
management system at regular times. The overall design of our SHM system is shown in
Figure 5.

Modern smartphones contain Micro-Electro-Mechanical Systems (MEMS) accelerom-
eters that measure proper acceleration along three axes. Their typical specifications are:
sampling rates are 100-200 Hz, dynamic ranges are =2 g to £16 g. Their key advantages are:
low cost, ubiquity, and ease of deployment. Their limitations are: higher noise compared to
research-grade sensors, potential for drift, and power constraints for long-term monitoring.

The smartphones, serving as our vibration sensors, were placed on the foundation
(ground level) and the center of each floor level of the multi-storey test structure. These
devices are positioned flat on the floor surface, with their X-axis and Y-axis aligned per-
pendicular to the directions of excitation, and their Z-axis (vertical) aligned with the
gravitational direction.

D

%E - 0

Figure 5. Scheme of smartphone-based SHM system.

4.2. Detection of Structural Damage Through Vibration Amplitude Changes

The dynamic behavior of a structure is characterized by key vibration properties.
Natural Frequencies, intrinsic to a structure’s stiffness and mass, decrease with damage.
Mode Shapes, the spatial deformation patterns, also change as damage alters stiffness
distribution. Damping Ratios, representing energy dissipation, can increase or decrease due
to damage, such as loosened connections. Amplitude/Displacement/Acceleration quantify
vibration magnitude; under consistent excitation, altered magnitudes can signify damage.
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This paper specifically utilizes changes in the amplitude/displacement/acceleration time
series within our regression-based approach to infer structural health.

To facilitate a comparison between structurally damaged and undamaged data, we
aligned measurements obtained from both scenarios using a time-synchronization algo-
rithm. This ensured a coherent time frame for both sets of measurements. The destructive
methodology involved removing two screws from the base, simulating structural damage.

After aligning the data, a comparison was made between the two sets of measurements,
as illustrated in Figure 6. As an illustrative example of a damage-sensitive vibration
characteristic, we observed that when the structure is damaged, there is a notable increase
in vibration amplitude along the Y-axis. This specific change is attributed to the altered
force transmission paths within the damaged structure, causing energy to redistribute from
the X-axis to the Y-axis and Z-axis. Consequently, for this particular structural configuration,
the amplitude of the Y-axis effectively serves as a criterion for assessing structural damage.

Damage structure

Damage structure - - - -Undamage structure
- = = *Undamage structure

o
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=
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-
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Figure 6. Vibrations along the Y-axis for both undamaged and damaged structures during four types

of earthquakes.

In this experiment, we will use the discrepancy between the predicted output of ESN
and the actual output of the damaged or undamaged structure as a metric to determine the
extent of structural damage. When the error generated by the damaged model (wWhere ESN
train data consists of damaged structure vibration data) was low, the corresponding struc-
ture was classified as damaged. Conversely, when the error generated by the undamaged
model (where ESN train data consists of undamaged structure vibration data) was low, the
structure was considered healthy. The ESN was trained using the house’s foundation signal
as input, with sensor signals recorded both before and after structural damage serving as
the corresponding output.

4.3. Echo State Network for Structural Health Monitoring

In this experiment, we used the discrepancy between the predicted output of ESN and
the actual output of the damaged or undamaged structure as a metric to determine the
extent of structural damage. When the error generated by the damaged model (where ESN
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train data consists of damaged structure vibration data) was low, the corresponding struc-
ture was classified as damaged. Conversely, when the error generated by the undamaged
model (where ESN train data consists of undamaged structure vibration data) was low,
the structure was considered healthy. The house’s foundation signal served as the input
to the ESN, with sensor signals before and after structural damage as the corresponding
output signals.

Subsequently, tests were conducted on the foundation vibration data collected in Cape,
keeping the previously learned parameters of the RESN fixed. The network exhibited high
sensitivity to abrupt changes in the data due to damages in the building structure.

4.4. Experimental Results

In our study, we used iPhone X devices, and their battery life was long enough for
our 90-s recordings. To start each test, an iPhone X was placed securely on the test bench.
Before recording, we did a zeroing process by averaging the accelerometer readings for 20 s
while the phone was still. This gave us the baseline readings when there was no movement
(0 g): 0.13 V (x-axis), 0.075 V (y-axis), and 0.095 V (z-axis). After zeroing, we recorded
acceleration data for 90 s at a rate of 100 samples per second, which gave us 9000 data
points for each direction.

In this paper, we use the ground motion records of the Kobe (1995), Northridge (1994),
El Centro (1940), and Cape Mendocino (1992) earthquakes, which are obtained from the
Pacific Earthquake Engineering Research (PEER) Center’s NGA-West2 Database [33]. We
did these simulations while the iPhone X devices recorded how the structure moved at the
places where they were attached. To prepare the training dataset we use the following steps:

(1) Raw Data Acquisition: We reiterate that the raw acceleration data was collected from
smartphone accelerometers strategically positioned on the structure’s foundation and
various floor levels at the dedicated test station.

(2) Data Synchronization: We use Dynamic Time Warping for the time series from different
sensors were synchronized to a common timeline. As previously discussed, Dynamic
Time Warping was employed to align these series, accounting for inherent nonlinear
phase differences in structural responses.

(38) Preprocessing: We applied a low-pass Butterworth filter with a cutoff frequency
20 Hz to remove high-frequency noise and focus on the relevant structural vibration
frequencies. To ensure consistent input scales for the ESN and prevent features with
larger magnitudes from dominating, the filtered data was normalized using a Min-Max
scaling across the entire dataset.

(4) Input-Output Pair Formation:The preprocessed acceleration data from the foundation
sensor served as the input to the ESN. The corresponding output (target for regression)
was the derived damage metric or health index for that specific structural state (healthy
or damaged), as determined by the controlled experimental conditions.

We use the following NMSE (Normalized Mean Square Error) as the experimental
error. This is used metric to evaluate the performance of regression models. A lower NMSE
indicates better predictive accuracy.

My — )P
NMSE(y,y*) = == (19)
sz'\i1||]/*||2

where y is the network output, and y* is the expected output.

It stands for normalized mean squared error, a widely used metric for evaluating the
performance of predictive models. It is a normalized version of the mean squared error
(MSE) and is calculated by dividing the MSE by the variance of the target variable. NMSE
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provides a normalized measure of the prediction error, useful for comparing models with
different units or scales.

As shown in Figure 3, with the selection of an appropriate model, a low error rate
and accurate fitting of the Cape vibration data were achieved. These experiments provide
compelling evidence that structural failures of the same type can be successfully modeled.
Using Cape earthquake data, Figure 7 illustrates that the output generated by the model
aligns with the vibration generated by the actual structure, enabling the detection of
structural damage. For Northridge earthquakes, detection of building damage was possible,
as depicted in Figure 8, where the prediction errors are displayed.

Real damaged structure output
- = = *Unamaged model output

Real damaged structure output
- - - -Damaged model output

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Time Time

(a) Outputs of damaged cases (b) Outputs of damage/un-damaged

Real undamaged structure output 0.5 Real undamaged structure output
- - - -Damaged model output - - - - Undamaged model output

A0
PRNOHIN
W

S

200 400 600 800 1000 1200 1400 1600 1800 2000 2200
Time Time

(c) Outputs of damage/Undamage (d) Outputs of damaged cases
Figure 7. Detection phase of structural damage using Cape earthquake data.

Table 1 displays NMSE values obtained from the ESN model for various earthquake
types. In this context, ‘Damaged’ refers to buildings with structural damage, while “Undam-
aged’ denotes intact buildings. “M,” represents the modeling error of the neural network
for damaged building structures, and “M,,” represents the modeling error for undamaged
building structures.

The results indicate the successful detection of damage by the ESN model across all
earthquake types. The ESN demonstrated accurate modeling for both damaged and un-
damaged cases. In the damaged scenario, the modeling error “M;” for damaged building
structures was significantly lower than that for undamaged structures (“M,”), implying
structural damage. Conversely, in the undamaged scenario, the modeling error “M,”
for undamaged building structures was notably lower than that for damaged structures
(“M,”), indicating an undamaged structure. Therefore, the ESN model effectively de-
tects damage across different earthquake types and differentiates between damaged and
undamaged structures.
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Figure 8. The prediction errors corresponding to the damaged and undamaged structure models
using Northridge earthquake data.

To assess the performance of our newly proposed ESN, we compare it with Multilayer
Perceptrons (MLP) and Radial Basis Function (RBF). Tables 2 and 3 reveal that MLP
and RBF perform well in detecting damaged structures but struggle to effectively detect
undamaged structures, potentially leading to misjudgment. The Echo State Network
presents a promising solution for detecting structural damage in building sensor data,
outperforming MLP and RBF in terms of accuracy and robustness.

Table 1. ESN regression for arious earthquakes.

Damaged Undamaged
Data M, M, M, M,
Cape 0.5054 1.1460 9.8597 1.2226
Centro 0.5209 1.1270 5.6527 1.2014
Northridge 0.3550 1.3295 9.7396 1.1056

Table 2. MLP regression for various earthquakes.

Damaged Undamaged
Data M, M, M, M,
Cape 3.0610 343.0281 1.1390 8.8720
Centro 2.4220 47.39970 1.5408 24.7015
Northridge 1.4437 67.5088 1.4074 6.7222

Table 3. RBF regression for various earthquakes.

Damaged Undamaged
Data M, M, M, M,
Cape 2.6024 280.2276 1.2364 24.8541
Centro 2.6024 290.1908 1.4790 60.7090
Northridge 5.0079 341.1734 1.4453 41.6953

4.5. Discussions

The demonstrated efficacy of ESN approach in regressing structural health from vibra-
tion data, particularly when utilizing lower-fidelity sensors like smartphones, underscores
its significant potential for advancing cost-effective and accessible Structural Health Mon-
itoring. Our regression-based method provides a continuous damage metric, offering a
more nuanced assessment than binary classification, its current implementation relies on
supervised training with labeled data for both healthy and damaged structural states, see
Figure 9. This approach allows the ESN to learn the intricate relationship between vibration
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patterns and varying degrees of structural integrity. This capability broadens the scope

of SHM applications, making continuous structural assessment more feasible for a wider

range of infrastructure.

Real Undamaged structure output
- - - -Undamaged model output

Real damaged structure output
Damaged model output 3

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
time time

(a) Damage Detection (b) Un-damage Detection

Figure 9. Training phase for damage detection using echo state networks with Kobe earthquake data.

Building on these promising results, several key avenues for future research are

identified to further enhance the robustness, comprehensiveness, and applicability of the
ESN-based SHM system:

Multi-Sensor Data Fusion: Investigate the synergistic integration of data from other
readily available smartphone sensors, such as gyroscopes for capturing rotational
dynamics and magnetometers for potential insights into the integrity of steel com-
ponents. Fusing these diverse data streams could provide a more comprehensive
understanding of complex structural behaviors and damage mechanisms.
Environmental Factor Integration: Explore the incorporation of environmental data,
including temperature, humidity, wind speed, and barometric pressure, into the
ESN regression models. This integration is crucial for improving the robustness and
accuracy of damage assessment by explicitly accounting for external factors that
influence structural response and sensor readings, thereby minimizing false positives.
Real-time Anomaly Detection: Develop and implement real-time damage detection
capabilities by integrating anomaly detection algorithms with the ESN regression
framework. This would enable continuous, automated monitoring and immediate
identification of deviations from normal structural behavior, facilitating early inter-
vention and preventive maintenance.

Transfer Learning for Adaptability: Investigate the application of transfer learning
techniques to expedite and enhance the training of ESN models for specific damage
types or when adapting the system to new structural characteristics. Leveraging
pre-trained reservoir states or fine-tuning model weights could significantly reduce
the need for extensive new baseline data collection across diverse buildings or dam-
age scenarios.

Cloud-Based Computational Offloading: Explore the feasibility and benefits of of-
floading computationally intensive aspects of ESN training and real-time analysis
to cloud-based platforms. This strategy would enable the deployment of more com-
plex models and the efficient processing of large-scale data streams from numerous
distributed smartphone sensors, paving the way for scalable urban SHM networks.

The proposed regression-based SHM system, with its focus on accessible sensing and

efficient learning, holds significant potential for a wide range of practical applications in

civil engineering and infrastructure management:
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¢ Integration with Building Information Modeling (BIM): Seamlessly integrate the SHM
system with BIM platforms to create a comprehensive structural health management
ecosystem. This integration would provide real-time performance data, enabling
informed decision-making regarding maintenance scheduling, repair strategies, and
long-term lifecycle management of assets.

¢ Data-Driven Predictive Maintenance: Enable proactive and data-driven predictive
maintenance strategies for buildings by continuously monitoring their structural
health. This approach allows for the early identification of potential issues before
they escalate into critical failures, thereby reducing costly emergency repairs and
minimizing operational downtime.

*  Crowd-Sourced Urban SHM Networks: Facilitate the development of large-scale,
crowd-sourced SHM networks by leveraging the ubiquitous smartphones of build-
ing occupants. This innovative approach offers a highly cost-effective and scalable
solution for continuously monitoring the health of a vast number of urban structures,
contributing to enhanced urban resilience and safety.

5. Conclusions

This paper introduces a novel and specifically tailored Echo State Network regres-
sion framework for continuous structural health monitoring, effectively addressing key
limitations inherent in traditional classification-based methods. By directly predicting
a continuous damage metric from sensor data, our approach circumvents the need for
extensive labeled datasets on damaged structural states. The inherent architecture of the
ESN facilitated efficient training, even with limited data representing damaged conditions,
thereby significantly reducing the data acquisition burden often associated with classi-
fication techniques. Moreover, the ESN’s reservoir computing properties demonstrated
enhanced resilience to sensor noise and environmental variations, leading to more reliable
and robust damage assessments.

Our ESN approach aims to maximize utility even from lower-fidelity data, potentially
enhancing the feasibility of using more accessible, lower-cost sensors in SHM. Future
research will focus on expanding the applicability of this ESN regression framework to a
wider range of structural types and operational conditions. Further investigations will also
explore refinements to the ESN architecture, including optimization of reservoir parameters
and the incorporation of attention mechanisms, to achieve even greater accuracy, robustness,
and interpretability in continuous structural health monitoring.
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Appendix A
Proof of Theorem 1. To find the required stability conditions, We select Lyapunov fun-

vtion as )
K) = | Wourlo)|* = 0 (A1)

Based on the Lyapunov stability theory, if a positive definite function V (k) > 0 and its time
derivative AV (k) < 0 hold for the error dynamics of a neural network, then V (k) — 0, i.e.,
the output tracking error e(k) — 0.

Now we need to prove that AV (k) < 0. Because

AV(k) = V(k+1) — V(k)

= Hwout )\(k) (k)e H - HWout (A2)
= A(k)? |x(R)e(k) TI|* — 2 (k) || Wourx (K)e (k) ||
There exist a constant § > 1, such that
(@) if [|pe(k +1)[| > [le(k)]],
= 2M(K) || Wourx (k)e(k) " |
=27 (k) [le(k) ||| Be(k +1) = Ae(k) — p(k)l|
—2A (k) [le(k)" e(k + 1) — e(k) T Ae(k) — e(k) (k)|
T T T (A3)
< —2A(K)[le(k)" Be(k + 1) || +2A(k)e(k)" Ae(k) +2A (k) [[e(k) " (k)|
< —2A(k)lle(k) |12 + 24 (k) Alle(k) |12 + A (k) [le (k)1 + A (k) | (K) |

=M [le(k)I? + 24 (k) Alle (k)1 + A k) [l (k) |

AV (k) = Ak)||x(k)e(k) 1> = 22 (k) [Wourx (k)e(k) |
<MKl (R)e(R)T 1 = Alk)lle(R) |1 + 22 (k) Alle (k) [ + A(Kk) | (k) || (Ad)

— A1 - 24— AL 12 A o2

1+ [|x(k)?|
where o = A(k)[1 — 2A — A(k) {%5], & = max(||x(k)?]).
Finally,
AV (k) < —oe? (k) + A (k)| (k)|
When

—0e® (k) > A(k) || (k) |12
then AV (k) < 0. So
k) — 28 i 2

(b) If the condition |e(k +1)| < |e(k)| is satisfied, then AV (k) = 0, which implies that
V (k) is constant, as well as Wy (k). Since |e(k + 1)| < |e(k)|, we can conclude that e(k) is
bounded. O
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