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Abstract: High ambient temperature poses a significant public health challenge, particularly
for low-income older adults (LOAs) with preexisting health and social issues and dispro-
portionate living conditions, placing them at a vulnerable condition of heat-related illnesses
and associated public health risks. This study aims to utilize advanced statistical regression
and machine learning methods to analyze complex relationships between elevated temper-
ature, physical activity (PA), sociodemographic factors and fall incidents among LOAs. We
collected data from a cohort of 304 LOAs aged 60 and above, living in free-living conditions
in low-income communities in Central Florida, USA. Zero-inflated Poisson regression was
employed to examine the linear relationships, which reflect the zero-abundant nature of fall
incidents. Then, an advanced machine learning approach—the mixed undirected graphical
model (MUGM)—was employed to further explore the intricate, nonlinear relationships
among daily PA, daily temperature, and fall incidents. The findings suggest that more
moderate-to-vigorous PA is significantly associated with fewer fall incidents (RR = 0.90,
95% CI: (0.816, 0.993), p = 0.037), after adjusting for other variables. In contrast, elevated
temperature is strongly linked to a greater risk of falls (RR = 1.733, 95% CI: (1.581, 1.901),
p <0.0001), potentially reflecting seasonal influences. Although higher temperature in-
creases fall events, this effect is mitigated among LOAs with increased sedentary behavior
(p < 0.0001). Additionally, findings from the MUGM reinforce the intricate nature of falls.
Fall counts were highly correlated with race and positively associated with temperature,
highlighting the importance of tailoring fall prevention strategies to account for seasonal
variations and health disparities, and promoting PA.

Keywords: high temperature; falls; physical activity; older adults; machine learning; mixed
undirected graphical models; zero-inflated Poisson regression

1. Introduction
1.1. Background and Motivation

Rising temperature has become one of the most critical public health concerns in recent
years, significantly impacting human health in both direct and indirect ways [1]. Together

Information 2025, 16, 442

https://doi.org/10.3390/info16060442


https://doi.org/10.3390/info16060442
https://doi.org/10.3390/info16060442
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0009-0006-3414-2922
https://orcid.org/0000-0002-4376-9536
https://orcid.org/0000-0002-6434-1387
https://orcid.org/0000-0002-6773-7387
https://orcid.org/0000-0002-7255-6425
https://orcid.org/0000-0001-8506-5812
https://orcid.org/0000-0001-9769-8131
https://doi.org/10.3390/info16060442
https://www.mdpi.com/article/10.3390/info16060442?type=check_update&version=2

Information 2025, 16, 442

2 of 20

with other natural and human-made health stressors, extreme heat events are increasingly
becoming more frequent and severe, and are worsening health disparities [2]. Whether
due to excessively high or low temperatures, these events contribute to an increase in
respiratory, cardiovascular, and cerebrovascular diseases, as well as related injuries and
mental health illnesses, resulting in more fatalities than all other weather-related disasters
combined [3]. Moreover, factors such as population growth, aging, urbanization, and
socioeconomic development can either exacerbate or mitigate heat-related risks [3]. Consid-
ering current trends in climate change progress and the rapidly growing aging population,
heat-related mortality and morbidity are expected to rise [4]. Social, environmental, and
economic factors including poverty, racial disparities, limited healthcare access, inadequate
education, and unhealthy or unsafe living environments can greatly contribute to health
inequities and may have greater impacts on vulnerable populations [5,6]. Among these
groups, low-income older adults (LOAs), who bear preexisting health and social issues
and disproportionate living conditions, face significant challenges in adaptation abilities or
physically responding to extreme weather conditions, placing them at a heightened risk
of heat-related illnesses and associated public health risks [7]. Because of their multiple
pathophysiological conditions, extreme heat poses a significant risk when engaging in
physical activity [8]. The ability to regulate temperature deteriorates due to age-related
changes in sweat gland function and blood circulation, making them highly susceptible to
heat-related illnesses, such as heat exhaustion and heat stroke, even with mild-to-moderate
activity levels [8,9]. Therefore, it is essential for older adults to take extra precautions
during hot weather, including staying hydrated, avoiding strenuous activity during hot
hours of the day, and seeking cool environments when necessary [10,11]. On the other
hand, physical activity (PA) has long been studied as a protective factor against falls, with
numerous studies highlighting its role in improving balance, strength, and coordination, all
of which contribute to a reduced risk of falling in older adults and individuals with various
health conditions. Engaging in regular PA, such as balance exercises and aerobic activities,
can enhance physical fitness and functionality, hence significantly lowering the incidence
of falls [12-14].

1.2. Related Work

Limited research has been conducted on the relationship between extreme heat, PA,
and falls among LOAs despite growing concerns. LOAs with limited mobility are less likely
to engage in PA, which is a key factor in maintaining overall health, healthy aging, and
preventing chronic conditions [15]. A recent study revealed that extreme heat negatively
affects PA and sleep pattern [16]. In other words, rising temperature has been found
to lead to an increase in sedentary behavior (SB). This finding is important given the
emerging evidence that SB is a risk factor for multiple disorders, including cognitive
decline, weight gain and obesity, and cancer risk [16]. These negative effects are especially
concerning for individuals with limited access to air conditioning, particularly in lower-
income neighborhoods. Furthermore, individuals with cognitive impairments such as
Alzheimer’s disease, dementia, or hereditary and degenerative diseases of the central
nervous system were associated with elevated risk of mortality on extremely hot days and
increases in warm-month temperatures [17,18]. Numerous studies consistently show that
LOAs or older adults who reside in rural areas are significantly less likely to participate
in regular PA compared to their higher-income peers, mainly due to barriers such as
limited access to facilities, transportation difficulties, and a lack of awareness about the
benefits of exercise [19-21]. Environmental factors further enhance these challenges, as high
temperature influences PA levels, limits opportunities for physical movement, and increases
health risks such as falls [11,22]. Nonetheless, many LOAs have limited control over their
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built environments, restricted access to healthcare, and fewer resources to advocate for
community-level changes that could help mitigate the impact of elevated temperature
on their health and well-being. This disparity in maintaining an active lifestyle further
exacerbates health inequities within the older population.

Traditional statistical approaches, such as mixed-effect and time-series modelings,
have been widely used to examine the impact of ambient temperature and PA [16,22-24].
For example, Tang et al. proposed a Zero-inflated Smoothing Spline method to model
single-cell temporal data, which encompassed two components for modeling gene ex-
pression patterns over time and handling excessive zeros [25]. However, these regression
methods often struggle to capture the sophisticated relationships and interactions that
may exist among variables. In contrast, machine learning techniques offer greater flexibil-
ity in modeling intricate patterns and dependencies without imposing strict parametric
assumptions. Many studies utilized the supervised models similar to traditional regres-
sion models, including support vector machine, tree-based and boosting algorithms, to
electronic health record data to predict fall events in the older population [26-28]. Other
studies employed unsupervised models; for instance, Yuwono et al. utilized a single waist-
worn tri-axial accelerometer, combining digital signal processing, clustering, and neural
network classifiers—specifically, an Augmented Radial Basis Function neural network
with a Multilayer Perceptron—to classify fall and activity signals, demonstrating improved
sensitivity and specificity [29]. Specifically, recent advancements in graphical models in-
clude the work by Khan et al. [30], who introduced picture fuzzy directed hypergraphs
to enhance decision-making in complex environments such as hazardous chemical man-
agement, and the study by Li et al. [31], which proposed a novel method for estimating
multi-attribute Gaussian copula graphical models, extending the application of graphical
models to more flexible and heterogeneous data structures. Nevertheless, few studies have
successfully combined statistical and machine learning approaches, making it difficult to
fully uncover more complex, nonlinear associations and gain a deeper understanding of
the dynamics influencing fall in the context of temperature variations. Hence, integrating a
hybrid framework allows researchers to validate findings through interpretable parametric
models while leveraging the power and flexibility of machine learning to detect subtle
patterns, interactions, and potential high-order effects, which presents a promising avenue
for advancing fall risk research.

1.3. Observation and Hypothesis

To better understand how outdoor temperature affects older adults in real life, we
conducted a pilot study exploring their daily habits, challenges, and fall risk during hot
weather. In this pilot study (N = 41) [32], LOAs are more likely to have less time spent
on intense physical activity but a higher number of falls in summer months compared to
fall (onsite survey interviews with a focus group of 21 individuals; most were Spanish
speakers). About 71% felt uncomfortable on a hot day, 22% reduced PA, 22% did not use
air conditioning and only 36% stayed hydrated. The top three barriers were health issues
(20%), lack of time (11%), and transportation difficulty (9%). More than 50% of participants
stated that heat or hot weather affected their sleep pattern, which aligns with a previous
study [16], in addition to daily food intake and hydration; 32% reported that heat impacted
their social connections, and 47% had no access to community resources [32].

Building on these results, we expanded the analysis to a larger dataset (N = 304) to
examine seasonal trends in PA, temperature, and fall incidents over time. As illustrated in
Figure 1, the fall counts, represented by red bars, show notable peaks in October 2024 (ten
incidents), July 2023 (eight incidents), and August 2023 (seven incidents). Between April
2023 and December 2024, the average daily temperature (blue line) follows a sinusoidal
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pattern, reaching its highest in the summer months (approximately 80 °F) and its lowest
levels during winter (around 60 °F). Meanwhile, the PA levels represented by the orange line
with a 95% confidence interval demonstrates a fluctuating relationship with temperature.
Particularly, time spent on moderate-to-vigorous physical activity (MVPA) was increasing
during transitional months (August—October 2023), and decreasing during summer time
(Figure 1B). On the contrary, time spent on SB peaked during the summer months of
2024 and maintains an inverse relationship with temperature, rising during colder months
and decreasing in warmer periods (Figure 1A). Although fall events tend to be more
frequent during transitional seasons, such as August—October 2023 and October-December
2024, they do not always coincide with peak PA levels, suggesting that other factors may
contribute to fall risks.
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Figure 1. Observed time spent in physical activity (PA) (minutes), temperature (Fahrenheit),
and fall incidents during the study period (April 2023-December 2024). (A) Sedentary behavior.
(B) Moderate-to-vigorous PA.

1.4. Contributions

This study aims to examine the role of ambient outdoor temperature in physical
activity engagement and fall risks with a longitudinal cohort of older adults. Based on
our observation, we hypothesize that higher temperatures will be associated with lower
PA level or higher sedentary times, which in turn leads to increased risk of falling or fall
events among LOAs. Furthermore, we explore sociodemographic factors (age, gender,
race/ethnicity, education level, living condition, financial difficulty, and self-rated health)
in these associations. However, fall incidents were infrequent and highly sparse in our data,
as illustrated in Figure 2. The sparsity in event occurrence, along with the excess zeros in
the dataset, may lead to overdispersion, where the variance exceeds the mean.

We proposed a zero-inflated Poisson (ZIP) regression model, which is well suited for
count data with an overabundance of zero values, to address the aforementioned issues. ZIP
regression is commonly used in public health research due to its ability to account for these
structural zeros, assuming that with probability 7 the only possible observation is 0, while
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with probability 1 — 7z, the count follows a Poisson (A ) distribution [33,34]. Although the ZIP
regression reflects linear relationships, a more comprehensive and rigorous investigation is
needed to assess the impacts of extreme heat on falls as there is recent evidence of the mixed
and multi-factorial nature of fall events, both at individual and community levels [35].

To capture complex, potentially nonlinear relationships within the data, we devel-
oped and employed a mixed undirected graphical model (MUGM), an advanced machine
learning analytical approach tailored for this purpose. MUGM, an unsupervised machine
learning technique, is increasingly applied in healthcare and public health research due
to its flexibility and interpretability [36,37]. The application of MUGM in this study offers
several key technical contributions. Unlike traditional regression methods, MUGM offers
an innovative framework for addressing the challenges in high-dimensional statistics,
where the number of features is significantly larger than the number of observations, and
for uncovering complex, nonlinear or high-order associations between variables, without
relying on strict parametric assumptions such as the distribution type, the parameter addi-
tivity, the predictor linearity, or homoscedasticity [38]. MUGM also enables the integration
of mixed data types (continuous and categorical), making them ideal for analyzing diverse
health-related variables, especially in older adult populations. Moreover, graphical models
can visually map out interactions between variables and enhance interpretability, providing
valuable insights into the multifaceted determinants of falls.
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Figure 2. Histograms of (A) fall incident, (B) average moderate-to-vigorous PA time (minute),
(C) average sedentary behavior time (minute), and (D) average outdoor temperature (°F). Colors
were chosen for visual clarity and are used consistently throughout: pink = fall incident, dark blue =
temperature, and orange = PA (MVPA, SB).

This two-pronged analytical approach demonstrates the complementary effectiveness
of both traditional statistical and advanced machine learning methods, providing a more
nuanced understanding of the relationships between factors associated with fall incidents.
As we aim to explore adaptation mechanisms in the context of socio-environmental dis-
parities, the hybrid approach strengthens our ability to address fall prevention holistically,
bridging the gap between theoretical insights and practical applications.
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The remainder of this paper is organized as follows: Section 2 introduces the study
design, participants, and the proposed methods for fall incident modeling and prediction.
The main analysis and results are described in Section 3. Lastly, we discuss the principal
findings, limitations of the study, and conclude the article with future work in Section 4.

2. Materials and Methods

We introduce the study design, participant recruitment, and study variables, followed
by data analysis using ZIP regression to model and estimate fall incidents in LOAs. Lastly,
we apply MUGM to systematically identify possible (nonlinear) relationships among daily
PA, temperature, and fall counts in older adults.

2.1. Study Design and Participants

A total of 304 community-dwelling individuals aged 60 and older, from low-income
communities and living in free-living conditions, were recruited in the central region of
Florida, USA. The study ranged from April 2023 to December 2024 with 11 independent
living communities and senior centers. The inclusion criteria consist of (1) meeting the
low-income criteria based on the 2019 Poverty Guidelines [39], (2) having the ability to walk
with or without an assistive device but independently from the assistance of another person,
(3) having no cognitive impairment, (4) living independently in homes or apartments, and
(5) being fluent in English and/or Spanish. Participants completed qualitative interviews,
including but not limited to self-report questionnaires of sociodemographic and self-rated
health. In addition, each individual was provided a wrist-worn wearable device, named
ActiGraph GT9X Link (ActiGraph Corp, Pensacola, FL, USA) and given instructions on
how to wear it for 7 consecutive days.

2.2. Study Variables

Sociodemographic information was obtained through self-report questionnaires, as
described in [40]. Participants provided their age in years and their gender as a binary
categorical variable. Race and ethnicity consisted of non-Hispanic Asian, non-Hispanic
African American, Hispanic, and non-Hispanic White. The education level was categorized
into two levels: high school or below, and college or higher. Although the financial difficulty
was at multiple levels, it was grouped and simplified into adequate or less, and more than
adequate. Participants were classified as either living alone or living with others. Self-rated
health status was measured using a five-point Likert scale, and individuals were grouped
into excellent or very good (class 1 and 2), and good or below (remaining classes).

Participants wore the accelerometer on the non-dominant wrist for 7 consecutive days,
which continuously monitored various physiological metrics, including PA. The devices
were set up to record accelerations at 30 Hz. The raw accelerometer data were processed
using the R package GGIR (version 2.4.0) [41], which provided daily estimates of time spent
in different activity intensities: sedentary behavior (SB), light-intensity physical activity
(LPA), and moderate-to-vigorous physical activity (MVPA). Particularly, the Euclidean
Norm Minus One threshold was used to classify the time spent in SB (<30 milligravity
(mg)), LPA (3099 mg), and MVPA (>100 mg) [42,43].

Daily temperature data for Central Florida (Orlando, FL, USA), spanning the study
period (April 2023 to December 2024), were retrieved from the publicly available Visual
Crossing weather data repository [44]. The recorded average daily temperatures ranged
from 47.5 to 89.4 °F and were incorporated into subsequent analyses.
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2.3. Data Analysis

Descriptive statistics of participant characteristics are presented as mean and stan-
dard deviation for continuous variables, and as frequency and percentage for categorical
variables. Missingness was observed and imputed using the Kalman smoothing method
for time-series data [45]. All analyses were performed using the R Statistical Software
(version 4.4.1) [46] and a p-value < 0.05 was considered statistically significant.

2.3.1. Zero-Inflated Poisson (ZIP) Regression

The most widely used regression model for count data, particularly to model fall
events, is probably the Poisson regression. For observation i = 1,---,n, let Y =
(Yy,- - ,Yn)—r denote the vector of independent response variables, and let X € R"*?
denote the matrix with rows x; = (x;1,- -, x;,). Then,

Y; ~ Poisson(A;), where A; = exp(Bo + B1xi1 + - - + BpXip)- 1)

The above generalized linear model incorporates a Poisson random component, a
linear predictor function, and a log link [34]. Poisson regression models are commonly
considered for count responses and assume that the count follows Poisson distribution,
with mean A equaling its variance. The estimated coefficients indicate the expected change
in the log of the mean count for each unit increase in the corresponding predictor. Instead
of using the log-transformed mean count directly, the inverse of Equation (1) is commonly
applied by exponentiating the model coefficients to derive rate ratios [47]. To account
for the excess amount of zeros, an extension model, known as the zero-inflated Poisson
(ZIP), model is introduced. This model includes two sets of regression parameters: one for
estimating the Poisson mean and another for determining the probability of an excess zero,
providing a latent class interpretation [33]. Thus, we assume that

v 0 with probability 7z; + (1 — 71;)e "
_ .
l k  with probability (1 — ni)g*/\i%, k=1,2,---

where 71 is the probability of being a zero. The parameters A; and 7; satisfy logit(A;) = x. B
and logit(r;) = z;'n, in which B = (B1,- -+, Bm,) " is the (m; x 1) vector of parameters
associated with the Poisson distribution; 7 = (171, -+ ,fjm,) | is a (my x 1) vector of param-

and z are the vectors of covariates

1xmy) i(1xmy)
for the ith individual for Poisson and excess zeros, respectively [33,48]. Hence, the model

eters associated with the excess zeros; and x;E

assumes that with probability 7t;, the only possible observation is 0, and with probability
1 — m;, the count follows a Poisson(A;) distribution. In this study, all variables, including
average outdoor temperature, physical activity intensities (MVPA, SB), and sociodemo-
graphic factors, were included in the Poisson count component of the ZIP model, while no
predictors (intercept-only) were used in the zero-inflation component due to the limited
number of fall incidents. The Poisson count component estimates how these variables
influence the expected number of falls among participants who are at risk. In contrast, the
zero-inflation component models the baseline probability that a participant belongs to the
structural zero group, that is, individuals with no underlying risk of falling during the
study period.
The likelihood function for this zero-inflated model is then derived as

TT; AV
£,y = T (47 +e ) -m)) TT ((1 - m)eﬁ;l,!). ®

Y;=0 ! Y;>0
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In our study, no participants experienced any falls at the start of the observation
period, meaning that the count of fall incidents for all subjects begins at zero. However,
we hypothesize that various covariates, such as PA, temperature, and sociodemographic
factors, may influence the likelihood of falls, potentially increasing the risk of incidents.
The outcome of interest, fall count, is assumed to follow a Poisson distribution, and the
initial full model is specified as

Falli ~ ZIP(A[, 7'[,') (4)
where A; = exp(x;'B) is the expected count of falls for participant i from the Poisson
component, and 71; = 1?2:( ;}7(21) is the probability that participant i belongs to the structural

zero group, modeled with an intercept-only zero-inflation component. Here, x; includes all
covariates listed above, and 8 and 7 are the corresponding coefficients in the Poisson and
zero-inflation components, respectively.

We report the relative risk (RR) estimates derived from the count component to inter-
pret associations between covariates and fall likelihood. All covariates were standardized
prior to analysis. Model selection was performed on the count component using backward
elimination based on the Akaike Information Criterion (AIC) and Bayesian Information
Criterion (BIC), systematically removing non-significant predictors to achieve a more par-
simonious model. The ZIP model was implemented in R using the pscl package [49]
and the reproducing code is provided in the Supplementary Materials. The ZIP model is
summarized in Algorithm 1.

Algorithm 1 Pseudocode for Zero-Inflated Poisson (ZIP) Regression

Input: Data matrix X, response vector Y
Output: Parameter estimates 3 and 7

1: Estimate the probability that each zero in Y comes from the zero-inflation component
using Equation (2).

2: Estimate the parameters (") and () by maximizing the likelihood using Equation (3).

2.3.2. Mixed Undirected Graphical Model (MUGM)

The MUGM was utilized to examine the associations between fall-related risk factors
in a dataset consisting of both continuous and categorical variables. This graphical-based
approach leverages machine learning to provide flexible and adaptable solutions for han-
dling diverse data types [38,40]. A graphical model is an unsupervised machine learning
technique that can uncover the joint probability distribution as well as the strength and
direction of relationships among a set of random variables [50]. In undirected graphi-
cal models, also referred to as Markov random fields or Markov networks, each node
corresponds to a random variable, and the undirected edges between nodes represent
associations between those variables. If two nodes are connected by an edge, they are
considered adjacent, denoted as X~Y. Conversely, if there is no edge between two nodes,
it indicates that the variables are conditionally independent, given all other variables, and
represented as X L Y|rest.

The probability density function f of an undirected graph is derived as

£ = 5 [T e, ®)

ceC

where C indicates a collection of cliques in the graph, ¢(x.) is a non-negative potential
function of the input nodes, and U is a normalization constant obtained by integrating or
summing the product with respect to x.. A graphical model can specify higher-order de-
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log f(x;,z;;¥) =

pendencies within a joint probability distribution [50]; however, only pairwise interactions
are presented in this study. The model includes the following variables:

*  Continuous variables: Daily outdoor temperature, MVPA, SB, age, and fall incidents.
*  Categorical variables: Gender, race/ethnicity, education level, living condition, finan-
cial difficulty, and self-rated health.

The mixed undirected graphical model (MUGM) can learn from a mix of continuous
and discrete variables [38,50,51]. The density of pairwise mixed graphical model for p
continuous variables x and g categorical variables z is formulated as

flx,z;Y) cxexp(EZ stxsxt—i—szsxs—l—ZZps] xs—i—ZZ(pr] Zr, Z ) (6)

s=1t s=1j=1 j=1r=1

where x; and x; denote the sth and tth of p continuous variables, respectively; and z,
and z; denote the rth and jth of g discrete variables, respectively. The joint model pa-
rameter space is ¥ = [{ﬁst}, {as}, {psj}, {gbrj}]. The model parameters include B¢, which
represents continuous—continuous edge potential; s, which signifies continuous edge
potential; psj(z;), which denotes continuous-discrete edge potential; and ¢,;(z, z;), which
indicates discrete—discrete edge potential. The MUGM extends two well- estabhshed single-
modal models: when all variables are continuous, it simplifies to a multivariate Gaussian
distribution and to Ising models when all variables are discrete [51,52].
The parameters in ¥ can be estimated by minimizing the negative log-likelihood:

— Y log f(xi,z;; ¥) 7)
i=1
where
2 2 ,Bstxsxt + 2 KsXs + Z ZPS] )xs + 2 2 ‘Pr] Zr,Z IOgU( )- (8)
s=1t= s=1j=1 j=1lr=

Here, U(Y) is the normalizing constant that ensures the joint density f(x;,z;;'¥) integrates
to one over the support.

The edges in MUGM are selected using penalization to ensure a sparse graphical
model. The likelihood is maximized subject to edge penalization by solving the following
regularized optimization problem:

min £, (¥) = +7<ZﬁstI+ZHPSJHZ+ZH%HF> ©)

r<j

where the tuning parameter y controls the regularization. Since there are three types of
edges in pairwise mixed model (Bst, ps; and ¢;;), we use ¢1-norm for scalars, £,-norm for
vectors and Frobenius norm for matrices. An accelerated proximal gradient method can
then be implemented to solve this optimization problem [51].

The Extended Bayesian Information Criterion (EBIC) was employed for model selec-
tion as it outperforms the standard BIC in high-dimensional feature spaces [53]. Using
EBIC as the model performance metric, 10-fold cross-validation was employed to select
the optimal regularization parameter 7yopt. Cross-validation method involves randomly
splitting the data into ten subsets, estimating a graph from nine of them while testing the
negative log-likelihood on the remaining subset. This procedure is repeated with each set
acting as the testing fold, resulting in ten performance metrics, and the optimal regulariza-
tion parameters were selected based on the best performance. The entire dataset is then
used to retrain the model for final reporting. Other methods for selecting the regularization
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parameter consist of AIC, BIC, Stability Approach to Regularization Selection [54], and
Stable Edge-specific Penalty Selection [52]. The resulting conditional dependency graph
allowed us to visualize the structure of fall-related risks, for instance, whether MVPA is
more connected to temperature or to sociodemographic features like gender or age.

The MUGM was performed using the mgm package (version 1.2-14) [55]. The resulting
graph was visualized with the qgraph package (version 1.9.5) [56] and the reproducing
code is provided in the Supplementary Materials. The edges in the graph, which represent
associations between two variables while controlling for all other variables, are weighted,
and their strength is indicated by regression coefficients. The thickness of these edges
corresponds to the strength of these associations. Furthermore, the edge colors signify
the direction of the relationships: green denotes positive associations and red denotes
negative associations. The weighted adjacency matrix, which contains the regression
weights for each pair of variables, was used to construct the graph, allowing for a more
detailed representation of the interdependencies between variables. The MUGM method is
summarized in Algorithm 2.

Algorithm 2 Pseudocode for Mixed Undirected Graphical Model (MUGM)

Input: A dataset features X, including both continuous and categorical variables
Output: Estimated undirected graph

1: Train the mixed undirected graphical model using Equation (9).

2: Perform 10-fold cross-validation to select the optimal regularization parameter 7opt
based on EBIC.

3: Update the graphical model using the selected optimal yopt-

4: Visualize the undirected graph with nodes of the same category positioned closely.

3. Results

The mean age of participants is 74.71 years (SD = 7.23), with a majority female popula-
tion (86.2%). Among them, 38.5% are Non-Hispanic African American, 29.6% are Hispanic,
22.7% are Non-Hispanic White, and 7.2% are Non-Hispanic Asian. Regarding education
level, 53.6% attended high school or below, while 45.8% had some college or higher. Most
participants (77.3%) report more than adequate financial resources, and 55.3% live alone.
Moreover, 63.8% of the participants describe their general health as good or below. Ac-
celerometer data reveal that participants engage in an average of 729.84 min a day of SB,
204.70 min a day of light-intensity physical activity (LPA), and 31.35 min a day of MVPA.
Notably, 86.8% of participants do not experience any fall throughout the study period,
although 39 of them have 1 or 2 fall events (10.9% and 2%, respectively). Table 1 presents
the descriptive characteristics of the 304 older adults. A correlation matrix between contin-
uous variables are provided in Table 2. Specifically, temperature is significantly positively
correlated with fall (0o = 0.13, p < 0.001), suggesting that higher ambient temperatures
may be associated with increased fall risk. SB is significantly negatively correlated with
MVPA (o = —0.10, p < 0.001) and positively with age (0 = 0.09, p < 0.001), indicating that
older individuals tended to be more sedentary and less physically active. MVPA shows a
moderate negative correlation with age (o = —0.304, p < 0.001), consistent with age-related
declines in activity levels. Additionally, MVPA is inversely associated with fall incident
(p = —0.036, p = 0.002).
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Table 1. Descriptive analysis of participant characteristics (N = 304).

Study Variables Participants, N = 304
Sociodemographic
Age (Years), mean (SD) 74.71 (7.23)
Gender
Female 262 (86.2%)
Male 42 (13.8%)
Race/ethnicity
Non-Hispanic Asian 22 (7.2%)
Non-Hispanic African American 117 (38.5%)
Hispanic 90 (29.6%)
Non-Hispanic White 69 (22.7%)
Education level
High school or below 163 (53.6%)
College or higher 138 (45.8%)
Financial difficulty
Adequate or less 64 (21.1%)
More than adequate 235 (77.3%)
Living condition
Alone 168 (55.3%)
With others 133 (43.8%)
Self-rated health
Excellent or very good 107 (35.2%)
Good or below 194 (63.8%)
Physical activity: Accelerometer measurement
SB ! (mins/ day), mean (SD) 729.84 (112.88)
LPA 2 (mins/ day), mean (SD) 204.70 (65.85)
MVPA 3 (mins/day), mean (SD) 31.35 (27.05)
Fall events
None 264 (86.8%)
1 33 (10.9%)
2 6 (2.0%)
More than 2 1(0.3%)

1 SB, sedentary behavior. 2 LPA, light-intensity physical activity. > MVPA, moderate-to-vigorous physical activity.

Table 2. Spearman correlation matrix of continuous variables.

Temperature SB MVPA Age Fall events
Temperature 1.000
SB 0.020 1.000
MVPA —0.008 —0.098 *** 1.000
Age 0.018 0.089 *** —0.304 *** 1.000
Fall events 0.131 *** —0.003 —0.036 ** 0.015 1.000

P <0.01, % p<0.001.

Table 3 presents the results of the ZIP regression examining the associations between
average temperature, mean MVPA and SB times, and sociodemographic factors with fall
counts. Exponentiating the coefficient for mean MVPA yields the estimate of fall counts at
e0105 = 0.9, indicating that a higher mean MVPA is significantly associated with fewer
fall incidents (95% CI: (0.816, 0.993), p = 0.037) after adjusting for other variables. This
suggests that increased engagement in MVPA may serve as a protective factor against
falls. On the other hand, higher temperatures are strongly associated with increased fall
incidents (%% = 1.733, 95% CI: (1.581, 1.901), p < 0.0001), potentially indicating seasonal
effects, where environmental factors such as elevated temperatures as well as changes
in activity patterns or behaviors contribute to fall risk. Moreover, being Non-Hispanic
White is significantly associated with higher fall events (p < 0.0001), which may reflect
racial or ethnic differences in unmeasured health conditions, activity patterns or access to
healthcare. The significant negative interaction between temperature and SB (p < 0.0001)
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suggests that although higher temperatures increase fall risk, this effect is mitigated among
older adults with increased sedentary behavior. Similarly, the negative interaction between
two PA levels (p = 0.0004) may imply that engaging in both activity types may have a
compensatory or protective effect against falls, though further research is needed to validate
this relationship. In addition, the model revealed a statistically significant zero-inflation
component, with an intercept estimate of —0.682 (p = 0.017) (Supplementary Materials).
This indicates that approximately 33.6% of the zeros in the outcome variable are likely
structural zeros, that is, not generated by the Poisson count process. Since no covariate
was included in the zero-inflation part, the probability of being an excess zero is assumed
to be constant across observations. This result supports the appropriateness of using a
zero-inflated model over a standard Poisson model for these data.

Table 3. Zero-inflated Poisson final model results.

Dependent Variable = Fall Incidents

Independent Variables Estimate (f) Standard Error p-Value
Intercept —1.927 0.463 <0.0001
MVPA —0.105 0.050 0.037
Temperature 0.550 0.047 <0.0001
SB 0.023 0.048 0.636
Age —0.006 0.006 0.312
Race/ethnicity

Non-Hispanic African American 0.197 0.152 0.194

Hispanic 0.177 0.153 0.247

Non-Hispanic White 0.839 0.152 <0.0001
Financial difficulty

More than adequate 0.149 0.095 0.116
MVPA x Temperature —0.066 0.051 0.191
Temperature X SB —0.206 0.049 <0.0001
MVPA X SB —0.169 0.048 0.0004

Given the significant effects of PA and average temperature on fall counts observed in
the ZIP regression, we extended our analysis using the MUGM to capture more complicated,
potentially nonlinear associations. The MUGM included 11 variables (nodes), including fall
events, and the nodes are color-coded by category: the fall events variable is shown in pink,
PA measures (MVPA and SB) in orange, temperature in dark blue, and sociodemographic
variables in light blue. In general, 79.3% of all possible edges were non-zero, suggesting
a dense and interconnected network. Each variable was connected to at least one other
through a non-zero pairwise association, and a total of 46 edges were identified (Figure 3).
Of these, 3 edges (6.5%) demonstrated moderate associations (defined as edge weights
between 0.4 and 0.7), while the remaining 43 edges (93.5%) showed weak associations
(edge weights less than 0.4). We considered any edge with a weight below 0.01 as negligible
and excluded these from the final visualization. Full details of the weighted pairwise
associations can be found in Table 4. As indicated, race/ethnicity, gender, and fall incidents
are among the strongest weights in this network.

Several notable patterns emerge, including a positive association between fall events
and temperature, suggesting that higher temperatures may be linked to increased fall risk,
and a moderate association between fall events and race, further supporting findings from
our ZIP regression. Falls were also negatively associated with age, implying that older
individuals reported fewer falls, which may reflect more cautious behavior, less mobility,
or under-reporting. Additionally, falls showed a moderate association with race/ethnicity,
as indicated by a thick gray edge, pointing to potential disparities linked to racial or
socio-environmental factors. Age was moderately and negatively associated with MVPA,
indicating a decline in PA with advancing age. MVPA is weakly negatively linked to falls,
while SB is weakly positively associated with falls. These trends suggest that both higher
PA and lower sedentary time may be modestly protective against falls. Sociodemographic
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variables form a dense cluster, with race/ethnicity serving as a central node connected
strongly to self-rated health, gender, and education level. Self-rated health is also related
to education level and gender, highlighting the interconnectedness of social determinants.
Meanwhile, participant age was moderately associated with financial difficulty.

Figure 3. Mixed undirected graphical model estimated the associations among fall incident (Fall),
average temperature (Temp), physical activity intensities (MVPA and SB), and sociodemographic
factors (Age, Gendr, Race, Edu, Living, Financ, and Health) of 304 low-income older adults. Edges
represent conditional dependencies and their thickness reflects the strength of the association: thicker
edges indicate stronger associations. Edge color indicates direction: green for positive and red
for negative. Gray edges represent relationships involving at least one categorical variable, whose
sign cannot be determined. Node colors were chosen for visual clarity and are used consistently
throughout to represent different variable categories: dark blue = temperature, orange = PA (MVPA,
SB), pink = fall events, and light blue = sociodemographic factors.

Table 4. Weighted adjacency matrix of 11 features (nodes) in the Mixed Undirected Graphical Model
(green: positive associations; red: negative associations; black: undefined sign; blank cells: no direct
relationship between features).

Temp MVPA SB Fall Age Gendr Race Edu Living  Financ
Temp
MVPA
SB 0.087 0.118
Fall 0.081
Age 0.286 0.031
Gendr 0.091 0.037 0.163 0.093
Race 0.121 0.174 0.084 0.460 0.220 0.596
Edu 0.051 0.033 0.066 0.148 0.093 0.229
Living 0.090 0.148 0.121 0.234 0.052 0.114
Financ 0.034 0.150 0.205 0.266 0.116 0.142 0.041
Health 0.095 0.069 0.031 0.363 0.433 0.315 0.126 0.158

Note: Variable names in this table align with node labels in Figure 3.



Information 2025, 16, 442

14 of 20

For each node, the optimal regularization parameter y and corresponding EBIC values
used for model selection are reported in Table 5. Lower EBIC values indicate that a variable
is more stably and informatively connected within the graphical structure. For example,
variables such as gender (244.44), general health (402.26), and living status (415.42) had
comparatively low EBIC values, implying simpler and more stable conditional associations
with other variables. In contrast, race had the highest EBIC value (1197.07), which may
reflect its multicategorical structure and a more complex conditional model with multiple
parameters. Despite its high EBIC, race may still exhibit strong associations with other
variables, but its prediction from the rest of the network is more complex. These EBIC
values guided the selection of the regularization parameter v and helped refine the final
network structure.

Table 5. Extended Bayesian Information Criterion values of each variable (node) for model selection
in the Mixed Undirected Graphical Model.

Variables (Nodes) EBIC Value
Temperature 748.5300
MVPA 788.4328
SB 826.1322
Fall events 716.3211
Age 784.1348
Gender 244.4354
Race/ethnicity 1197.0724
Education level 502.6574
Living condition 415.4221
Financial difficulty 945.5156
Self-rated health 402.2602

4. Discussion
4.1. Principal Results

The findings of this study reveal critical associations between PA, temperature, and fall
incidents among older adults, highlighting the multi-factorial nature of fall risk. Notably,
higher PA levels were significantly associated with fewer fall incidents, suggesting that
increased engagement in PA, especially MVPA, may serve as a protective mechanism
against falls. This aligns with prior research emphasizing the benefits of PA in maintaining
balance, strength, and overall mobility in older adults [12,15,57].

In contrast, elevated temperatures were strongly linked to a greater risk of falls, which
could reflect seasonal influences where environmental conditions, changes in activity
patterns, or physiological responses contribute to increased susceptibility [16,17,58,59].
This seasonal effect may be influenced by factors such as dehydration, heat-induced fatigue,
or increased outdoor activity during warmer months, all of which could contribute to
instability and higher fall risk. Moreover, biological mechanisms in older adults such as
impaired thermoregulation due to declining sweat gland function and reduced circulation
efficiency [9], as well as heat-related cognitive decline [18], may further exacerbate the
likelihood of fall. Additionally, many older individuals have chronic medical conditions or
take prescription medicines that change normal body responses to heat, further affecting
the body’s ability to control its temperature or sweat. These physiological impairments
and preexisting conditions can reduce balance, coordination, and physical performance,
making older adults particularly vulnerable and more likely to experience falls during
hotter periods. However, this effect is mitigated among individuals with more sedentary
time. Similarly, interactions between different physical activity levels imply a potential
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compensatory effect in fall prevention, which require further exploration into how various
movement patterns collectively influence fall susceptibility.

Further findings were obtained from the MUGM, which effectively uncovered associa-
tions among interrelated factors, reinforcing the complicated nature of fall risk. MUGM,
which is not only limited to linear effects, revealed both linear and nonlinear relationships,
showing that every variable in the network exhibited at least one pairwise association. Falls
were strongly correlated with race and positively associated with ambient temperature,
aligning with the trends previously identified through the ZIP regression model. Notably,
age demonstrated multiple associations, including a negative correlation with MVPA and
moderate relationships with race and financial status, suggesting that both biological and
socioeconomic factors contribute to fall vulnerability. Additionally, general health percep-
tion was strongly connected to race, gender, and education level, as supported by previous
research [60,61], emphasizing the broader sociodemographic influences on overall health
outcomes. The strength of the MUGM approach lies in its ability to offer a comprehensive
view of how behavioral, environmental, and demographic variables interact, both directly
and indirectly, to shape fall risk, making it a powerful tool in complex data.

Given these findings, it is essential to develop practical strategies for reducing fall risk
in hot environments while maintaining PA levels, particularly in resource-limited settings
or communities facing health disparities. A key approach is to balance PA with thermal
safety. Encouraging older adults to engage in PA during cooler times of the day, such
as early mornings or evenings, can help mitigate heat-related fatigue and dehydration
risks [10,62]. Adequate hydration (i.e., before, during, and after activity) is also crucial in
preventing heat stress and maintaining both cognitive and physical function. Furthermore,
modifying PA routines to include indoor or shaded activities, such as chair exercises or
walking in climate-controlled spaces (e.g., malls, community centers), can help sustain
engagement while minimizing fall risks [12]. Simple, cost-effective interventions, such
as proper footwear, balance training, and environmental modifications (e.g., reducing
trip hazards, using cooling fans), can also further enhance stability and safety in warm
conditions [11,63]. More importantly, community-based programs that integrate PA with
fall prevention education, and social determinants of health into fall risk assessment,
especially in underserved areas, can empower older adults with practical strategies to stay
active and safe despite environmental challenges.

4.2. Limitations and Future Work

Despite this study offering valuable insights into the associations between different
factors and fall incidents, it is important to acknowledge certain limitations. First, reliance
on self-reported fall incidents may be prone to recall bias, as participants may under-report
or misremember fall events, leading to potential misclassification. Similarly, sociodemo-
graphic variables, such as financial status, was self-reported, which could be subject to
response biases. Objective measures of falls, such as wearable sensors or medical records,
could enhance the accuracy of fall assessment in future research. Second, although tempera-
ture was found to be a significant predictor of falls, other important factors such as humidity,
precipitation, heat index, or weather-related factors such as hydration status, heat-related
fatigue, psychological changes, or indoor versus outdoor activity participation, were not
considered in the analysis. Similarly, unmeasured confounders such as underlying health
conditions (e.g., diabetes, cardiovascular disease), medication use (e.g., those affecting ther-
moregulation or cognition), or social determinants of health (e.g., housing quality, access to
resources) were not included in this study. These factors may independently or interactively
play a crucial role in fall risk; thus, their omission may introduce bias into the observed
associations. Failing to control for such confounders increases the risk of overestimating or
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underestimating the true effect of temperature on fall risk. Future studies should carefully
consider a broader range of environmental, behavioral, and individual-level variables to
improve the validity and robustness of findings.

Additionally, the analytical methods used do not fully leverage longitudinal tech-
niques that account for temporal dependencies and within-subject variations over time.
This study primarily relies on statistical associations that reflect cross-sectional relation-
ships at given time points rather than capturing dynamic changes in fall risk factors over
time. Consequently, the findings may not adequately reflect the causal relationships or the
long-term trajectories of PA, environmental exposures, and fall incidents in LOAs. Without
modeling time-varying effects, it remains unclear whether certain factors directly contribute
to falls or whether underlying confounding variables influence these associations. Further
research utilizing more sophisticated longitudinal models, such as mixed-effects modeling,
time-series analyses, or causal inference frameworks that incorporate temporal structure
(e.g., marginal structural models), is needed to assess temporal relationships between
individual behaviors and environmental exposures.

Another limitation lies in the complexity of the MUGM analysis. The inclusion of cate-
gorical variables required certain methodological assumptions, which may have affected
the results. Additionally, the observed strengths of the associations within the graph were
generally weak to moderate, suggesting that unmeasured factors or key variables relevant
to fall risk may still remain undiscovered. Future studies should incorporate a more com-
prehensive set of covariates, such as medication use, comorbidities, sensory or balance
impairments, and psychosocial factors, to improve model accuracy and strengthen the
evidence to better understand the biological, behavioral, and environmental contributors
to fall risk.

Finally, the study sample may not be fully representative of the broader older adult
population, as factors such as geographic location, socioeconomic status, and access to
healthcare could influence both PA behaviors and fall incidents. Future research should ex-
plore populations with varying demographic and environmental backgrounds to determine
whether these associations hold across different contexts.

5. Conclusions

In this study, we explore the complicated relationships between daily physical activity,
elevated temperatures, sociodemographic characteristics, and fall incidents among low-
income older adults. The results reveal that higher temperatures are associated with an
increased incidence of falls, although engaging in more moderate-to-vigorous physical
activity may serve as a protective factor against falls. The notable association between race
and fall incidents underscores the necessity for further investigation into the disparities
and access to fall prevention resources between different groups. Given that climate change
is one of the most significant public health concerns [1-3], these findings highlight the
importance of customizing fall prevention strategies to account for seasonal variations,
as the risk of falls appears to increase during warmer months. Interventions should
focus on promoting more intense physical activity as a form of protection while also
considering environmental factors that may influence activity patterns and fall susceptibility.
In addition, further research is essential for investigating the various contributing factors
associated with fall risk, with an emphasis on identifying protective factors in individuals
who remain fall-free despite shared demographic or environmental risks.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/info16060442/s1, File S1: Supplementary Material: Effect of Elevated
Temperature on Physical Activity and Falls in Low-Income Older Adults Using Zero-Inflated Poisson
and Graphical Models.
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The following abbreviations are used in this manuscript:

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

CI Confidence interval

EBIC Extended Bayesian Information Criterion
LOAs Low-income older adults

LPA Light-intensity physical activity

MVPA  Moderate-to-vigorous physical activity
MUGM  Mixed undirected graphical model

PA Physical activity
RR Relative risk
SB Sedentary behavior
ZIpP Zero-inflated Poisson
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