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Abstract: The research explores methods for onboard real-time data analysis and health
status assessment, focusing on the working principles and status assessment theory of
onboard equipment in the electronic toll collection (ETC) system. By applying AHP,
fuzzy comprehensive evaluation method, entropy method, and Delphi method, a practical
health status assessment model for onboard equipment has been established, providing an
innovative path for dynamic real-time monitoring of onboard devices. The research first
constructs an indicator system and assessment model, combining expert scoring with fuzzy
judgment to objectively quantify the status of onboard equipment, ultimately resulting
in a health status assessment indicator system for the objects under evaluation. During
the assessment process, expert scoring is used to determine the subjective weights via
AHP, and the combined weights are derived by incorporating objective weights, with
instance results showing that the comprehensive weights of various indicators lie between
the subjective and objective weights. The research also utilizes the Weibull distribution
to simulate the failure rate of onboard equipment, indicating that the failure modes of
the onboard devices are closely related to their operational status, providing a theoretical
basis for future technological improvements. Through empirical analysis of the assessment
model, the research verifies the superiority of the comprehensive weights and emphasizes
its new approach in health status assessment of onboard devices, opening up new avenues
for research in related fields.

Keywords: health status evaluation of onboard equipment; real-time data analysis; analytic
hierarchy process; fuzzy comprehensive evaluation; entropy method; Delphi method

1. Introduction
With the rapid development of modern transportation systems, the application of

onboard equipment in vehicle management, toll collection, and monitoring is becoming
increasingly widespread. Particularly in the electronic toll collection (ETC) system [1],
the health status of onboard equipment directly impacts the reliability and efficiency of
the system. Therefore, conducting real-time data analysis and health status evaluation of
onboard equipment is of utmost importance [2–4]. This need has spurred research into the
establishment of an evaluation index system for the health status of onboard equipment,
aiming to achieve comprehensive monitoring and assessment of equipment health through
scientific methodology [5,6].

As a key component of intelligent transportation systems, the ETC system relies on
Internet of Things technology to achieve autonomous recognition and toll collection of
vehicles through the rapid collection and processing of vehicle information. This process is
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primarily accomplished through microwave communication between the onboard unit and
the roadside unit, enabling the system to automatically detect and charge when a vehicle
passes through the toll gantry. Existing ETC systems are complex, typically consisting
of onboard units, controller units, detection units, and onboard management software
to ensure efficient collaboration within the system. The good coordination among these
devices not only improves toll collection efficiency but also significantly enhances the
intelligence of traffic management.

In recent years, with the continuous advancement of technology, the diversity and
complexity of onboard equipment have been increasing [7]. This presents significant chal-
lenges to traditional equipment status evaluation methods, making it difficult to effectively
implement comprehensive monitoring of equipment status [8,9]. To address this issue,
researchers have begun to combine multi-source data fusion technology to explore how to
utilize real-time data and advanced evaluation models to enhance the status monitoring
capabilities of onboard equipment. This research aims not only to overcome the limita-
tions of traditional methods but also to provide new perspectives for future technology
development and research, driving further innovation and advancement in the industry.

The core objective of this research is to establish an evaluation index system for the
health status of onboard equipment based on real-time data analysis. Using the analysis of
existing onboard equipment data and status variables, an evaluation system for onboard
equipment has been developed from the aspects of evaluation accuracy, reliability, compo-
nent configuration, operating environment, and safety. Specifically, the research will utilize
the analytic hierarchy process (AHP) to determine the subjective weights of the evaluation
system and the entropy method to determine the objective weights of the evaluation indi-
cators, thereby improving the accuracy of each indicator within the evaluation system [10].
This process requires the integration of technical specifications for vehicle configuration to
form a three-layer index system dominated by goal, criterion, and factor layers.

In the specifics of indicator construction, the accuracy indicator focuses on evaluation
errors of the onboard equipment, the status of functional modules, operational errors,
and communication errors. The evaluation error is calculated based on the relationship
between measured values and evaluated values, with different accuracy level requirements
established in the standards for various evaluation errors. Additionally, the reliability
indicator considers family defects and operational time indices; it is essential to take into
account family defect records from the manufacturers of the onboard equipment to avoid
erroneous impacts on the status assessment [11].

The assessment of component configuration mainly includes enclosure integrity, com-
munication errors, and component qualification rates, with enclosure integrity referring to
the completeness and damage of critical devices like wiring boxes and signal input/output
components. Furthermore, the evaluation of the operating environment of the equipment is
also crucial, involving factors such as temperature, humidity, and electromagnetic compati-
bility, which directly affect the performance and lifespan of internal electronic components
within the onboard equipment.

Lastly, safety requirements are an indispensable part of constructing the index system,
which mainly includes communication safety, electrical safety, and operational parameters; all
must meet the specific technical standards and national requirements for equipment operation.

Overall, this research aims to provide solid theoretical support and practical guidance
for enhancing the operational safety and service quality of onboard equipment through
comprehensive analysis and in-depth exploration of real-time data. Furthermore, the re-
search will explore the application of emerging technologies in this field, such as artificial
intelligence and big data analysis, to promote the efficient, stable, and safe operation of the
entire intelligent transportation system. Through the integration of these research findings,
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the research hopes to provide more forward-looking and practical guidance for the mainte-
nance of onboard equipment, contributing to the development of intelligent transportation.

2. Relevant Methodological Analyses
2.1. Hierarchical Analysis

Hierarchical analysis has a wide range of applications in condition assessment, and
quantitative analysis of qualitative factors requires the establishment of a hierarchical as-
sessment structure and the analysis of the relationship between indicators at each level. The
determination of subjective weights using the hierarchical analysis method is based on the
scores of experts, and the indicators are divided to obtain a certain level of correlation, using
the comparison of the relative importance of the two elements to establish a discriminant
matrix, and the main comparison is based on the scores of experts [12].

2.2. Fuzzy Comprehensive Judgment Method

The fuzzy comprehensive judgment method is to use the affiliation function to trans-
form the qualitative assessment into quantitative assessment, which can be divided into
multi-layer multi-assessment, single-layer multi-assessment, and single-layer single-item
assessment, and use different assessment methods according to the assessment of the target,
in which the core of the fuzzy comprehensive judgment method for state assessment is to
determine the affiliation function [13]. Compared with the hierarchical analysis method,
the fuzzy nature of the judgment proof can be used, reducing the reliance on judging the
importance of the target.

The steps to implement the fuzzy composite judgment method are as follows:

1. Establishment of a factor set of objectives to be assessed.

The first step is to create a set of indicators for the object to be assessed. If the object to
be assessed has m sub-indicators at the bottom level, that is as follows [14]:

U = {u1, u2, · · · , um} (1)

The upper level of the object to be assessed has k indicators, which can be represented
as a subset based on the affiliation between the objects to be assessed as follows:

U = {u1, u2, · · · , uk} (2)

2. Establishment of a hierarchy of assessment criteria.

If an indicator of the assessed object corresponds to l evaluation criteria, the state of
the in-vehicle equipment is classified as very good, fair, poor, and very poor, according to
the set of rubrics for vehicle safety [15].

3. Calculation of the weights of the lowest and upper indicators of the object to be
assessed, respectively.

The weight vector of the underlying indicators of the assessment object to be measured
is calculated using the following formula:

W = {w1, w2, · · · , wl}T
k×m (3)

4. Determine the appropriate affiliation function according to the object to be assessed
and calculate the affiliation value of the rubric set for each indicator so as to obtain the
affiliation matrix of the assessment indicators of the object to be assessed, in which
the affiliation matrix composed of all the assessment indicators at the bottom is noted
as R.
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5. Calculate for the evaluation vector B.

The computational formula for the evaluation vector B is as follows:

B = W·R =


w1

w2
...

wk


k×m

·


r11 r12 · · · r1l

r21 r22 · · · r2l
...

...
...

...
rm1 rm2 · · · rml


m×l

=


b11 b12 · · · b1l

b21 b22 · · · b2l
...

...
...

...
bk1 bk2 · · · bkl


k×l

(4)

6. Calculate the evaluation vector of the target to be evaluated µ.

If the weights of the upper level indicators of the assessment object are obtained, then
the we calculate the following:

w = {w1, w2, · · · , wk}l×k (5)

The obtained evaluation vector µ is computed as follows:

µ = w·B = [w1, w2, · · · , wk]k×m·


b11 b12 · · · b1l

b21 b22 · · · b2l
...

...
...

...
bk1 bk2 · · · bkl


k×l

= [µ1, µ2, · · · , µl ]1×l

(6)

7. According to the steps in the above numbers the vectors and states of the evaluated
objects can be obtained.

2.3. Entropy Method

The entropy weight method is a comprehensive ancient evaluation method that uses
the information entropy of each indicator to determine the degree of importance in the
evaluation indicators based on the information obtained from each factor, based on the
establishment of the indicator evaluation system, taking into account all the factors in a
comprehensive manner, so that each indicator can be passed on to the evaluator, and the
weights are determined according to the size of the information corresponding to each
indicator [16].

1. Determination of the criteria matrix Y.

After determining the standardized matrix for the sample data of the data specification
indicator, that is:

Y = (yij)m×n (7)

2. Calculation of the entropy value of the indicator.

If ei is used to represent the entropy value of the assessment indicator i can be obtained:
ei = − 1

ln(m)

n
∑

j=1
fij ln( fij)

fij =
yij

n
∑

j=1
yij

(8)

In Equation (8), m represents the number of datasets in the data sample.

3. Calculate the redundancy of entropy.
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The entropy redundancy used is calculated as follows:

di = 1 − ei (9)

4. Calculation of entropy weights for assessment indicators.

For the evaluation of the indicators of the fiducial entropy weights are calculated
as follows:

wi =
di

n
∑

j=1
dj

(10)

5. Calculation of the consolidated assessment value Si.

Calculations are performed based on the calculated composite assessment value Si

and are ranked according to the obtained calculations, using the following formula:

Si =
n

∑
j=1

wiyij (11)

2.4. The Delphi Method

The Delphi method is a common method in the assignment of indicator weights,
which can quickly and conveniently obtain the weights of assessment indicators, and it
is to use experts in the field of assessment to score the indicators, making full use of the
experience and knowledge of the experts, so this method is also called the expert scoring
method [17]. The expert scoring method is commonly used to determine the subjective
weights of indicators, but this method needs to rely on the experience and opinions of
experts and is easily affected by the subjectivity of experts, so it is generally used in
conjunction with some objective and quantitative methods to ensure that the weights of
indicators are determined accurately.

The specific process of applying the Delphi method is as follows:

1. Concentration of opinions E.

The calculation of the exclusive price recognition is used to obtain the opinion concen-
tration E:

E =
1
m

m

∑
i=1

ai (12)

2. Calculation of the degree of expert disagreement.

After calculating the degree of expert disagreement, the degree of opinion dispersion
δ was obtained as follows:

δ =

√
1

m − 1

m

∑
i=1

(ai − E)2 (13)

In Equation (13), E represents the level of recognition.

3. Determination of the end of the judgment call.

The judgment of whether the consultation is closed or not is based on the expert
approval rating and the calculated expert disagreement rating, using the lower limit value
of the expert approval rating E0 and the expert disagreement rating δ0, i.e., yes, written
as follows:

Ei > E0, δi > δ0 (14)
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2.5. Condition Assessment Process

The main health index indicators used in health condition assessment correspond to
the different states of the assessed objects, and with the application of the health index
theory in the condition assessment of equipment in various fields, a certain connection has
been established between the health index and the state of the equipment as well as the
failure rate, as shown in Table 1.

Table 1. Relationship between health indices and equipment condition and failure rates.

Health Index Ranges Device Status Failure Rate

0~3 an excellent very low
3~5.5 usual lower (one’s head)
5.5~7 differ from middle
7~10 poorly your (honorific)

According to the application of health index theory in the field of equipment state
evaluation, it is necessary to establish a health state evaluation system, take the factors
affecting the health state into account in the construction of the index system, and establish
a multifactorial target decision-making, including the evaluation indexes, the weights of
the indexes, and the state evaluation model, in order to be able to evaluate the health state
of the vehicle-mounted equipment and realize the prediction of the operating state of the
vehicle-mounted equipment, with multiple In order to be able to assess the health state of
the onboard equipment and achieve the prediction of the operating state of the onboard
equipment [18,19], the evaluation indexes are taken as the research basis, and the method
of quantitative calculation of the weights of the indexes is used to evaluate the state of the
onboard equipment corresponding to a certain moment or a certain period of time [20],
which can be divided into three steps:

1. Obtain a system of key indicators related to the health state of onboard equipment
and the amount of onboard equipment state corresponding to each indicator;

2. Classify the importance and evaluation role of each indicator in the evaluation system
of the health state, that is, to calculate the weight of the indicators in the indicator
system and obtain the weight value of different indicators for the assessment of the
health state of the vehicle-mounted equipment;

3. Substituting the obtained weight values of different indicators into the evaluation
model, the current state of health is assessed according to the obtained amount of
onboard equipment operating status.

Combined with the actual operation and operation and maintenance data of onboard
equipment and the structural characteristics of the ETC system, the health state assessment
process of onboard equipment is established as shown in Figure 1.



Information 2025, 16, 15 7 of 23Information 2024, 15, x FOR PEER REVIEW 7 of 24 
 

 

Begin

Determine the reliability 
assessment of onboard 

equipment

Establish an evaluation 
index system

Determination of 
evaluation index weights

Output status based on 
actual data

End  
Figure 1. Flowchart of onboard equipment health state assessment. 

3. Real-Time Data Analysis and Processing Model 
3.1. Data Presentation and Related Notes 

The experimental dataset used in this research is derived from the transaction records 
of a motorway ETC system in a Chinese province from 1 to 5 June 2021, which contains 
both ETC transaction data and CPC transaction data. A total of about 31 million transac-
tion data were collected, involving about 1.33 million vehicles, which include four types 
of passenger cars, six types of trucks, and six types of special operation vehicles. The gan-
try data, shown in Table 2, contain the desensitized vehicle identification, transaction time, 
transaction error code, and trip number, as well as the number, name, type, and location 
information of the gantry. The entrance toll booth data are shown in Table 3 and contain 
information such as the desensitized vehicle identification, the number, name, type, and 
location of the entrance toll booth, as well as the vehicle transaction time, trip number, 
and error code. Similarly, the exit toll booth data are shown in Table 4 and contains de-
sensitized vehicle identification, exit toll booth number, name, type, location, and vehicle 
transaction time, trip number, and error code information. 

Table 2. Description of selected fields in the gantry transaction data. 

Field Name Field Properties Typical Example 
GantryID Gantry number 349E61 

GantryName Name of the gantry Jinghai to Nanzhou 
GantryType Gantry type 2 
TradeTime Gantry trading hours 1 June 2021 08:00:00 

OBUid Vehicle identification 1775853281 
PassID Itinerary No. 0123.......741 

GantryPos Gantry position (119.308, 25.888) 
ErrorCode Transaction error code 1 

Figure 1. Flowchart of onboard equipment health state assessment.

3. Real-Time Data Analysis and Processing Model
3.1. Data Presentation and Related Notes

The experimental dataset used in this research is derived from the transaction records
of a motorway ETC system in a Chinese province from 1 to 5 June 2021, which contains
both ETC transaction data and CPC transaction data. A total of about 31 million transaction
data were collected, involving about 1.33 million vehicles, which include four types of
passenger cars, six types of trucks, and six types of special operation vehicles. The gantry
data, shown in Table 2, contain the desensitized vehicle identification, transaction time,
transaction error code, and trip number, as well as the number, name, type, and location
information of the gantry. The entrance toll booth data are shown in Table 3 and contain
information such as the desensitized vehicle identification, the number, name, type, and
location of the entrance toll booth, as well as the vehicle transaction time, trip number, and
error code. Similarly, the exit toll booth data are shown in Table 4 and contains desensitized
vehicle identification, exit toll booth number, name, type, location, and vehicle transaction
time, trip number, and error code information.

Table 2. Description of selected fields in the gantry transaction data.

Field Name Field Properties Typical Example

GantryID Gantry number 349E61
GantryName Name of the gantry Jinghai to Nanzhou
GantryType Gantry type 2
TradeTime Gantry trading hours 1 June 2021 08:00:00

OBUid Vehicle identification 1775853281
PassID Itinerary No. 0123. . .. . .741

GantryPos Gantry position (119.308, 25.888)
ErrorCode Transaction error code 1
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Table 3. Description of some of the fields in the entry toll booth transaction data.

Field Name Field Properties Typical Example

EnstationID Entrance toll station number 2100
EnstationName Name of entrance toll station Jinghai Toll Station

StationType Type of toll station 0
EnTime Entrance trading hours 1 June 2021 08:00:00
OBUid Vehicle identification 1775853281
PassID Itinerary No. 0123. . .. . .741

EnstationPos Entrance toll station location (119.308, 25.888)
ErrorCode Transaction error code 1

Table 4. Description of some fields in the exit toll booth transaction data.

Field Name Field Properties Typical Example

ExstationID Exit toll station number 2100
ExstationName Name of exit toll booth Jinghai Toll Station

StationType Type of toll station 1
ExTime Export trading hours 1 June 2021 08:00:00
OBUid Vehicle identification 1775853281
PassID Itinerary No. 0123. . .. . .741

ExstationPos Location of exit toll booths (119.308, 25.888)
ErrorCode Transaction error code 1

This table shows the description of some of the ETC data fields. passID is used as a
unique identifier to pinpoint each trip, the ErrorCode field is used to record the status of
each transaction, where 0 means the transaction is normal and 1 means the transaction is
abnormal, and the OBUid is the OBU device number used to uniquely identify the vehicle.

In the process of analyzing the ETC and CPC transaction data, we found that there
are many fields with similar attributes in the data, such as number, name, and type. These
similarities help us to better understand and mine the correlation between these data for
fusion between transaction data.

3.2. Real-Time Data Feature Extraction

The real-time data from onboard equipment varies significantly over time. Even for
the same onboard equipment under the same conditions, some indicator data will change
with time. Real-time data can be categorized into cross-sectional data and time series
state data:

1. Cross-Sectional Data: Cross-sectional data, also known as static data, refer to the test
data results from different test subjects at the same time point or within the same time
period, reflecting the intrinsic numerical relationships between different phenomena
at the same time [21]. When analyzing cross-sectional data (i.e., selecting the test
data for a specific time), it is necessary to ensure the reliability and completeness of
the selected data. For example, the data should be obtained from tests conducted at
regularly spaced intervals and should cover the full frequency range of the equipment.
This way, the patterns derived from the data will maximally describe the variation of
a certain parameter of a particular type of equipment.

2. Time Series State Data: Time series state data refer to the state data of a phenomenon
for the same test subject under identical conditions at different time points, reflecting
how the phenomenon changes over time. The selection of time series data requires that
the testing process has good repeatability, ensuring that for the same equipment and
the same parameters, the testing conditions and environments remain as consistent as
possible across different time points. For instance, variations in the settings of testing
equipment, instrument connections, and electromagnetic environments can impact
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parameter changes, leading to parameters that do not accurately reflect temporal
variations [22]. Therefore, when selecting data, it is required that the tested vehicles,
devices, testing instruments, and cables, as well as testing layouts, remain as consistent
as possible.

3. Combination of Qualitative and Quantitative Indicators: The evaluation indicators
established include both qualitative and quantitative types. Quantitative indicators
consist of values presented in a quantitative form derived from the objective data
acquired. Based on these quantitative values, the operational status of the onboard
equipment can be evaluated. Qualitative indicators rely on the experience and knowl-
edge accumulated by experts or staff to assign scores, which are used to assess the
operating status of the onboard equipment. In constructing the evaluation index
system, it’s vital to consider the objectivity of the indicators while also reflecting
their empirical nature, thus achieving a balanced ratio of quantitative and qualitative
indicators [23].

4. Data Hierarchy: In the construction of the indicator system, it is also necessary to
consider the hierarchy among the indicators. This not only simplifies the assessment
process but also demonstrates the interrelationships between the indicators. Therefore,
when establishing the indicator system, each indicator must first be classified and
categorized to clarify and simplify the relationships between them.

3.3. Data Processing Model

Based on the analysis of existing operational data and state variables of onboard
equipment, it is known that there are occurrences of data loss and anomalies. To address
stability issues caused by environmental influences during the vehicle’s operational process,
there may be data drops or storage failures in the onboard equipment when storing or
receiving data, leading to missing data packets.

Thus, before using onboard equipment for state evaluation, it is necessary to analyze
the completeness of the data. Missing data can be categorized into long-term and short-
term missing data based on existing samples [24]. Data missing for five occurrences can
be interpreted as a period during which the onboard equipment experienced a connection
interruption or had part of the data deleted, while other missing data can be treated as
short-term missing data. For short-term missing data, a weighted moving average is
utilized for data processing.

Weighted sliding has the advantage of simplicity and ease of use and has a wide range
of applications in non-stationary data processing compared to other methods. Using the
weighted sliding average method for missing data, each missing data value is supplemented
by the weighted average of k observations on both sides, i.e., it is the sliding window that
is used, and if {Yt, t = 1, · · · , T} is used to represent the target time data series, the sliding
weighted average computational expression can be obtained as follows:

Ŷt+1 =
k

∑
i=−k

ωiYt+1+i, i ̸= 0 (15)

In Equation (15), ω−k, ω−k+1, · · · , ωk represents the weight of each point of the sample
in the processed data.

Vehicle-mounted equipment in the existence of another problem is the existence of
outliers in the vehicle-mounted equipment data. If you can better deal with the outliers, it
will directly affect the analysis of the state of the vehicle-mounted equipment, combined
with the characteristics of real-time data of the vehicle-mounted equipment and the design
of the use of the box diagram method to deal with the outliers of the vehicle-mounted
equipment data.
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The box plot can be divided into the lower edge, the upper quartile, median, lower
quartile, and upper edge of the five parts, in which the middle of the box for the box, the
box of the median position that is the median, on behalf of the analyzed data series in
the median, the box of the upper end of the quartile, and the lower end of the quartile
were used to Q3 and Q1 said that, the lower end of the quartile Q1 to the upper end of the
quartile Q3 distance is the sub-distant distance, the use of IQR said that. The method of
data outlier handling using box plots can be divided into the following steps:

1. Enter the data that need to be processed containing outliers xi, i = 1, 2, · · · , n;
2. The upper and lower quartiles of the confirmatory box type, where the quartile

distance IQR is calculated as follows:

IQR = Q3 − Q1 (16)

3. Assuming the parameter k = 1.5, the upper quartile B1(k) and the lower quartile
B2(k) of the box type are calculated as follows [25,26]:

B1(k) = Q3 + k · IQR (17)

B2(k) = Q1 − k · IQR (18)

4. Assume that the parameters k = 3, B1(k) and B2(k) represent the upper and lower
edges of the box plot, respectively;

5. If the data xi are mild outliers when the data xi ∈ [B1(1.5), B1(3)] or xi ∈
[B2(3), B2(1.5)] are used, it can be determined;

6. If xi is an extreme outlier in the data sequence when the data xi ∈ [B1(3), ∞] or
xi ∈ [−∞, B2(3)] is available, then it is an extreme outlier in the data sequence;

7. The outliers in the data series are eliminated based on the box plot.

After processing the missing data and outliers, the data features are fused using the
Gaussian mixture model (GMM) [27]. For the in-vehicle equipment data, they are viewed as a
series of individually Gaussian-distributed data mixtures, which can characterize the complex
in-vehicle equipment data. A single Gaussian fit to the data scatter is shown in Figure 2.

It can be seen that by fitting the distribution with a single Gaussian, the scatters are
divided into two categories, which are randomly generated from two different normal
distributions, and it is difficult to fit these scatters using a single Gaussian. Based on the
single Gaussian fit, a mixture model using a double Gaussian distribution is able to fit these
scatters, as shown in Figure 3.
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4. Real-Time Data Cleaning and Preprocessing Algorithm
4.1. Data Cleaning and Preprocessing Method for Onboard ETC

The data in onboard ETC mainly consist of sensor data and communication infor-
mation data. According to the characteristics of onboard sensor data, real-time data are
processed based on different cleaning stages and varying data type features. A mixed
cleaning process is applied to the entire real-time data from onboard equipment, employ-
ing methods such as the Reinhardt criterion method and the moving average filtering
method [28–30].

1. Reinhardt Criterion Method: The Reinhardt criterion is used to judge gross errors
based on a given confidence probability (usually 99.7%). It utilizes three times the
standard deviation of the collected data as a reference. Any error exceeding this
standard is considered a gross error rather than a random error. Data containing
gross errors are termed abnormal data, or outliers, and should be removed from the
collected data [31].
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For the data captured in the ETC x1, x2, x3, · · · , xn, the arithmetic mean can be calcu-
lated for it as follows:

x =
1

n
n
∑

i=1
xi

(19)

The error of the ETC collection data is calculated as follows:

νi = xi − x (20)

Using Bessel’s formula, you can calculate σ as the following:

σ =

√
1

n − 1

n

∑
i=1

ν2
i (21)

If the collected data |xi − x| > 3σ, then the data collected by ETC xi are abnormal
data, and take the rejection processing, if the collected data |xi − x| ≤ 3σ, then the data
collected by ETC xi are normal data, as the basis data of the state evaluation of the vehicle
equipment [32].

2. Sliding Average Filtering Method: Sliding average filtering is the collected N data in
chronological order, seen as a queue, we called this queue a window, the length of the
queue is fixed as N every new data collection, and the sampling value into the end of
the queue, and we remove the original queue head of a data so that the queue always
has N “latest” data, and then find the average value of the N latest data, and then we
find the average value of the N latest data. Then we find the average value of these N
latest data [33]. The arithmetic formula used is as follows:

xn =
1
N

N−1

∑
i=0

xn−i (22)

In Equation (22), xn represents the filtered output of the n st ETC sample, xn−i repre-
sents the value of the n − ith sample that has not been passed, and N represents the number
of sliding average terms.

4.2. CPC Data Cleaning and Preprocessing Algorithm

Onboard CPC data generated need to be cleaned and analyzed in real time to provide
timely and accurate data for the assessment of onboard equipment. Continuous real-time
data collection from the onboard system requires real-time cleaning. This necessitates
a sliding window to process the collected current data within the window for any data
errors, data loss, random errors, and noise data. The framework for the real-time cleaning
preprocessing algorithm is illustrated in Figure 5.
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5. Establishment of the Onboard Equipment Status Evaluation
Index System
5.1. Construction of the Index System

Based on the analysis of existing onboard equipment data and state variables, the
onboard equipment status evaluation system is constructed from the aspects of accuracy,
reliability, component configuration, operational environment, and safety of the equip-
ment [34,35]. The analytic hierarchy process (AHP) is used to determine the subjective
weights of the evaluation system, while the entropy–weight–coefficient of variation method
is used to determine the objective weights of the evaluation indicators, enhancing the
accuracy of each indicator within the evaluation system. The construction process of the
onboard equipment status evaluation index system is illustrated in Figure 6.

Based on the technical specifications of the currently configured vehicle equipment
and the hierarchical structure, a three-level indicator system was constructed, consisting of
a goal layer, a criterion layer, and a factor layer. According to the established vehicle status
assessment indicator system structure, the second-level criterion layer mainly includes the
accuracy, reliability, component configuration [36], operating environment of the vehicle
equipment, equipment safety, etc. Furthermore, each criterion layer is further refined,
resulting in corresponding factor layer indicators.
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5.2. Main Indicator Analysis

• Accuracy Indicators

Accuracy indicators U1 mainly include evaluation errors of onboard equipment U11,
functional modules U12, operational errors U13, and communication errors U14.

The evaluation error is calculated based on the relationship between the measured
value and the evaluated value of the onboard equipment [37]. The evaluation reference
standards specify accuracy grade requirements for different vehicle evaluation errors.
The functional modules of onboard equipment mainly include the power module, data
acquisition module, collection module, main control module, communication module, and
data storage module, among others. The normal functioning of these modules can be
determined in conjunction with the factory indicators of the devices, allowing maintenance
personnel to assess the status of each module.

• Reliability Indicators

Reliability indicators U2 mainly consider family defects U21 and operational time
index U22 within the evaluation index system for the status of onboard equipment. If there
are family defects in the onboard equipment, it will not only lead to errors in the status
evaluation but also affect the normal operation of the entire ETC system and equipment.
When constructing the status evaluation index, it is necessary to consider the family defect
records from the manufacturer of the onboard equipment and determine the corresponding
scores. Onboard equipment consists of many electronic components, and the accumulation
of operation time increases the likelihood of failure, thereby reducing the service life.

• Component Configuration

Component configuration U3 mainly includes integrity U31, communication errors
U32, and qualification rate of the components U33. Integrity refers to the completeness
and damage of key devices such as the onboard equipment connection box and signal
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input/output, which can be judged by maintenance personnel. The wiring requirements
for onboard equipment are high; different wiring methods correspond to different usage
methods. If there are wiring errors in the onboard equipment, it will directly affect the
operational reliability of the equipment [38].

• Equipment Operating Environment

The equipment operating environment U4 mainly includes temperature U41, rela-
tive humidity U42, and electromagnetic compatibility in the working environment of the
onboard equipment U43. The temperature and humidity in the equipment operating en-
vironment can affect the performance and service life of the electronic components that
make up the onboard equipment, as well as the insulation performance of precision elec-
tronic devices and communication devices within the equipment [39]. The electromagnetic
compatibility of onboard equipment is assessed through resistance to electromagnetic
interference and suppression of radio interference, which mainly includes electrostatic dis-
charge, radio frequency electromagnetic fields, electrical fast transients, and surge voltage
in the equipment.

• Safety Requirements

Safety requirements U5 mainly include communication safety U51, electrical safety U52,
and operational parameters U53. According to the general technical specifications for vehicle
equipment, specific size requirements for device operational parameters need to meet regulatory
requirements and conform to national standards for vehicle equipment operation.

6. Based on Analytic Hierarchy Process–Entropy Weight–Coefficient of
Variation Method for Determining Indicator Weights
6.1. Analytic Hierarchy Process–Entropy Weight–Coefficient of Variation Method Analysis

The subjective weights of indicators evaluated by the analytic hierarchy process (AHP)
are determined by inviting experts to score the indicators in the index system, obtaining the
relative importance of the elements in the index system through pairwise comparisons. This
allows for the determination of subjective weights by establishing each expert’s original
A-U judgment matrix X.

X =


1 1

2 3 1
3 2

2 1 3 1
2 3

1
3

1
3 1 1

3 2
3 2 3 1 4
1
2

1
3

1
2

1
4 1

 (23)

We perform consistency checks on the judgment matrix; the calculation formula for
consistency verification is as follows:

CR =
CI
RI

(24)

In Equation (24), the CI indicators used for verification are calculated as follows:

CI =
λmax − n

n − 1
(25)

In Equation (25), λmax is the largest eigenvalue of the judgment matrix, and the only
non-zero eigenroot for the n order consistency matrix is n, and the judgment matrix is a
consistency matrix if and only if λmax = n. The consistency metric CR is calculated using
the stochasticity metric RI numerical table and the stochasticity metric RI numerical table
is shown in Table 5.
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Table 5. Indicators of stochasticity RI table of values.

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

The consistency ratio CR < 0.1 can be obtained through the calculation, which meets
the consistency test requirements, and the obtained feature vector can be used as the vector
of weights, and the corresponding value is the indicator weight value.

The objective weights of the evaluation indicators of the entropy weighting method
are obtained by normalizing the original matrix X = (xij)m×n to obtain the planning matrix
Z = (zij)m×n; xij represents the original values of the indicators for the i sample scenario
and the j indicator.

The homogenization of the indicators gives the value of the weighting of the i program
indicator under the j indicator:

rij =
zij

n
∑

i=1
zij

(26)

The entropy value of the indicators in the evaluation system is as follows:

sj = − 1
ln m

m

∑
i=1

rij ln rij (27)

In order to use the entropy value for the calculation of indicator weights, a coefficient
of variation cj is defined as follows:

cj = 1 − sj (28)

Based on the entropy value the objective weights of the indicators qj can be calculated
as follows:

qj =
cj

n −
n
∑

j=1
sj

(29)

The coefficient of variation method relies on the information contained in the indicator
data to solve the weights and judges the degree of difficulty in achieving the indicators
according to the size of the difference between the indicators. Due to the wide variety of
indicators involved in the evaluation system, each indicator has a different outline, and it is
not possible to directly compare the indicators in the indicator system, so it is possible to
use the coefficient of variation method to carry out a dimensionless processing and compare
the differences between the indicators. Using the coefficient of variation method to solve
the method, assuming that there are m evaluation samples and n evaluation indicators to
deal with, the original data for X = (xij)m×n, xij represent the i sample program of the j
indicators of the original value, using the normalization process to obtain:

zij =
xij

n
∑

i=1
xij

(30)

Based on the obtained subjective and objective weights of the indicators it is possible
to determine the value of the combined weights of the indicators Qi for the following:

Qi = βq′i + (1 − β)q′′
i (31)
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In Equation (31), q′i and q′′
i represent subjective and objective weights respectively, sub-

jective weights are subjective weights determined by comprehensive hierarchical analysis,
objective weights are objective weights determined by entropy weights, and β is the coeffi-
cient of subjective weights, which is taken in conjunction with the relevant requirements of
each indicator in the assessment of the health status of actual vehicle-mounted equipment,
and the range of the value is (0, 1).

6.2. Indicator Weight Determination

Indicator Uij is the value of the second level indicator j under the first level indicator i
and is calculated by adding the values of the subordinate indicators it contains, as follows:

Uij = ∑ yj (32)

In Equation (32), i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4.
Ui is the value of the i first level indicator, which is obtained by multiplying the value

of the third level indicator to which it belongs by its respective weight, and then summing
it up, which is calculated as follows:

Ui = ∑ yiwj (33)

Equation (33) in which yi is the value of the tertiary indicator, wj the weight of a
tertiary indicator under the primary indicator, which is obtained by calculating the weight
of the primary indicator.

Five experts were used to determine the relationship and relative importance of the
indicator layers through subjective evaluation and then determine the weight coefficients,
and the objective coefficients were obtained by using the entropy weighting method and
statistically calculated based on the expert scoring of each level and the data obtained from
the entropy weighting method for each indicator.

7. Determination of Onboard Equipment Health Status Indicator Weights
Case Analysis
7.1. Determination of Subjective Weights (ANP)

The analytic network process (ANP) is applied to determine the subjective weights
of the indicators. It is assumed that there are elements in the control layer of the ANP
P1, · · · , Pn, and there are groups of elements in the network layer C1, · · · , Cn. The elements
in the control layer serve as criteria, and AHP scoring is used for scaling, as shown in
Table 6.

Table 6. Specific meaning table of ANP scoring scale.

Judgment Scale Scoring Definition

1 Element A is equally important as Element B
3 Element A is slightly more important than Element B
5 Element A is moderately more important than Element B
7 Element A is much more important than Element B
9 Element A is absolutely more important than Element B

2, 4, 6, 8 Intermediate importance between the two adjacent judgments

In order to be able to ensure the consistency of the judgment matrix, the consistency
ratio is used for testing, which is CR = CI/RI, for testing the randomness of the expert
scoring. According to the expert scoring in the hierarchical analysis method, six experts
were invited to score the scores, and the scoring results of some indicators obtained are
shown in Table 7.
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The subjective weight matrix of expert ratings can be obtained as Uc = {0.15 0.28 0.11
0.30 0.16}.

The subjective weighting scoring of the factor level indicators in the obtained mea-
surement accuracy indicator U1 is constructed to obtain a judgment matrix as shown in
Table 8.

Table 7. Indicator scoring table.

Evaluation Indicators Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6

Accuracy 6 5 5 4 6 6
Dependability 9 9 8 9 8 9

Component configuration 3 2 3 3 2 3
Vehicle-mounted equipment

operating environment 9 9 9 9 9 9

Safety 7 6 5 6 5 5

Table 8. Judgment matrix for accuracy indicator.

AU1 Assessment Error U11 Functional Module U12 Running Error U13 Communications Error U14

assessment error U11 (1, 1, 1) (1, 2, 3) (3/2, 5/2, 7/2) (2, 3, 4)
functional module U12 (1/3, 1/2, 1) (1, 1, 1) (1/2, 3/2, 5/2) (1, 2, 3)

running error U13 (2/7, 2/5, 2/3) (2/5, 2/3, 2) (1, 1, 1) (1/2, 3/2, 5/2)
communications error U14 (1/4, 1/3, 1/2) (1/3, 1/2, 1) (2/5, 2/3, 2) (1, 1, 1)

According to Equations (10) and (11) can be obtained CI = 0.0057, CR = 0.004, meet
CR < 0.1, meet the consistency requirements, can be used to measure the accuracy of
the indicator U1 judgment matrix for weight calculation. The subjective weights of the
indicators q′11 = 0.43, q′12 = 0.25, q′13 = 0.20, q′14 = 0.14 can be obtained.

7.2. Determination of Objective Indicator Weights

The obtained sample indicators of the factor stratum were subjected to data operations
based on the coefficient of variation method, and the equations and means in the obtained
sample indicators were obtained with the coefficient of variation Vi =

σi
xi

, where i represents
all the samples of indicators in the indicator.

The use of expert bias coefficients can determine the weight of the indicators in the
guideline layer, but the indicators in the factor layer need to be combined with the actual
operation of the onboard equipment status data for statistics, to statistics obtained by the
onboard equipment accuracy indicators U1 as an example of the analysis, the sample data
classification and organization of the use of the formula u′

ijh =
uijh−uijmin

uijmax−uijmin
for quantification,

you can obtain the quantification of the state of the onboard equipment quantitative data
shown in Table 9.

Based on the quantification of the fundamental data obtained, the results obtained are
substituted into the weight coefficients, the expert bias coefficients are taken as 0.5, and
the objective weights are used to calculate the combined weights q′′

11 = 0.46, q′′
12 = 0.19,

q′′
13 = 0.22, and q′′

14 = 0.17. The combined weights for the accuracy of the onboard
equipment can be obtained Q11 = 0.445, Q12 = 0.22, Q13 = 0.21, and Q14 = 0.155.

Using this method to calculate other factor layer indicators in the condition assessment
index system of vehicle-mounted equipment, we can obtain the weights of vehicle-mounted
equipment indicators as shown in Table 10.
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Table 9. Equipment assessment accuracy metrics U1 sample data quantification table.

Sample Data Number Assessment Error U11 Functional Module U12 Running Error U13 Communications Error U14

1 (0.1/0.75) (1/1) (0.25/0.75) (1/1)
2 (1.25/0.63) (0.1/0.30) (0.30/0.60) (1/1)
3 (0.1/0.75) (0.8/0.70) (0.25/0.65) (1/1)
4 (0.1/0.80) (1/1) (0.20/0.80) (0.60/0.0)
5 (0.15/0.44) (0.65/0.35) (0.22/0.77) (1/1)
6 (0.10/0.75) (1/1) (0.15/0.90) (0.80/0.50)
7 (0.18/0.32) (0.80/0.70) (0.25/0.70) (0.7/0.30)
8 (0.25/0) (0.80/0.65) (0.25/0.55) (1/1)
9 (0.05/0.88) (1/1) (0.20/0.85) (0.80/0.65)
10 (0.11/0.85) (1/1) (0.15/0.75) (1/1)
11 (0.15/0.55) (0.80/0.10) (0.25/0.80) (0.50/0.20)
12 (0.15/0.60) (1/1) (0.30/0.85) (1/1)
13 (0.15/0.50) (1/1) (0.15/0.90) (0.70/0.65)
14 (0.15/0.60) (0.75/0.45) (0.30/0.90) (0.5/0.15)
15 (0.30/0) (0.1/0.75) (0.1/0.75) (0.1/0.75)
16 (0.15/0.40) (1/1) (0.25/0.15) (1/1)
17 (0.20/0.25) (0.65/0) (0.50/0) (1/1)
18 (0.25/0) (0.85/0) (0.40/0.55) (0.65/0.35)
19 (0.10/1) (1/1) (0.45/0.55) (0.70/0.35)
20 (0.15/0.45) (1/1) (0.25/1) (1/1)

Table 10. Indicator weights for the onboard equipment factor layer.

Norm Subjective Weighting Objective Weighting Combined Weighting of This
Research

assessment error U11 0.43 0.46 0.445
functional module U12 0.25 0.19 0.22

running error U13 0.20 0.22 0.21
communications error U14 0.14 0.17 0.155

family flaw U21 0.325 0.553 0.44
running time index U22 0.58 0.47 0.525

encapsulation U31 0.335 0.37 0.353
communications error U32 0.48 0.415 0.45
composition pass rate U33 0.21 0.285 0.25

temp U41 0.552 0.28 0.42
relative humidity U42 0.285 0.332 0.31

electromagnetic compatibility U43 0.215 0.340 0.278
communications sec urity U51 0.18 0.355 0.268

electrical safety U52 0.315 0.355 0.335
operating parameters U53 0.485 0.355 0.42

7.3. Determination of Comprehensive Weights for Indicators Based on Hierarchical
Analysis–Entropy Weight–Coefficient of Variation Method

The scoring by experts on the criterion layer indicators is uniformly quantified, result-
ing in the processed criterion layer indicators as shown in Table 11.

Table 11. Expert score table for criterion layer indicators.

AU U1 U2 U3 U4 U5

U1 (1, 1, 1) (1, 2, 2) (1, 3, 2) (1, 2, 3) (1, 1, 1)
U2 (1/2, 1/3, 1) (1, 2, 1) (1, 1, 2) (2, 1, 3) (2, 1, 1)
U3 (1/2, 1/3, 1/2) (1/3, 1/2, 1/3) (1, 1, 1) (1, 1, 2) (1/2, 1/2, 1)
U4 (1/2, 1/2, 1/3) (1/2, 1/3, 1/2) (1, 1/2, 1) (2, 1, 1) (1/2, 1, 1/2)
U5 (1, 1/2, 1) (1, 1, 1) (1, 2, 1) (2, 1, 1) (1, 2, 1)

Based on the processed expert ratings, the subjective weights of the in-vehicle equip-
ment criterion layer can be obtained through the rating judgment matrix q′1 = 0.38,
q′2 = 0.23, q′3 = 0.17, q′4 = 0.11, and q′5 = 0.11.
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Based on the calculated medium and objective indicators in the factor layer, the entropy
weighting method was introduced into the correction of the objective indicator weights in
the criterion layer, and the obtained indicator weights in the criterion layer of the onboard
equipment are shown in Table 12.

According to the obtained health state evaluation indexes of vehicle-mounted equip-
ment, it is known that the comprehensive weights of the indexes obtained by using
the hierarchical–entropy weights–coefficient of variation method are between subjective
weights and objective weights, and the comprehensive weight indexes can combine the
advantages of experts’ experience and the objectivity of the actual operation data, which
proves the superiority of the obtained comprehensive weights.

Table 12. Indicator weights for the in-vehicle equipment guideline layer.

Normative Level Indicators Subjective Weighting Objective Weighting Combined Weights After
Correction of This Research

U1 0.38 0.33 0.355
U2 0.23 0.25 0.24
U3 0.17 0.15 0.16
U4 0.11 0.13 0.12
U5 0.11 0.14 0.125

8. Conclusions
This research provides an in-depth discussion on in-vehicle real-time data analysis and

health state assessment with the aim of constructing a health state assessment index system
based on multi-source data fusion to cope with the needs of modern technological develop-
ment, especially to fill the gaps in the traditional assessment methods in the application of
non-stop toll collection system (ETC) and other complex vehicle management applications.

The novelty of this research is mainly reflected in the following aspects:
Application of multi-source data fusion technology: This research synthesizes multiple

data sources to improve the comprehensiveness and objectivity of the assessment. This
systematic framework has not been fully emphasized in current related research, thus
enhancing the equipment condition monitoring capability.

Innovation of comprehensive assessment method: Combining advanced assessment
methods such as hierarchical analysis, fuzzy comprehensive judgment method, entropy
value method, and Delphi method makes the assessment of the health status of vehicle-
mounted equipment more scientific and comprehensive, which presents obvious advan-
tages compared with the recent research work.

In-depth analysis of failure rate: The simulation of equipment failure using the Weibull
distribution model provides a new perspective for understanding the potential risks of
equipment in long-term use, and this analysis is the first of its kind in the related literature,
demonstrating methodological and theoretical innovations.

Despite the positive results of this research, certain limitations still exist. First, the
selection of the research sample may affect the generalizability of the results. Future studies
should consider a wider range of sample types, such as different makes and models of
vehicles, to enhance model adaptability. Second, most of the current studies focus on
data analysis and model construction, and the validation of practical applications is still
relatively limited. Therefore, subsequent studies can focus on testing and applying this
assessment model in real environments to verify its effectiveness and operability. Finally,
with the development of artificial intelligence and big data technology, future research
can explore the use of more advanced machine learning and deep learning algorithms



Information 2025, 16, 15 21 of 23

to improve the accuracy of cleaning and analyzing data and the comprehensiveness of
the assessment.

In summary, this research provides a new methodological foundation for health
state assessment of in-vehicle equipment and points the way for future research. By
continuing to explore and address the existing limitations, it can further promote the
development of this field while enhancing the management and operational efficiency of
modern transportation systems.
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