
Citation: Agyemang, B.; Ren, F.; Yan, J.

Proactive Agent Behaviour in

Dynamic Distributed Constraint

Optimisation Problems. Information

2024, 15, 255. https://doi.org/

10.3390/info15050255

Academic Editors: Katsuhide Fujita

Received: 14 April 2024

Revised: 29 April 2024

Accepted: 30 April 2024

Published: 2 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Proactive Agent Behaviour in Dynamic Distributed Constraint
Optimisation Problems
Brighter Agyemang , Fenghui Ren and Jun Yan ∗

Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia;
ba233@uowmail.edu.au (B.A.); fren@uow.edu.au (F.R.)
* Correspondence: jyan@uow.edu.au

Abstract: In multi-agent systems, the Dynamic Distributed Constraint Optimisation Problem (D-DCOP)
framework is pivotal, allowing for the decomposition of global objectives into agent constraints. Proac-
tive agent behaviour is crucial in such systems, enabling agents to anticipate future changes and adapt
accordingly. Existing approaches, like Proactive Dynamic DCOP (PD-DCOP) algorithms, often necessi-
tate a predefined environment model. We address the problem of enabling proactive agent behaviour
in D-DCOPs where the dynamics model of the environment is unknown. Specifically, we propose an
approach where agents learn local autoregressive models from observations, predicting future states to
inform decision-making. To achieve this, we present a temporal experience-sharing message-passing
algorithm that leverages dynamic agent connections and a distance metric to collate training data. Our
approach outperformed baseline methods in a search-and-extinguish task using the RoboCup Rescue
Simulator, achieving better total building damage. The experimental results align with prior work on
the significance of decision-switching costs and demonstrate improved performance when the switching
cost is combined with a learned model.

Keywords: DCOP; Dynamic DCOP; proactivity; multi-agent systems

1. Introduction

Collaborative Multi-agent Systems (MASs) have been the subject of several studies
in the literature due to their ability to model many real-world problems effectively. In
such domains, the capabilities of multiple autonomous agents are harnessed to address
problems that are otherwise challenging or impossible for single agents to tackle. Some
application domains include smart environments [1], mobile sensing [2], disaster manage-
ment and rescue [3,4], environment monitoring [5,6], traffic light management [7], resource
management in microgrids [8], and unmanned air traffic management [9].

The Distributed Constraint Optimisation Problem framework (DCOP) is a well-known
framework for investigating MASs due to its ability to model various real-world appli-
cations [10]. In the DCOP context, the global objective of the team is decomposed into
constraints between agents. The agents then leverage their local interactions to optimise
the constraints in the system [11], making DCOP a natural fit for inherently decentralised
multi-agent domains [12].

While most extant DCOP studies in MAS focus on agent properties such as reactivity,
learning, social abilities, scalability, and stabilisation, proactive agent behaviour is the goal
of several approaches [13–16]. In proactive methods, an agent is expected to be goal-driven
and not only react to environmental changes. The agent’s prediction and reasoning about
possible future states of its environment typically result in this goal. For instance, an agent’s
goal after reasoning may be to maintain the temperature of a building (maintenance goal)
or an achievement goal to lead evacuees to safety [17]. Thus, proactive behaviour enables
agents to anticipate future changes and adapt accordingly.

Several proactive offline and online DCOP algorithms have recently been dis-
cussed [13,18,19]. In these methods, the proposed proactive algorithms do not observe

Information 2024, 15, 255. https://doi.org/10.3390/info15050255 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15050255
https://doi.org/10.3390/info15050255
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-5050-8916
https://orcid.org/0000-0001-6159-7873
https://orcid.org/0000-0002-6474-1049
https://doi.org/10.3390/info15050255
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15050255?type=check_update&version=3

Information 2024, 15, 255 2 of 17

the state and require environmental models to be predefined to enable proactive agent
behaviour. However, in complex and dynamic environments, this assumption may not
hold, which presents a challenge to applying existing algorithms. Mobile agents typically
change their neighbour sets as they move from one region to another in a dynamic en-
vironment. Nevertheless, existing approaches do not discuss how dynamic interaction
graphs relate to methods for enabling proactive behaviour. In [20], a tabular approach
was discussed to maintain statistics about environmental changes and using the statistics
in the constraint optimisation process as a means for reasoning about the future. More
sophisticated methods are required in complex environments to enable more proactive
behaviour than the method for counting changes discussed in [20].

Therefore, we propose an approach to enabling proactive agent behaviour in Dy-
namic DCOPs (D-DCOPs) where the environment’s dynamics are unknown to the agents.
Specifically, our main contributions are as follows.

1. The dynamic interaction graph method in [21] is extended to a complete graph setting
whilst maintaining the multi-agent hierarchy or variable ordering that enables the
execution of DCOP algorithms. This resolves the limitation in [21], where constraints
or message-passing can only exist is parent–child relationships.

2. A temporal experience-sharing algorithm, based on dynamic multi-agent connections,
is proposed to enable information propagation across agents in different parts of the
environment. This experience-sharing algorithm relies on a distance metric defined
in the observation space to limit redundant experiences in an agent’s buffer due to
perceptual aliasing.

3. The temporal experiences are then used to train an autoregressive model to predict the
future states of random variables in a constraint function, given the previous observa-
tion. This addresses the transition model requirement in Proactive Dynamic DCOP
(PD-DCOP) algorithms. We demonstrate how this model can be used with traditional
DCOP algorithms to facilitate proactive agent behaviour in dynamic environments.

Our study is organised as follows. We discuss related work in Section 2; the back-
ground to our research is then presented in Section 3, our proposed approach is discussed in
Section 4, and theoretical properties are given in Section 5. We introduce the experimental
setup to evaluate our method in Section 6. In Section 7, we discuss our experiment results
and conclude this study in Section 8.

2. Related Work

Proactive agent behaviour is an important agent characteristic in multi-agent systems.
As a result, several studies have discussed approaches to enable agents in a collaborative
MAS to be proactive in their environment where possible.

One of the earliest studies into proactivity in constraint programming is the work
by Wallace and Freuder [20]. The authors discussed methods for tracking environmental
changes and incorporating this information into the optimisation process. That way, agents
can assign values that are less likely to change in the future. When applied to the dynamic
environment, the approaches discussed in the study require agents to conduct a complete
observation to gather statistics about changes of interest in the environment. However,
agents in dynamic environments typically have partial observations.

Similarly, ref. [14] proposed a framework for finding super solutions that model causes
of failures or changes in the environment and reason about the cost of repairs, resulting
in the outcome of super solutions. While this method enables agents to reason about the
future for value assignments, it requires predefined probabilities or information about
change events. Random event probabilities may be challenging or impossible to define in
complex dynamic environments.

In a series of studies on the subject, Hoang et al. [13,18,19] proposed the Proactive
Dynamic Distributed Constraint Optimisation Problem (PD-DCOP). In the PD-DCOP
framework, the random events are modelled as random variables in the environment.
The authors proposed exact and approximate methods to solve PD-DCOPs. PD-DCOP

Information 2024, 15, 255 3 of 17

approaches are open-loop policies that use the priors of the random variables in the
constraint optimisation process, as exemplified by the algorithms proposed by these studies.
Since the algorithms discussed do not observe the state of the random variables, their
application is challenged in dynamic domains where the priors are unknown, as they
cannot learn a model from the environment.

Also, [22] proposed the Markovian D-DCOP (MD-DCOP) framework to introduce
Markov Decision Process (MDP) concepts into the Dynamic DCOP (D-DCOP) domain.
These concepts include enabling an agent to observe the state of its environment and incor-
porating the observation into the optimisation process. The authors proposed algorithms
that formulate the value assignment constraint between agents as a multi-arm bandit
objective using a Q-value function in their work. This Q-value function is maintained by
one of the agents in a constraint and is updated using the Q-learning algorithm. Similarly,
an RL-based DCOP algorithm was proposed in [23], where the state of an episode maps to
a DCOP. In this work, the authors resorted to using the outputs of a genetic algorithm to
provide feedback to enable learning the Q-values for acting in the environment. We note
that the constraints considered therein are unary constraints incorporated into each agent’s
state space. Although we consider the observation of the state to be a crucial part of our
study, this is to the extent of learning a model to enable agents to predict future conditions
and reason about them in a dynamic environment. Additionally, in dynamic environments,
the neighbours of an agent may change as it moves in the environment, as opposed to the
assumption of a fixed interaction graph used by these existing methods. Indeed, agents
may join or leave the environment at arbitrary times (openness).

As noted earlier, agents in a dynamic environment usually have a partial observation
of their state. This partial observation challenges agents regarding how they may improve
their understanding of the environment and use that information to guide the search
for proactive assignments or decisions. Researchers have adopted information-sharing
techniques to address the partial observation challenge in such environments. In Multi-
Agent Reinforcement Learning (MARL) algorithms, agents learn information sharing over
differential communication channels [15,24–26] alongside a policy. In contrast, DCOP-
based communication schemes do not require the information-exchange channel to be
differentiable and delineate the messages exchanged between agents.

In traditional DCOP algorithms, agents that share a constraint use message-passing
schemes to interact. Consequently, methods like the Distributed Depth First Search (
DDFS) [27], the Multi-agent Organization with Bounded Edit (Mobed) [28], and the Hybrid
Algorithm for Reconstructing Pseudo-trees (HARP) [29] have been used to generate agent
interaction hierarchies that facilitate the message-passing algorithms used in D-DCOPs.
These agent communication methods assume a fixed interaction graph to generate the multi-
agent hierarchies for message-passing. Such algorithms must be better suited in dynamic
environments where the agent neighbours may change over time. Accordingly, a new
hierarchy-generation method was discussed in [21] to generate and maintain valid multi-
agent hierarchies. Our study extends this dynamic hierarchy approach for a neighbourhood
with a connected agent. We then leverage this dynamic agent connection to propose a
message-passing and experience-sharing scheme.

In summary, this study focuses on developing proactive agent behaviour in D-DCOPs
by enabling agents to learn a look-ahead model from the observation of changes in the
environment. We leverage existing dynamic agent-connection schemes to develop an
experience-sharing method that allows agents to mitigate the challenge of partial observa-
tion in a dynamic environment.

3. Background

In this section, we discuss an illustrative scenario where agents can exhibit proactive
behaviour, and we formalise the problem of this study.

Information 2024, 15, 255 4 of 17

3.1. RoboCup Rescue Simulation

In Figure 1, we illustrate a search-and-extinguish mission in the RoboCup Rescue
Simulation (RCRS) [30], where fire brigade agents (depicted by red circles) are tasked with
searching for buildings (shown as polygons) that are on fire and extinguishing them. A
building’s tendency to be set on fire depends on the material it is made of (wood, steel,
or concrete). The environment of these agents is dynamic in that buildings can be set on
fire randomly, and those close to already ignited ones may also heat up and eventually
be set ablaze. The fire brigade agents can only extinguish a building already on fire. In
the illustration, building b1 is already on fire, and the neighbouring buildings b2 and
b3 (assumed to be wooden buildings) are heating up. The fire station b5 is a unique
building where an agent can refill its water tank. Buildings that are dark-coloured are
entirely burned out. The agents are expected to collaborate in carrying out their tasks.
In the environment, the amount of water needed to extinguish a fire in a building is
proportional to the temperature of the building. Therefore, an agent proactively approaches
a building it anticipates will catch fire in the future and reduces the needed water quantity
by extinguishing the fire early. For instance, in the illustration, we depict an agent choosing
to be close to building b3, whereas another is closer to building b4. However, an available
agent is expected to extinguish a fire instead of only anticipating fire at a neighbouring
building. In our study, we model this motivating scenario as a D-DCOP and use it to
demonstrate the effectiveness of our proposal.

Fire station

Figure 1. Fire brigade agents engage in a dynamic search-and-extinguish mission. Red circles
represent agents, while polygons denote buildings. White shapes, such as b4, indicate unaffected
buildings, while dark ones are fully burnt-out. Buildings b2 and b3 are nearly ablaze, while b1 is
actively being extinguished by two nearby agents. Building b5 serves as a refill station for agents’
water tanks. View in colour for optimal comprehension.

3.2. Distributed Constraint Optimisation Problem

In multi-agent systems formulated as DCOPs, agents assign values from a domain
to their decision variables to optimise certain constraint functions. It is assumed that the
agents are fully cooperative and can observe the environment [10]. Also, the environment
is dynamic and deterministic. The DCOP is modelled as a tuple P = ⟨A, X, D, F, α⟩, where:

• A = {a1, a2, . . . , am} is a finite set of agents,
• X = {x1, x2, . . . , xn} is a finite set of variables,
• D = {D1, D2, . . . , Dn} is a set of variable domains such that the domain of xi ∈ X is Di,
• F = { f1, f2, . . . , fk} is a set of constraint functions defined on X where each fi ∈ F is

defined over a subset xi =
{

x1, x2, . . . , xp
}
⊆ X, with p ≤ n, determines the cost of

value assignments of the variables in xi as fi : D1 × D2 × . . .× Dp → R∪ {⊥}, where

Information 2024, 15, 255 5 of 17

⊥ denotes utility for infeasible configurations. Here, the cardinality of xi is the arity of
fi. The global cost of the values assigned to variables in X is Fg(X) = ∑k

i=1 fi(xi),
• α : X→ A is an “onto” function that assigns the control of a variable x ∈ X to an agent α(x).

We assume that α assigns only one variable per agent and the use of binary constraint
functions. In the multi-variable setting, each variable can be represented as an aggregation
of sub-variables, where its domain constitutes the cartesian product of the domains of all
the sub-variables. We use agent and variable interchangeably since an agent controls only
one variable.

A Current Partial Assignment (CPA) or partial assignment is the assignment of values
to a set of variables x such that x ⊂ X. A complete assignment σ is when all variables in X
are assigned a value. A constraint function fk ∈ F is satisfied if fi(σxi) ̸=⊥. The objective of
a DCOP is to find a complete assignment that minimises the total cost:

σ∗ := argmin
σ∈Σ

Fg(σ) = argmin
σ∈Σ

∑
fi∈F

fi(σxi), (1)

where Σ is the set of all possible complete assignments.
The D-DCOP is an extension of the DCOP formulation to address dynamic multi-

agent environments. D-DCOP is modelled as a sequence of DCOPs, D1,D2, . . . ,DT . Here,
Dt =

〈
At, Xt, Dt, Ft, αt〉, where 1 ≤ t ≤ T. D-DCOP aims to solve the DCOP problem

arising at each time step.
Likewise, PD-DCOP extends the D-DCOP to allow the modelling of random variables

in the environment that agents do not control. In this context, decision variables refer to
variables whose values are assigned by agents. Specifically, the following extensions are
introduced to the DCOP framework:

• The set of variables X is extended to compose random variables Y ⊆ X to model stochastic
events in the environment (e.g., device malfunctioning, weather, and temperature).

• The domain set D is also composed of the event spaces for the random variables
Ω = {Ωy}y∈Y ⊆ X.

• h ∈ N is the horizon of the environment.
• The variables in the xi of a constraint function may be a mixed set of decision variables and

random variables. We denote the set of constraint functions whose scope contains a random
variable as FY ⊆ F, where f Y

i ∈ FY, which is associated with at most a single random
variable.

• T = {Ty}y∈Y is a set of transition functions Ty : Ωy ×Ωy → [0, 1] ⊆ R for the random
variables y ∈ Y. A transition function specifies the probability that a random variable
changes value in future time steps.

• C ∈ R+ is a switching cost function that assigns a cost to a decision variable for
changing values between time steps. This study views this cost term as a unary
constraint function. High switching costs discourage agents from frequently switching
values. Hence, the agents have to be purposeful with any potential change in decision
in time step 2.

• γ ∈ [0, 1] is a discount factor that is used to control the significance of future rewards
or costs. We set γ = 1 in this study.

• p0
Y = {p0

y∈Y} is a set of priors of the random variables y ∈ Y.

• The onto function α assigns only decision variables to agents α : X\Y→ A.

The PD-DCOP objective is to find a sequence of assignments σ∗ of all the decision
variables for all time steps of the environment:

σ∗ := argmin
σ=⟨σ0,...,σh⟩∈Σh+1

Fh
g(σ) (2)

Information 2024, 15, 255 6 of 17

Fh
g(σ) =

h

∑
t=0

γt

 ∑
fi∈F\FY

fi
(
σt

xi

)
+ ∑

f Y
i ∈FY

f Y
i
(
σt

xi

)+
h−1

∑
t=0

∑
x∈X\Y

γtC(xt−1, xt) (3)

f Y
i
(
σt

xi

)
= ∑

ω∈Ωyi

fi
(
σt

xi |yi = ω
)
· pt

yi
(ω) (4)

pt
yi
(ω) = ∑

ω′∈Ωyi

Tyi (ω
′, ω) · pt−1

yi
(ω′) (5)

Thus, a PD-DCOP solution is an open-loop system (offline) that finds the assignments
for each time step in the horizon. In this study, we assume that the transition functions and
the priors are unknown to the agents. Hence, the agents depend on observing the changes
in the random variables in the environment while operating (online). In determining the
assignments σt, each agent ai observes the random variables in the scope of the constraints
of ai, denoted as ot. Therefore, we reformulate Equation (4) as

f Y
i
(
σt

xi

)
= fi

(
σt

xi |yi = M
(

ot
yi

, l
))

(6)

where M is a model that takes ot
yi
∈ Ωyi and predicts the value of yi after l look-ahead steps. In

what follows, we discuss an approach to learning M from the temporal experiences of the agents.

4. Proposed Approach

This section discusses our approach to addressing the problem presented in Section 3.

4.1. Dynamic Multi-Agent Connections

Communication between agents is vital in multi-agent systems. In the DCOP litera-
ture, message-passing between agents forms the basis for the optimisation process. One
prevalent approach is to derive a hierarchy from the constraint graph representation of
the DCOP and use this hierarchy to organise the optimisation process. In [21], a dynamic
hierarchy-generation algorithmwas proposed to generate a valid hierarchy in open and
dynamic multi-agent environments. However, this proposed dynamic hierarchy-generation
method restricts interactions in parent–child relationships only. As a result, nearby agents
in other sub-trees of the hierarchy cannot interact in the environment. Thus, only tree-based
DCOP methods could be used with the dynamic hierarchy-generation algorithm. In this
study, we extend the approach in [21] to enable all nearby agents to establish connections
while maintaining the hierarchy. Similar to the existing DCOP literature [10,21,28,31], we
assume that agents are uniquely identifiable and cooperate in the environment to optimise
the global objective. Also, agents communicate via message-passing, and messages are
delivered in the order sent.

It has been shown in [21] that once an agent has selected a neighbour to receive an Ad-
dMe message, all other neighbours receive an AnnounceResponseIgnored message. In our study,
we propose sending a PseudoParentRequest message instead of an AnnounceResponseIgnored.
When aj receives a PseudoParentRequest from ai, it adds ai to its pseudo-children list and sends
a PseudoChildAdded message to ai. When ai receives a PseudoChildAdded message, it adds aj to
its pseudo-parents list. Thus, ai and aj can establish a link for interaction without affecting their
existing parent–child relationships or invalidating the hierarchy with acyclic connections since
connection types could be checked to avoid cycles during optimisation. We illustrate this process
in Figure 2. In this illustration, we assume that a3 joins an environment where a1 is the parent of
a2. a3 uses the dynamic hierarchy generation procedure to establish a parent–child relationship
with a1, and the above process establishes a pseudo-child link with a2.

Information 2024, 15, 255 7 of 17

1

3

2

Pseudo-child connection establishment process

1. PseudoParentRequest

3. PseudoChildAdded

2. Pseudo-child added

4. Pseudo-parent added
1

3

2

child

child

connected state

pseudo-child

Figure 2. Illustration of the pseudo-child connection process.

4.2. Temporal Experience Sharing

Agents in dynamic environments typically have a partial observation of the environment.
Temporal Experience Sharing among agents in a neighbourhood is a practical approach to mitigate
the challenges of partial observation [24]. Therefore, we leverage the dynamic agent-connection
approach discussed in Section 4.1 to enable agents in a neighbourhood to share their experiences.
These experiences show the changes in random events within the environment between time
steps. In this study, we model an experience as a tuple ⟨st−1, st⟩. Thus, the dynamic interaction
graph facilitates the optimisation process (along hierarchy connections) and Temporal Experience
Sharing (along all connections) among agents in a neighbourhood.

We outline the temporal experience algorithm of this study in Algorithm 1. We assume
that agents can communicate via message-passing and that messages arrive in the order
sent despite potential delays. Each agent may execute this algorithm asynchronously in a
time step. The main objective is to update the buffer of an agent ai with experiences from
its neighbours Ni. The algorithm requires a list of neighbouring agents involved in the
experience-sharing process L and the dynamic interaction graph algorithm Φ.

Further, we assume that each agent stores the experiences in a finite buffer whose
underlying data structure is a circular associative array where the key is a globally unique ID
of the experience (value). Additionally, we provide a sample size n and a similarity threshold
z for managing how shared experiences are added to the agent’s buffer. In what follows, we
describe the algorithm by referring to the executing agent as i and the sending agent as j.

The Start procedure calls Φ when new agent connections are established, passing the newly
connected agents as arguments. If the buffer of i has experiences to share, i sends the keys of
B in an ExperienceHistoryDisclosure message to all agents in L (lines 1–6). When i receives an
ExperienceHistoryDisclosure message, i compares the shared keys with its buffer to determine
experiences to request and share with j (lines 8–12). In line 13, i sends an ExperienceSharingWith-
Request message to j. Upon receiving an ExperienceSharingWithRequest from j, i first shares the
requested experiences with j via an ExperienceSharing message (lines 16–18) and then adds the
received experiences from j to its buffer by executing the MergeTemporalExperience procedure
(explained below). Similarly, the experiences shared via the ExperienceSharing message are
added to B by calling the MergeTemporalExperience procedure (lines 22–25). The SendNeighbou-
rUpdate procedure is called by i whenever it adds a local experience to its buffer. This procedure
shares the latest experience in B with all existing neighbours Ni via an ExperienceSharing mes-
sage (lines 26–28). This approach enables an agent to have varied experiences from unexplored
parts of the dynamic environment.

However, the naive addition of all shared experiences to the buffer may populate
the buffer with less informative or similar experiences since agents in a neighbourhood
may perceive similar events. Consequently, we introduce the MergeTemporalExperience
procedure to mitigate this scenario. When called, it samples n experiences from its buffer
(line 32). The sampled experiences S are compared to the experiences to be added to E
using a similarity function φ (line 33) defined over the observation space. This function
determines how similar each experience is to existing experiences in the buffer (represented
by S). All similar experiences are ignored by i using the similarity threshold z (line 34). The
remaining experiences in E are now added to B. If there are no experiences in B, all shared

Information 2024, 15, 255 8 of 17

experiences are added to B. We also note that i executes the MergeTemporalExperience to add
a local experience to B. This approach to incorporating experiences ensures variation in B.

Algorithm 1 Temporal Experience Sharing Algorithm
Require: list of agents L, experience similarity measure φ, experience buffer B, dynamic interaction graph Φ,

reference experience sample size n, experience similarity threshold z
Ensure: Updated experience buffer B
1: procedure START(L)
2: if B contains experiences then
3: k← keys of B
4: Send ExperienceHistoryDisclosure{k} to agents in L
5: end if
6: end procedure
7: procedure RECEIVEEXPERIENCEHISTORYDISCLOSURE(mj)
8: k j ← shared experience keys from mj
9: ki ← keys of B

10: r ← entries in k j not in ki
11: s← entries in ki not in k j
12: E← select experiences s from B
13: Send ExperienceSharingWithRequest{E, r} to j
14: end procedure
15: procedure RECEIVEEXPERIENCESHARINGWITHREQUEST(mj)
16: rj ← Get requested experience entries in mj by j
17: E← select experiences rj from B
18: Send ExperienceSharing{E} to j
19: E← Shared experiences in mj
20: MergeTemporalExperiences(E)
21: end procedure
22: procedure RECEIVEEXPERIENCESHARING(mj)
23: E← Shared experiences in mj
24: MergeTemporalExperiences(E)
25: end procedure
26: procedure SENDNEIGHBOURUPDATE()
27: E← Select last added experience from B
28: Send ExperienceSharing{E} to all neighbours in Ni(Φ)
29: end procedure
30: procedure MERGETEMPORALEXPERIENCES(E)
31: if B contains experiences then
32: S← Sample n experiences from B
33: ν← Calculate similarity measures using φ(E, S)
34: E← Select entries in E whose similarity measures are below z
35: end if
36: Add all entries in E to B
37: end procedure
38: Return B

4.3. Temporal Experience Modelling

As discussed earlier, we aim to learn a model that can predict possible changes in
the D-DCOP and incorporate this prediction in the optimisation process. Consequently,
we use the experiences in B to learn this model. Thus, the temporal experience-sharing
algorithm is an approach for tracking environmental changes. The agent then uses these
experiences to model how the environment evolves. In Algorithm 2, we present a generic
framework that we adopt to train the look-ahead model incrementally. Upon startup, i
initializes model Mt−1 and the model performance tracking value ν to 0. The model is
trained when more than k experiences are in B (lines 1–3). Once this condition is satisfied,
n experiences are sampled from B (line 4). Afterwards, the sampled experiences are used
to train a model Mtemp (line 5). This temporary model is accepted if its evaluation is better
than the previous model (lines 6–11). This model is used by i in the optimisation process as
specified in Equation (6).

Information 2024, 15, 255 9 of 17

Algorithm 2 Temporal Experience Modelling Algorithm
Require: Experience buffer B, batch size n, pretrained model Mt−1, previous best score ν, minimum

number of samples to train k, learning algorithm Θ, and performance metric e.
Ensure: Model Mt

1: if size(B) < k then
2: Return Mt−1
3: end if
4: D ← Sample n temporal experiences from B
5: Mtemp ← Θ(Mt−1, D)
6: νtemp ← e(Mtemp)
7: if νtemp > ν then
8: Mt ← Mtemp
9: νtemp ← νtemp

10: else
11: Mt ← Mt−1
12: end if
13: Return Mt

5. Theoretical Properties

In this section, we examine the communication and computational complexity of the
Temporal Experience Sharing algorithm. We make the following assumptions to analyse
the communication complexity:

• In the worst case, all agents in the MAS are within communication range of one
another.

• Each agent communicates its experiences with all other agents in the system.
• The communication overhead per message exchange is known and is constant.
• The number of experiences shared in each message exchange is proportional to the

size of the experience buffer.

We discuss the communication complexity in terms of the number of agents N and the size
of the experience buffer M. The communication complexity of each phase is then as follows.

• Experience Disclosure Phase: In the worst case, each agent sends its experiences to all
other agents. Hence, the communication complexity is O(NM).

• Experience Sharing with Request Phase: Each agent requests experiences from other
agents. The communication complexity is O(NM) in this case.

• Experience Sharing Phase: Each agent shares experiences with other agents, resulting
in O(NM).

• Neighbor Update Phase: Each agent sends the most recent experience to its neighbours
with a complexity of O(N).

The asymptotic communication complexity is then O(NM), arising from the need for
the agents to exchange experiences.

Similarly, we make the following assumptions to analyse the computational complexity
of Algorithm 1:

• We assume a constant communication cost for message exchanges.
• Calculating similarity measures between experiences involves comparing each new

experience with a subset of experiences in the buffer. We assume that the computation
of the similarity measure is pairwise and requires comparing each new experience
with a subset of experiences in the buffer.

• Simple random sampling selects a subset of experiences in the buffer.
• The merging of experiences involves searching for and removing possibly duplicate

experiences. This involves iterating through the experiences in the buffer (in the worst
case) and comparing them with the new experiences.

In this context, where the size of the buffer is denoted as P, we analyse the computa-
tional complexity as follows:

Information 2024, 15, 255 10 of 17

• Message-passing has a constant computational complexity O(1).
• For each new experience, the computational complexity for comparing with all experi-

ences in the buffer is O(P).
• Under simple random sampling, the complexity is linear in the size of the experience

buffer O(P).
• Assuming there are Q new experiences to merge, the complexity is O(PQ).

Thus, the asymptotic computational complexity is O(PQ). This is primarily due to the
similarity and merging operations.

We note that in real-world scenarios, the agents are usually distributed in the environ-
ment and may not have all agents within the communication range. Also, computational
techniques such as vectorisation could be used to improve the similarity and merging
operations. The merging operation is performed on a subset of the experiences in the buffer,
thus reducing the complexity. Therefore, the Temporal Experience Sharing algorithm is
feasible in MASs, as we demonstrate in our experiments.

6. Experimental Setup

This section describes our experimental setup to evaluate the proposed approach for
enabling proactive agent behaviour in D-DCOP algorithms.

Our experiments used the RCRS platform [30]. The RCRS platform is a server that simu-
lates fire outbreaks, civilian search and rescue, and other common disaster events. Since we
consider multi-agent operations in dynamic environments, RCRS is suitable because it creates
a partially observable, dynamic, and stochastic environment. Also, the simulation horizon is
in discrete time steps. In each time step, agent commands are executed in the environment.
Agent programs are implemented as clients that send commands to the simulation server at
each time step. There are two types of agents in the RCRS: platoon agents and centre agents.
The ambulance team, fire brigade, and police force constitute the platoon agents, and the
ambulance centres, fire stations, and police offices make up the centre agents.

In our experiments, we configured the simulation server to follow the motivating
domain in Section 3.1. We enabled 12 fire brigade agents and one fire station in a scenario
with 36 buildings that could catch fire. The fire brigade agents were randomly placed in
the environments, and these starting positions were maintained in all simulations. The
simulation server starts with three buildings that are already set on fire. The fire spreads
from these three buildings to other buildings if not extinguished. The following are the
different states of a building’s fieriness:

1. Unburnt
2. Burning slightly
3. Burning more
4. Burning severely
5. Not burning (water damage)
6. Extinguished (minor damage)
7. Extinguished (moderate damage)
8. Extinguished (severe damage)
9. Completely burnt

Also, an extinguished building may be set on fire again if a nearby building is ignited.
Therefore, the agents are expected to collaborate to extinguish all fires as quickly as possible
or slow down the total building damage in the environment. Slowing the total building
damage could give rescue teams additional time to evacuate trapped civilians. We depict
the described scenario in Figure 3.

We implemented the agents’ program using the RCRS Python API (version 1.0.0). The
simulation server sends the observation of each agent to its corresponding program at the
beginning of every time step. When an agent receives its observation, it executes its D-DCOP
algorithm to determine the appropriate command to send to the server. We set the maximum
thinking time of each agent to 5 s. The fire station agent was only used to aggregate simulation

Information 2024, 15, 255 11 of 17

metrics from other agents in our experiments. The simulation server and agent programs
were run using a MacBook Pro computer with a Ventura 13.6.2 OS, an Apple M1 Pro chip and
16 GB RAM (Apple, Cupertino, CA, USA).

Figure 3. Map of RoboCup Rescue Simulator environment used in our experiments. Buildings
already on fire are depicted in yellow, and fire brigade agents are shown as red dots on the map.
Agents are randomly placed at the beginning of the simulation.

6.1. Modelling the Search-and-Extinguish Problem as a D-DCOP

Regarding the D-DCOP algorithms, we used the Cooperative Constraint Approximation
(COCOA) [32] and Distributed Pseudo-tree Optimisation Problem (DPOP) [33] algorithms.
We modelled the search-and-extinguish problem of the RCRS environment as follows:

• Agents: The fire brigade agents in the environment shown in Figure 3 served as the
agents in the DCOP. These agents interact with the environment by receiving local
observations and sending commands. Agent-to-agent communication was enabled
using an implementation of RabbitMQ’s AMQP messaging protocol.

• Variables: We mapped each agent to a single decision variable that determines the
building selected by the agent to either move to or extinguish the building’s fire. The
random variable in this setting is the temperature of buildings in the environment.

• Domain: Each agent’s domain was the set of all buildings in the environment whose
fieriness was either burning severely or lower.

• Constraint functions: Constraints existed between agents that shared parent–child relation-
ships.

We represented each constraint as

fq(di, dj) = f u
q (di) + f c

q (di, dj) (7)

where di ∈ Di, dj ∈ Dj, f u
q is the unary constraint of agent i and f c

q is the coordination
constraint agent i shares with agent j. We defined the unary constraint as,

f u
q (di) =

{
1000 if n > 3,
C(dt−1

i , di)− e(di) otherwise

where dt−1
i is the building selected in the previous time step, n is the number of agents

already assigned to building di, C is the decision change cost, and e(di) is the exploration

Information 2024, 15, 255 12 of 17

factor of di. The intuition is to discourage agent i from selecting a building already assigned
to more than three other agents by using a high cost. We defined C as

C(dt−1
i , di) =

{
c if dt−1

i ̸= di and yt−1 > 1
0 otherwise

where yt−1 is the fieriness of dt−1
i and c is a cost assigned when the current value being eval-

uated di is different from a burning building selected at the previous time step (switching
cost). This encourages agents to consider sticking to the previous selection if the building is
burning. Also, we defined e(di) as

e(di) =

√
2|Di|

ln(t)
N(di)

(8)

to encourage agents to explore the environment. N(di) is the number of times the agent
has selected di. The coordination constraint f c

q was also defined as

f c
q (di, dj) =

{
λw× p if di = dj,
0 otherwise

and

λ =

{
−1 if τ(di) >= Tc,
1 otherwise,

where p is a coordination constant we set to 20 in our experiments, τ(di) is the temperature
of di, w is the weight of the building calculated as w(di) = τ(di)/T, and T is the maximum
temperature of a building in the environment. T was set to 1000 in all our experiments. Tc
is the critical temperature of a building beyond which neighbouring agents are expected to
collaborate to move to the building and extinguish the fire; we set Tc = 400.

This constraint also encourages agents to move to different buildings when the tem-
perature is below the critical threshold. Here, we expect proactive agents to assign a value
based on their predictions. Thus, agents will team up without being proactive only in
reaction to critical temperatures.

In contrast, proactive agents use exchanged information and the look-ahead model
to determine which buildings are likely to reach critical temperatures and collaborate to
extinguish fires ahead of time. We implemented an experience buffer to store shared and
local experiences following Section 4.

6.2. Model Training

In the training phase, randomly sampled experiences in the buffer were used to train
a model that predicts the next temperature of a building given its current observation. In
the search-and-extinguish experiments, an observation from the RCRS server is a tuple of
the temperature of each building, the fieriness, the brokenness of the building, the building’s
material (wood, steel, or concrete), and the fire index (maximum temperature of the set of
neighbouring buildings). An experience is a tuple of two consecutive observations by an
agent. The sampled experiences were then preprocessed into a dataset, where the temperature
of the second observation in each experience was the target for supervised training.

The training procedure is specified in Algorithm 2. We set the k of Algorithm 2 to
100. Thus, a minimum of 100 experiences were required to be in the buffer before the
training procedure could be executed. Therefore, each agent ran Algorithm 1 and a D-
DCOP algorithm in the environment for 300 time steps, triggering Algorithm 2 every 5
time steps. The XGBoost learning algorithm, with a learning rate of 0.001 and a maximum
tree depth of 10, was used in the experiments.

Information 2024, 15, 255 13 of 17

During the evaluation phase, each agent applied its local model in an autoregressive
manner for l future steps in the optimisation process, as specified in Equation (6). Thus, the
final temperature of a building considered by the coordination constraint was determined
in this manner. When l = 0, the observed temperature is used without applying the model.
We discuss the results of our experiments below

7. Results and Discussion

This section discusses the results of our experiments. We focused on examining agents’
decision-making to ascertain whether the agents could exhibit proactive behaviour using
our proposed approach. We compare the results of the D-DCOP algorithms (COCOA,
DPOP) used in this study with versions that used the look-ahead model developed using
our methods (LA-COCOA, LA-DPOP). The LA-COCOA and LA-DPOP methods had
l = 10, whereas COCOA and DPOP had l = 0 (see Equation (6)). We also examined the
effect of the switching cost c on agents’ behaviour by setting it to 10, 30, and 50. To reduce
the impact of randomness on our results, each of the experiments for each value of c was
conducted over five random seeds. Thus, 60 different runs were conducted, and each run
had 100 time steps.

We show the performance of the methods across the different switching costs in
Figure 4. The building damage metric was retrieved from the RCRS server and was the
only active metric, since all agents were fire brigade agents. This metric estimates the total
structural damage of buildings in the simulation environment: 0 indicates total damage,
and 1 indicates no damage. It can be seen that the LA-DPOP consistently outperformed the
other methods followed by LA-COCOA.

0 20 40 60 80 100

Time step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
qr

t(B
ui

ld
in

g
da

m
ag

e)

LA-COCOA
COCOA
LA-DPOP
DPOP

(a)

0 20 40 60 80 100

Time step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
qr

t(B
ui

ld
in

g
da

m
ag

e)

LA-COCOA
COCOA
LA-DPOP
DPOP

(b)

0 20 40 60 80 100

Time step

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
qr

t(B
ui

ld
in

g
da

m
ag

e)

LA-COCOA
COCOA
LA-DPOP
DPOP

(c)

Figure 4. Average performance of fire-brigade agents in the RCRS environment using the different
D-DCOP algorithms of the study. LA-COCOA and LA-DPOP represent our proposed methods, whereas
COCOA and DPOP represent standard D-DCOP algorithms. (a) Switching cost = 10. (b) Switching
cost = 30. (c) Switching cost = 50.

In particular, as the switching cost increased, the performance margins became more
pronounced. We observed that combining switching costs with our proposed approach in
reasoning could help stabilise agents’ decision-making in exhibiting proactive behaviour in
an environment. We reckon that the appropriate switching cost depends on the application
domain. Likewise, the value of l should be determined to capture periods when the random
variables change in the environment. In the RCRS environment, changes to the temperature
variable happened slowly over time steps. Hence, we observed that smaller values of l
failed to capture enough variance to improve model performance, whereas higher values
caused prediction errors to compound.

Since all agents could react to buildings with temperatures beyond the critical threshold
(Tc), we focused on temperatures within the range of (0, 400] to investigate all decisions
made in this range. Therefore, we divided the range into quartiles and used these regions to

Information 2024, 15, 255 14 of 17

categorise the decisions of agents for each building. We show the result of this investigation in
Figure 5 for where c = 50.

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

Buildings

0

10

20

30

40

50

60

70

N
um

be
r o

f s
el

ec
tio

ns

LA-COCOA

Quartile 1
Quartile 2
Quartile 3
Maximum

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

Buildings

0

10

20

30

40

50

60

70

80

N
um

be
r o

f s
el

ec
tio

ns

LA-DPOP

Quartile 1
Quartile 2
Quartile 3
Maximum

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

Buildings

0

20

40

60

80

N
um

be
r o

f s
el

ec
tio

ns

COCOA

Quartile 1
Quartile 2
Quartile 3
Maximum

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536

Buildings

0

20

40

60

80

N
um

be
r o

f s
el

ec
tio

ns

DPOP

Quartile 1
Quartile 2
Quartile 3
Maximum

Figure 5. The number of selections each building received when its temperature was in the range (0, 400].
This range is divided into quartiles to indicate the severity of each building’s temperature for each selection.

We noticed more building selections whose corresponding temperatures fell in the
first quartile in the LA-COCOA and LA-DPOP cases than in the traditional DCOP methods.
This observation was more prevalent in the LA-DPOP case and explains the performance of
LA-DPOP in Figure 4. Thus, agents often reacted earlier to buildings that were on fire at the
initial stages when using our proposed approach than when using the D-DCOP algorithms.
The early reaction ensured the agents mostly spent fewer time steps at the buildings.

Overall, our experiment results show that the approach proposed in this study to develop
proactive behaviour in agents is effective and enables agents to perform better in dynamic
environments. We also show that combining the switching cost and our proactive approach
provides better performance in a dynamic environment than relying only on the switching
cost. Additionally, proactive D-DCOP algorithms could be developed to rely on the temporal
experiences of agents instead of requiring the priors of the dynamic environment.

8. Conclusions

In this study, we have discussed methods enabling proactive agent behaviour in D-
DCOPs that do not require prior models of the environment to be provided. We proposed
using dynamic multi-agent connections to facilitate the sharing of temporal experiences
and learning look-ahead models for decision-making. Our methods were applied to a

Information 2024, 15, 255 15 of 17

simulated search-and-extinguish motivating domain to demonstrate their effectiveness.
Our results also highlight that using a switching cost, as found in previous studies on
PD-DCOPs, could help stabilise proactive agent behaviour in dynamic environments.
Further studies could investigate improved cooperative multi-agent learning methods
for proactive behaviour in dynamic environments. For instance, learning approaches
could be exploited to enable agents to determine experiences to share locally. This will
reduce the communication overhead in the proposed approach. Additionally, proactive
asynchronous D-DCOP algorithms could be examined to enable fast decision-making in
dynamic environments to address the long decision-making times typical of synchronous
D-DCOP algorithms. In addition, other applications of the methods proposed in this study
could provide further insights into the possibilities and limitations of these methods.

Author Contributions: Conceptualization, B.A.; Methodology, B.A., F.R., and J.Y.; Software, B.A.;
Validation, F.R. and J.Y.; formal analysis, B.A., F.R., and J.Y.; writing—original draft preparation B.A.;
writing—review and editing, F.R. and J.Y.; supervision, F.R. and J.Y. All authors have read and agreed
to the published version of the manuscript.

Funding: This study was supported by the University of Wollongong.

Data Availability Statement: The source codes and data used for our experiments can be found at
https://github.com/bbrighttaer/rcrs_ddcop, accessed on 1 May 2024.

Acknowledgments: We would like to thank all reviewers of this study.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DCOP Distributed Constraint Optimisation Problem
D-DCOP Dynamic Distributed Optimisation Problem
PD-DCOP Proactive Dynamic Distributed Constraint Optimisation Problem
MAS Multi-Agent System
MDP Markov Decision Process
DDFS Distributed Depth First Search
Mobed Multi-agent Organization with Bounded Edit
HARP Hybrid Algorithm for Reconstructing Pseudo-trees
RCRS RoboCup Rescue Simulation
COCOA Cooperative Constraint Approximation
DPOP Distributed Pseudo-tree Optimisation Problem
AMQP Advanced Message Queuing Protocol
LA-COCOA Lookahead COCOA
LA-DPOP Lookahead DPOP

References
1. Rust, P.; Picard, G.; Ramparany, F. Using message-passing DCOP algorithms to solve energy-efficient smart environment

configuration problems. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16),
New York, NY, USA, 9–15 July 2016 ; pp. 468–474.

2. Yedidsion, H.; Zivan, R.; Farinelli, A. Applying max-sum to teams of mobile sensing agents. Eng. Appl. Artif. Intell. 2018,
71, 87–99. [CrossRef]

3. Rybski, P.; Stoeter, S.; Gini, M.; Hougen, D.; Papanikolopoulos, N. Effects of limited bandwidth communications channels
on the control of multiple robots. In Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180), Maui, HI, USA, 29 October–3
November 2001; Volume 1, pp. 369–374. [CrossRef]

4. Ramchurn, S.D.; Farinelli, A.; MacArthur, K.S.; Jennings, N.R. Decentralized coordination in RoboCup Rescue. Comput. J.
2010, 53, 1447–1461. [CrossRef]

5. Padhy, P.; Dash, R.K.; Martinez, K.; Jennings, N.R. A Utility-Based Sensing and Communication Model for a Glacial Sensor
Network. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate,
Japan, 8–12 May 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 1353–1360. [CrossRef]

https://github.com/bbrighttaer/rcrs_ddcop
http://doi.org/10.1016/j.engappai.2018.02.017
http://dx.doi.org/10.1109/IROS.2001.973385
http://dx.doi.org/10.1093/comjnl/bxq022
http://dx.doi.org/10.1145/1160633.1160885

Information 2024, 15, 255 16 of 17

6. Pujol-Gonzalez, M.; Cerquides, J.; Meseguer, P.; Rodríguez-Aguilar, J.A.; Tambe, M. Engineering the Decentralized Coordination
of UAVs with Limited Communication Range. In Advances in Artificial Intelligence; Bielza, C., Salmerón, A., Alonso-Betanzos, A.,
Hidalgo, J.I., Martínez, L., Troncoso, A., Corchado, E., Corchado, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 199–208.

7. Junges, R.; Bazzan, A.L.C. Evaluating the Performance of DCOP Algorithms in a Real World, Dynamic Problem. In Proceedings
of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, Estoril, Portugal, 12–16 May 2008;
International Foundation for Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2008; pp. 599–606.

8. Lezama, F.; Munoz de Cote, E.; Farinelli, A.; Soares, J.; Pinto, T.; Vale, Z. Distributed constrained optimization towards effective
agent-based microgrid energy resource management. In Proceedings of the 19th EPIA Conference on Artificial Intelligence, EPIA
2019, Vila Real, Portugal, 3–6 September 2019; pp. 438–449. [CrossRef]

9. Picard, G. Trajectory Coordination based on Distributed Con-straint Optimization Techniques in Unmanned Air Traffic Manage-
ment. In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, Virtual, 9–13 May
2022; Volume 9, pp. 1065–1073.

10. Fioretto, F.; Pontelli, E.; Yeoh, W. Distributed constraint optimization problems and applications: A survey. J. Artif. Intell. Res.
2018, 61, 623–698. [CrossRef]

11. Nair, R.; Varakantham, P.; Tambe, M.; Yokoo, M. Networked Distributed POMDPs: A Synthesis of Distributed Constraint
Optimization and POMDPs. In Proceedings of the of American Association for Artificial Intelligence, Pittsburgh, PA, USA, 9–13
July 2005; Volume 1, pp. 133–139.

12. Zivan, R.; Yedidsion, H.; Okamoto, S.; Glinton, R.; Sycara, K. Distributed constraint optimization for teams of mobile sensing
agents. Auton. Agents -Multi-Agent Syst. 2015, 29, 495–536. [CrossRef]

13. Hoang, K.D.; Fioretto, F.; Hou, P.; Yokoo, M.; Yeoh, W.; Zivan, R. Proactive dynamic distributed constraint optimization. In Proceedings
of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, Singapore, 9–13 May 2016; pp. 597–605.

14. Holland, A.; O’Sullivan, B. Weighted super solutions for constraint programs. Proc. Natl. Conf. Artif. Intell. 2005, 1, 378–383.
15. Jiang, J.; Lu, Z. Learning Attentional Communication for Multi-Agent Cooperation. In Advances in Neural Information Processing

Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Scotland,
UK, 2018; Volume 31.

16. Barambones, J.; Imbert, R.; Moral, C. Applicability of multi-agent systems and constrained reasoning for sensor-based distributed
scenarios: A systematic mapping study on dynamic DCOPs. Sensors 2021, 21, 3807. [CrossRef] [PubMed]

17. Duff, S.; Harland, J.; Thangarajah, J. On proactivity and maintenance goals. Proc. Int. Conf. Auton. Agents 2006, 2006, 1033–1040.
[CrossRef]

18. Hoang, K.D.; Hou, P.; Fioretto, F.; Yeoh, W.; Zivan, R.; Yokoo, M. Infinite-horizon proactive dynamic DCOPs. In Proceedings of
the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, São Paulo, Brazil, 8–12 May 2017;
Volume 1, pp. 212–220.

19. Hoang, K.D.; Fioretto, F.; Hou, P.; Yeoh, W.; Yokoo, M.; Zivan, R. Proactive Dynamic Distributed Constraint Optimization
Problems. J. Artif. Intell. Res. 2022, 74, 179–225. [CrossRef]

20. Wallace, R.J.; Freuder, E.C. Stable solutions for dynamic constraint satisfaction problems. In Proceedings of the International
Conference on Principles and Practice of Constraint Programming, Pisa, Italy, 26–30 October 1998; Volume 1520, pp. 447–461.
[CrossRef]

21. Agyemang, B.; Ren, F.; Yan, J. Distributed Multi-Agent Hierarchy Construction for Dynamic DCOPs in Mobile Sensor Teams.
Hum.-Centric Intell. Syst. 2023, 3, 473–486. [CrossRef]

22. Nguyen, D.T.; Yeoh, W.; Lau, H.C.; Zilberstein, S.; Zhang, C. Decentralized multi-agent reinforcement learning in average-
reward dynamic DCOPs. In Proceedings of the 13th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2014, Paris, France, 5–9 May 2014; Volume 2, pp. 1341–1342.

23. Shokoohi, M.; Afsharchi, M.; Shah-Hoseini, H. Dynamic distributed constraint optimization using multi-agent reinforcement
learning. Soft Comput. 2022, 26, 3601–3629. [CrossRef]

24. Xie, S.; Zhang, H.; Yu, H.; Li, Y.; Zhang, Z.; Luo, X. ET-HF: A novel information sharing model to improve multi-agent cooperation.
Knowl.-Based Syst. 2022, 257, 109916. [CrossRef]

25. Sukhbaatar, S.; Szlam, A.; Fergus, R. Learning multiagent communication with backpropagation. In Proceedings of the
Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 2252–2260. Available online:
https://dl.acm.org/doi/pdf/10.5555/3157096.3157348 (accessed on 1 May 2024). .

26. Pesce, E.; Montana, G. Learning multi-agent coordination through connectivity-driven communication. Mach. Learn. 2023,
112, 483–514. [CrossRef]

27. Youssef Hamadi Christian Bessiere, J.Q. Backtracking in Distributed Constraint Networks. In Proceedings of the ECAI 98: 13th
European Conference on Artificial Intelligence, Brighton, UK, 23–28 August 1998; pp. 219–223.

28. Sultanik, E.A.; Lass, R.N.; Regli, W.C. Dynamic configuration of agent organizations. In Proceedings of the IJCAI International
Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009; pp. 305–311.

29. Yeoh, W.; Varakantham, P.; Sun, X.; Koenig, S. Incremental DCOP search algorithms for solving dynamic DCOP problems. In
Proceedings of the 2015 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology,
WI-IAT 2015, Singapore, 6–9 December 2015; Volume 2, pp. 257–264. [CrossRef]

http://dx.doi.org/10.1007/978-3-030-30241-2_37
http://dx.doi.org/10.1613/jair.5565
http://dx.doi.org/10.1007/s10458-014-9255-3
http://dx.doi.org/10.3390/s21113807
http://www.ncbi.nlm.nih.gov/pubmed/34072799
http://dx.doi.org/10.1145/1160633.1160817
http://dx.doi.org/10.1613/jair.1.13499
http://dx.doi.org/10.1007/3-540-49481-2_32
http://dx.doi.org/10.1007/s44230-023-00044-0
http://dx.doi.org/10.1007/s00500-022-06820-7
http://dx.doi.org/10.1016/j.knosys.2022.109916
https://dl.acm.org/doi/pdf/10.5555/3157096.3157348
http://dx.doi.org/10.1007/s10994-022-06286-6
http://dx.doi.org/10.1109/WI-IAT.2015.114

Information 2024, 15, 255 17 of 17

30. Skinner, C.; Ramchurn, S. The RoboCup Rescue Simulation Platform. In Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, Toronto, ON, Canada, 9–14 May 2010; International Foundation for Autonomous
Agents and Multiagent Systems: Richland, SC, USA 2010; Volume 1, pp. 1647–1648.

31. Sarker, A.; Choudhury, M.; Khan, M.M. A local search based approach to solve continuous DCOPs. In Proceedings of the International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, Virtual, 3–7 May 2021; Volume 2, pp. 1115–1123.

32. Van Leeuwen, C.J.; Pawełczak, P. CoCoA: A non-iterative approach to a local search (A)DCOP Solver. In Proceedings of the 31st
AAAI Conference on Artificial Intelligence, AAAI 2017, San Francisco, CA, USA, 4–9 February 2017; pp. 3944–3950. [CrossRef]

33. Petcu, A.; Faltings, B. A Scalable Method for Multiagent Constraint Optimization. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence, Scotland, UK, 30 July–5 August 2005; Morgan Kaufmann Publishers Inc.: San Francisco, CA,
USA, 2005; pp. 266–271.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1609/aaai.v31i1.11125

	Introduction
	Related Work
	Background
	RoboCup Rescue Simulation
	Distributed Constraint Optimisation Problem

	Proposed Approach
	Dynamic Multi-Agent Connections
	Temporal Experience Sharing
	Temporal Experience Modelling

	Theoretical Properties
	Experimental Setup
	Modelling the Search-and-Extinguish Problem as a D-DCOP
	Model Training

	Results and Discussion
	Conclusions
	References

