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Abstract: Early detection of infant pathologies by non-invasive means is a critical aspect of pediatric
healthcare. Audio analysis of infant crying has emerged as a promising method to identify various
health conditions without direct medical intervention. In this study, we present a cutting-edge ma-
chine learning model that employs audio spectrograms and transformer-based algorithms to classify
infant crying into distinct pathological categories. Our innovative model bypasses the extensive
preprocessing typically associated with audio data by exploiting the self-attention mechanisms of the
transformer, thereby preserving the integrity of the audio’s diagnostic features. When benchmarked
against established machine learning and deep learning models, our approach demonstrated a re-
markable 98.69% accuracy, 98.73% precision, 98.71% recall, and an F1 score of 98.71%, surpassing the
performance of both traditional machine learning and convolutional neural network models. This
research not only provides a novel diagnostic tool that is scalable and efficient but also opens avenues
for improving pediatric care through early and accurate detection of pathologies.

Keywords: pathology diagnostics; infant cry classification; audio spectrograms; transformer;
pediatric healthcare

1. Introduction

Hundreds of millions of infants are born every year, and millions of them develop
diseases shortly after birth [1]. This results in an increase in the number of deaths each
year. Detecting and recognizing these diseases can be challenging because infants cannot
communicate or react like adults, making it difficult to provide the necessary care and
treatment. It has been shown that sepsis and respiratory distress syndrome (RDS) are the
most common pathologies associated with infant deaths worldwide [2–4]. Thus, this study
aims to diagnose these pathologies in their early stages by analyzing crying signals and
predicting their onset.

In particular, sepsis is one of the most common diseases affecting infants, with 48.9 mil-
lion cases reported annually. Each year, 9 million newborns are affected by sepsis, a blood
infection that occurs in infants younger than 12 weeks. Sadly, 11 million infants die each
year from this disease, accounting for nearly 20% of all deaths worldwide [3]. Sepsis can be
difficult to diagnose because its symptoms can mimic those of other diseases. Blood tests
to check white blood cell count and C-Reactive Protein (CRP) levels are the first step in
diagnosing this infection. Blood cultures should also be performed to detect the bacteria or
fungus causing the infection. This process can be challenging due to time constraints and
small sample sizes. In addition, urine tests should be conducted to check for urinary tract
infections. Finally, clinical evaluation of the mother during pregnancy is also necessary [5].

In addition, respiratory distress syndrome (RDS) is a common condition affecting in-
fants born before 37 weeks. It is estimated that approximately one million babies worldwide
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die due to RDS pathology. RDS typically occurs in infants born before their due date, usu-
ally before 28 weeks [4]. It often occurs when the baby’s lungs are not fully developed and
cannot provide enough oxygen to the body. RDS can cause breathing failure in newborns.
Although babies with RDS can survive, they require special medical care. Diagnosing this
pathology requires complex procedures, including X-rays, computed tomography (CT)
scans, electrocardiograms, and frequent blood tests to monitor the oxygen levels in the
blood [6].

Therefore, the diagnosis of RDS and sepsis requires additional healthcare and is not
an easy task. Early detection of these and other hidden illnesses could reduce the number
of deaths and provide better care for infants in their early stages [7]. In addition, it could be
more effective if infants could communicate with their environment to better understand
their situation. Therefore, parents and experts are developing ways to better understand the
needs of infants by observing their cries. However, understanding cries can be challenging
for untrained parents and clinicians. To reduce false positive results from manual diagnosis,
it is important to develop better methods for understanding infant communication [8].
The researchers focused on conducting a deep analysis of the infant cry signal to better
understand infant needs and illnesses. This could potentially help avoid complicated tests
and be conducted without the need for specialists.

Researchers have recently discovered that it is possible to analyze cries and associate
them with diseases [9], and spectrogram waves have been found to be different for infants
with different diseases [10]. Analyzing these waves without the use of artificial intelligence
(AI) could be challenging. However, by employing machine learning (ML) and deep
learning (DL) models, it is possible to accurately classify different diseases. This topic has
received considerable attention due to the significance of illness classification. Infant crying
signals have distinct spectrogram shapes that can be associated with various common
diseases, such as sepsis and respiratory distress syndrome (RDS). Therefore, this research
focuses on analyzing spectrogram images to achieve high accuracy.

The contributions of this research study include diagnosing sepsis and RDS by ana-
lyzing infant cry signals using a pre-trained spectrogram transformation model without
preprocessing the spectrogram images of the waves, as this is part of the modeling process.
Second, this study utilizes only the spectrogram without extracting complicated features
such as Gammatone Frequency Cepstral Coefficients (GFCCs) and heart rate (HR) from the
voice or building a complex model. This approach aims to achieve a more curated result
and reduce false positives and true negatives, ultimately providing support to medical
clinics and hospitals as desired specifically in a low-resource environment.

The remainder of this paper is structured to provide a comprehensive exploration
of the topic at hand, beginning with a detailed literature review that contextualizes our
research within the existing body of knowledge. Following this, Section 3 illustrates
the dataset selection process and the experimental procedures employed, ensuring the
transparency and reproducibility of our research methodology. Subsequently, the find-
ings are presented in Section 4, providing a thorough analysis and interpretation of the
data collected. This paper concludes with Section 6, in which we summarize the main
findings, reflect on the implications of our results, and propose directions for future re-
search directions, with the aim of paving the way for further scientific investigation on this
research topic.

2. Literature Review

The phenomenon of an infant crying has captured the interest of many researchers [11–14],
resulting in a variety of studies exploring different approaches. Some work has focused
on identifying specific pathologies such as sepsis [8,15], respiratory distress syndrome
(RDS) [8,15], asphyxia, autism spectrum disorder (ASD) [12], and hypo-acoustic [13]. Other
studies have performed binary classification to compare the health of infants with specific
pathologies [14]. These research studies consisted of two main phases: feature computa-
tion and feature extraction. They used the CAS (Context-Aware System) and focused on
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different audio domains such as cepstral domain features, prosodic domain features, image
domain features, time domain features, and wavelet domain features [16]. Then, some nu-
merical features were used in machine learning models and other complementary features
such as spectrogram were processed using deep learning models, and some researchers
used combined features and models such as convolutional neural network (CNN) with
linear regression [8,12,15].

Many researches focus on extracting cepstral domain features such as Mel Frequency
Cepstral Coefficients (MFCCs) [15,17,18], Linear Frequency Cepstral Coefficients (LFCCs)
Short Time Cepstral Coefficients (STCCs) [19], and Bark Frequency Cepstral Coefficients
(BFCCs) [20] in audio signal feature extraction and feeding them into machine learning (ML)
and deep learning models; for example, in [21], they used MFCC in classifying infant crying
causes with 76% accuracy by using ML learning algorithms such as K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), and Naive Bayes Classifier (NBC); however, in the
study [17], they built binary classification for healthy and pathological infants, achieving
91% by combining the MFCC feature extracted with the Hidden Markov Model (HMM).

In addition, other studies have utilized prosodic domain features, which encompass
variations in intensity, fundamental frequency, and other aspects that may be significant in
audio signal analysis. For instance, in [22], researchers used the mean, median, standard
deviation, minimum, and maximum values of F0 and F123. Other studies have combined
cepstral features with prosodic domain features, as in [23], where prosodic and MFCC
features were used in conjunction with a deep learning model, resulting in a remarkable
accuracy rate of 96%. This suggests that the use of multiple domain features can improve
the results.

The use of the discrete wavelet transform (DWT) is another method for feature extrac-
tion. It helps to extract coefficient features. In a study [24], this approach was investigated
for its effectiveness in classifying different types of crying to predict the needs of the infant,
such as hunger, sleep, discomfort, and others. A single-layer neural feed-forward (SLNFF)
was used and an average accuracy of 80% was reported for different types of classifications.

Another important feature of sound signals is their spectrogram images, which can
be full of character and provide valuable information. An image or time-frequency rep-
resentation of audio can be generated using techniques such as the short-time Fourier
transform (STFT) [16]. The authors in [23] proposed to use the spectrogram along with
CNN models to classify the situation of the infant as either sleepy or in pain, achieving an
accuracy of over 78%. Also, the authors in [25] used the spectrogram to classify the cry
signal into different categories, such as pain, hunger, and sleepiness, and they achieved
88.89% accuracy by using the spectrogram and feeding it into a CNN model with the radial
basis function. Another study was proposed in [26] and achieved 71.68% accuracy by using
the spectrogram with SVM.

On the other hand, it can be seen that some researchers have focused on combining
different modalities of features together; for example, in [8], the authors proposed to
combine GFCC and HR features on sepsis and RDS using ML and SVM and achieved
95.29% accuracy, while the authors in [15] proposed a combined deep learning model of
GFCC, HR, and spectrogram features and achieved 97. 5% accuracy. Also, the authors
in [27] proposed to combine spectrogram with prosodic feature with a CNN model and
achieved 97% accuracy. Moreover, the authors in [28] combined MFCC, chromogram,
Mel-scaled spectrogram, spectral contrast, and Tonnetz features and used the DNN model,
achieving 100% accuracy in classifying normal and suffocating cries and 99.96% accuracy
for classifying non-suffocating and suffocating cries.

Although numerous researchers in the field of audio processing for medical diagnostics
have reported impressive classification performance with their models, there is still a need
to investigate the complex processing that must be applied to the raw audio to achieve
such high accuracy. In this proposed study, the authors employ a straightforward audio
representation using spectrograms, coupled with a transformer-based model that processes
these spectrograms as image patches. This approach is designed to capture the internal
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complexity of the audio representation through a spectrogram, which helps the model
achieve high classification results. To the best of the authors’ knowledge, this method
of processing audio data for medical diagnostics is pioneering in its use of CNN-free
models. The proposed approach relies solely on the use of a spectrogram from the infant
cry audio dataset instead of using multiple features such as GFCC and HR to achieve high
performance results.

The main contributions of this study are threefold. First, it introduces a simple, yet
effective, model for audio processing in medical diagnostics, emphasizing the importance
of simplicity in model design. Second, it innovates by utilizing spectrograms in conjunction
with a transformer-based model, processing these spectrograms as image patches, which is
a novel approach in the field. This technique leverages the transformer’s ability to handle
complex data structures, thereby capturing the intricate patterns within audio signals
more efficiently. Finally, this study demonstrates improved accuracy in classification
performance, setting a new benchmark for CNN-free models in medical diagnostics by
effectively processing audio data without the need for extensive preprocessing or feature
extraction. This advancement underscores the potential of transformers to revolutionize
audio-based medical diagnostic processes.

3. Materials and Methods

In this research, a comprehension methodology was implemented to ensure reliable
and robust results. Figure 1 outlines the four main stages taken to conduct this research.
First, audio data of the crying infants was gathered and then segmented. This segmented
raw audio served as the basis for the construction of spectrograms. These spectrograms
were then fed into a transformer, where a multiclass classifier was trained. Finally, the
model was evaluated using various metrics to formulate a conclusion regarding the model’s
performance and its efficiency.
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Figure 1. The workflow of the proposed model for classifying infant pathological cries.

3.1. Dataset Description

The dataset for this study was obtained from the Saint-Justine Children’s Hospital
in Montreal, Canada, and the Al-Raee and Al-Sahel Hospitals in Lebanon, which has
recently been used in several related studies [8,15,29]. It consists of audio samples of
neonatal crying from infants ranging in age from 1 to 53 days, with diverse demographic
backgrounds, as detailed in Table 1. There was a total of 53 recordings from 17 newborns
for the sepsis group, 102 recordings from 33 newborns for the RDS pathology group, and
181 recordings from 83 newborns for the healthy group. Recordings were captured using
a standard digital 2-channel Olympus recorder with 16-bit resolution and a sampling
rate of 44,100 Hz, positioned 10 to 30 cm from the infants. The infants’ health conditions
were determined by medical examinations, and the cries were categorized accordingly
as indicating a specific pathology or normal. The dataset includes various pathologies,
including respiratory distress syndrome (RDS), kidney failure, aspiration, asphyxia, and
sepsis, and non-pathological cries. Each original audio recording lasted an average of 90 s
and was recorded five times for each infant.
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Table 1. Description of datasets for selected pathological cases.

Demographic Factors Details

Gender Female and male
Babies’ ages 1 to 53 days old

Weight 0.98 to 5.2 kg

Origin Canada, Haiti, Portugal, Syria, Lebanon,
Algeria, Palestine, Bangladesh, and Turkey

Race Caucasian, Arabic, Asian, Latino, African,
Native Hawaiian, and Quebec

The challenge of a limited number of recordings, due to factors such as the unpre-
dictability of capturing certain pathologies during data collection, the extensive process for
ethical and technical approval, potential loss of samples, and the need for guardian consent
for inclusion in the database, was addressed. To mitigate data scarcity, each recording
was segmented into multiple expiration segments to enrich the analysis of pathological
infant crying. This segmentation resulted in the creation of multiple expiration (EXP) seg-
ments. The dataset was then evenly sampled to ensure an equal representation of samples
from each category. This approach yielded a balanced and uniform dataset containing
3900 segmented records with 1300 samples in each class, as shown in Figure 2.
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3.2. Data Preprocessing

The infant cry dataset was preprocessed by previous researchers [8,15,29] to eliminate
any periods of silence and to filter and segment each recording. The recordings were
segmented, and various labels were applied; for example, expiratory cries were labelled
as EXP, while voiced inspiratory cry segments were labelled as INSV. This labeling was
facilitated by the use of WaveSurfer software (1.8.8). In our research, we specifically used
the EXP segments from each cry recording, treating each one as an individual sample. As
mentioned earlier, a major challenge in biomedical research is the scarcity of data, where
the incidence of certain pathologies in newborns is unpredictable. By segmenting each cry
signal, we have been able to partially overcome this problem. Moreover, we excluded all
segments shorter than 200 milliseconds, as they did not provide sufficient information to
analyze the infant’s cry signals.
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3.3. Data Transformation

To adapt the raw audio for effective processing by the Audio Spectrogram Transformer
model [30], three key transformations were applied. The initial transformation involved
resampling the audio to a 16 kHz frequency. This step is crucial for striking a balance
between retaining audio quality and optimizing computational efficiency, a principle
supported by references [30–32]. Resampling at this frequency ensures the audio data
maintain enough detail for the model’s requirements while minimizing the computational
resources needed for processing.

The second transformation applied was padding the audio clips to ensure uniform
lengths. Unlike truncation, which removes parts of the audio, padding involves adding
silence to the audio clips that do not meet a certain length requirement. This process is
essential to create a consistent input size across all audio samples, facilitating the model’s
ability to learn from and generalize across the dataset effectively.

Finally, the third transformation converted the raw audio signals into spectrograms,
utilizing specific parameters to ensure a detailed and consistent analysis of the audio.
Spectrograms offer a two-dimensional representation of sound, illustrating the spectrum
of frequencies as they change over time. This conversion employs an FFT (Fast Fourier
Transform) length of 2048, a Hann window type, a window length equal to the FFT length
(2048), and a hop length (window shift) of 512. Each of these parameters plays a vital role in
constructing an effective spectrogram for infant cry audio classification with a transformer
model. The longer FFT length provides a more detailed frequency resolution, capturing
subtle differences in frequency components crucial for identifying patterns within infant
cries. The Hann window minimizes spectral leakage, enhancing the clarity of the time–
frequency representation, which is essential for the model to learn effectively. Matching the
window length to the FFT length ensures comprehensive frequency analysis, allowing for
the full representation of audio segments. A shorter hop length offers higher time resolution,
giving detailed temporal information that aids in understanding how the frequency content
changes over time, a critical factor in distinguishing different cries.

This methodological approach is advantageous for several reasons. First, it encapsu-
lates both temporal and frequency information in a visually intuitive format, facilitating
easier pattern identification and analysis within the audio data for the model. Secondly,
by emphasizing the nuances in the audio that might not be apparent in the raw wave-
form, spectrograms enhance the model’s accuracy in classification or analysis tasks. By
converting audio into spectrograms after ensuring all clips are of uniform length through
padding and resampling for optimal quality and efficiency and by finely tuning these spe-
cific parameters, the process significantly boosts the model’s performance. This provides a
rich, detailed, and uniform representation of the audio, enabling the transformer model
to leverage high-quality data for more nuanced distinctions between different classes of
audio signals.

3.4. Audio Spectrogram Transformer Architecture

The fundamental idea behind the Audio Spectrogram Transformer (AST) for infant
cry analysis is to adapt the principles of the Vision Transformer (ViT) for use with audio
data [30,33]. In the ViT model, images are processed as patches, which are individually
linearly embedded before positional embeddings are incorporated. These steps facilitate
the retention of spatial relationships within the image. The assembled sequence of vectors
is then fed into a transformer encoder, which employs self-attention mechanisms to model
complex interactions between different parts of the image. The output of the encoder is a
higher-dimensional representation of the original image, capturing both local and global
dependencies.

Transformers, a class of deep learning models, offer several advantages over classical
machine learning techniques. These include their ability to handle sequential data without
the need for pre-defined temporal feature extraction, making them inherently adept at
processing time-series data, natural language, and, as adapted in the AST, audio signals.
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Additionally, transformers excel in parallel processing, allowing for significantly faster
training times compared to recurrent neural networks (RNNs) and Long Short-Term Mem-
ory (LSTM) networks. Their self-attention mechanism provides an efficient way to capture
dependencies regardless of their distance in the input sequence, leading to improved
performance on tasks requiring an understanding of long-range interactions.

Transformers have found applications across a wide range of fields, showcasing their
versatility and effectiveness. In natural language processing (NLP), models like BERT
(Bidirectional Encoder Representations from Transformers) [34] and GPT (Generative Pre-
trained Transformer) [35] have set new standards for tasks such as text classification,
machine translation, and text generation. In computer vision, the Vision Transformer
(ViT) model has demonstrated that transformers can achieve state-of-the-art results on
image classification tasks without relying on conventional convolutional neural networks
(CNNs) [36]. In the realm of audio processing, transformers have been applied to speech
recognition and music generation [33,37,38], illustrating their capability to model complex
audio patterns effectively. More recently, the adaptation of transformers for analyzing audio
data through the Audio Spectrogram Transformer (AST) indicates the model’s potential for
biomedical applications and signal analysis [39], opening new avenues for research and
practical applications in healthcare and beyond.

The primary aim of this study is to use the pre-trained Audio Spectrogram Transformer
(AST) model and fine-tune it with health audio data for solving a multiclass classifica-
tion task. The decision to employ Audio Spectrogram Transformer (AST) models was
based on their proven effectiveness at processing complex audio patterns. This ability
is particularly beneficial when dealing with the intricate and subtle variations found in
health-related audio data. Recent research leveraging AST models with spectrograms has
shown promising results, as evidenced in recent studies [40–42]. This success has led us to
apply the AST model to health-related audio data, which is, to the best of our knowledge,
its first application in the health field. The authors aim to leverage its superior pattern
recognition capability for a multiclass classification challenge by fine-tuning the AST model
with specific health-related audio data. This strategy not only exploits the unique strengths
of AST for processing audio data, but also explores its potential to significantly improve
the analysis and categorization of audio datasets in the health domain.

The AST model processes spectrograms through self-attention mechanisms, allowing
it to focus on relevant parts of the input without losing information, unlike CNNs which
can lose fine details due to spatial reduction through convolution and pooling layers. Trans-
formers compute relationships between all parts of the input simultaneously, efficiently
capturing both global and local dependencies. This ability to maintain a comprehensive un-
derstanding of the entire input at each layer enables more nuanced and detailed modelling
of audio data, leading to its superior performance.

The original AST model consists of a process where an audio waveform is transformed
into a 128 × 100 t spectrogram, which is then divided into 16 × 16 patches. These patches
are flattened into 1D embeddings and combined with positional embeddings. The se-
quence, appended with a [CLS] token, is processed by a standard transformer encoder
with 12 layers and 12 heads, designed for classification. The output of the [CLS] token,
transformed by a linear layer with sigmoid activation, serves as the basis for classification.
This approach leverages transformer’s capabilities for audio classification, emphasizing
ease of implementation and suitability for transfer learning. In the following subsection,
we will describe the internal structure of the Audio Spectrogram Transformer (AST), as
shown in Figure 3.
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3.4.1. AST Spectrogram Generation

In the initial phase, the cry of the infant is recorded and transformed into a spectrogram
within the Audio Spectrogram Transformer (AST) model, as illustrated in Figure 4. This
transformation process converts the raw audio signals into a visual format that maps sound
frequency, intensity, and duration onto a two-dimensional plane, effectively creating an
image-like representation of the sound. Spectrogram conversion is a critical preprocessing
step that enables the application of image-based processing techniques to audio data. This
approach is advantageous for several reasons. First, spectrograms provide a more intuitive
visualization of the sound’s characteristics, such as its frequency content over time, which
can be crucial for detecting patterns or anomalies. Second, by representing audio signals in
this visual form, it becomes possible to leverage advanced image processing algorithms
and machine learning models that are typically designed for image data, thus opening a
wider range of analytical techniques. Essentially, the use of spectrograms facilitates a more
effective analysis by bridging the gap between the complex, time-varying nature of audio
signals and the powerful, well-established domain of image analysis.
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3.4.2. Patch-Based Input Representation

After constructing the spectrogram from the audio, the spectrogram is segmented into
a series of patches. This method, inspired by how vision transformers process image data,
allows the model to focus on localized frequency–time regions within the spectrogram.
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Each patch encapsulates specific features of the cry, such as pitch variations or intensity
fluctuations, which are critical for diagnostic purposes.

3.4.3. Transformer Encoder

The transformer-based encoder model, at the heart of this architecture, processes these
patches sequentially. Unlike traditional convolutional neural networks, which process
images as a whole, the transformer model treats each patch as a part of a sequence. This
sequential processing enables the model to understand the temporal dynamics within
the cry, which is pivotal for identifying subtle acoustic markers that indicate various
health conditions.

3.4.4. Linear Layer

The final output of the model produces a set of probabilities using sigmoid activation
linked to different infant conditions, derived from the cry analysis. This output serves
as an input layer for a subsequent classification task, representing an additional feature
space of the input data utilized in the classification process. The transformer’s capability
to identify complex patterns in the spectrogram achieves a diagnostic accuracy beyond
what conventional audio processing methods could attain, enhancing the precision of the
classification.

3.5. Model Training and Evaluation Measures

Training was performed using a Colab notebook equipped with an A100 GPU, and
the time required to fine-tune the model on the selected dataset was approximately 15 min.
The AST model was developed using the transformers library, a comprehensive package of
various cutting-edge pre-trained models. The audio dataset was segmented into training,
validation, and testing parts, with distributions of 70%, 15%, and 15%, respectively.

The selection of model hyperparameters is crucial for achieving high-quality training
results. In this context, Categorical (Multiclass) Cross-Entropy was chosen as the utilized
loss function due to its effectiveness in handling multiclass classification problems, which
are inherent in our audio dataset. This loss function is particularly suitable for scenarios
where each input is intended to be classified into one out of many possible categories. It
works by comparing the predicted probability distribution across all classes with the actual
distribution, where the true class has a probability of 1 and all others have a probability of
0. This approach incentivizes the model to not only predict the correct class, but to also be
confident in its prediction, thereby enhancing the overall accuracy of the model.

Categorical Cross − Entropy Loss = −∑M
c=1 yo,clog(po,c) (1)

where M is the number of classes,yo,c is the ground truth (actual value, 0 or 1, indicating
whether c is the correct class for observation o), po,c is the predicted probability of observa-
tion o being of class c. The negative sign is used to make the overall loss positive, as the log
function yields negative values for inputs between 0 and 1.

Furthermore, numerous tests were carried out to identify the optimal hyperparameters.
A learning rate of 6 × 10−5 was chosen, probably due to its balance between speed and
accuracy in the gradient descent, preventing overshooting of the global minimum. The
use of a linear scheduler to gradually adjust this learning rate likely helped to fine-tune
the training process as the model approached convergence, improving the precision of the
updates. The rapid convergence of the model convergence within 6 epochs, as shown in
Figure 5, suggests an efficient learning process. Furthermore, the implementation of a 0.5%
weight decay was particularly significant. This weight decay, which acts as a form of L2
regularization, not only helps to prevent overfitting and ensures that the model generalizes
well to new data, but also stabilizes the training process by preventing the weights from
growing excessively large. In addition, choosing a batch size of 16 helps maintain a balance
between computational efficiency and the ability to capture sufficient data variance in
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each training step. Empirically, these hyperparameter settings appeared to be optimal
for our audio dataset, allowing fast learning while maintaining the quality of the model’s
predictions (Table 2).
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Table 2. Hyperparameters of the transformer model.

Hyperparameter Best Value

Epoch 6
Learning rate 6 × 10−5

Learning rate scheduler Linear
Weight decay 0.5%

Batch size 16
Loss function Categorical Cross-Entropy

Optimizer adamW

To further assess the model performance, four key classification metrics were com-
puted: accuracy, recall, precision, and F1 score, as described in Equations [2–5]. Accuracy,
defined as the proportion of true results, both true positives (TP) and true negatives (TN),
among the total number of cases examined, provides a general measure of the model per-
formance. Recall, also known as sensitivity, measures the ability of the model to correctly
identify positive results from all true positive cases. Precision, on the other hand, reflects
the model’s ability to correctly predict positive outcomes out of all predicted positives.
Finally, the F1 score, which is the harmonic mean of precision and recall, provides a balance
between the two, providing a comprehensive measure of the model’s accuracy, especially
in situations where the class distribution is unbalanced. These metrics collectively provide
a thorough assessment of the model’s classification capabilities.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)



Information 2024, 15, 253 11 of 18

F1 = 2 × Precision × Recall
Precision + Recall

(5)

where TP represents true positives, TN true negatives, FP false positives, and FN false neg-
atives.

To guide the hyperparameter tuning process, we observed the accuracy, recall, preci-
sion, and F1 score over the validation split during training. Figure 5 shows the increase
in these metrics until they reach the peak in epoch 6. All metrics showed an ascending
trend over the epochs, ultimately reaching their peak by the sixth epoch. This consistent
improvement indicates that the model’s ability to generalize improved with each epoch,
until it stabilized at its best performance by the end of the observed training period. To
avoid overfitting, an early stopping strategy was applied where the training stopped if the
metrics of validation split decreased for two consecutive epochs.

Hyperparameter sensitivity analysis of audio spectrogram models reveals the nuanced
effects of learning rate, epoch duration, learning rate scheduler, and weight decay on model
performance, particularly in terms of the misclassification rates observed in the confusion
matrices as illustrated in Figure 6.
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For the models tested, varying hyperparameters led to distinct accuracy levels and
misclassification patterns across different conditions (healthy, RDS, and sepsis) (Table 3).
The first model, with a learning rate of 6 × 10−5, epochs set to 6, a linear learning rate
scheduler, and a weight decay of 0.5%, achieved the highest accuracy (98.69%). This
configuration resulted in the fewest misclassifications, suggesting that a lower learning
rate combined with a moderate number of epochs and a linear scheduler is highly effective
for this task. The gradual reduction of the learning rate likely allowed for more precise
adjustments in the model’s weights, leading to better generalization on the testing data.
The second model, with a slightly higher learning rate of 8 × 10−5, fewer epochs (5), and
similar scheduler and decay settings, also performed well (95%), but with a slight increase
in misclassification rates. This indicates that while a higher learning rate can still yield high
accuracy, it may lead to slightly more errors, possibly due to less stable convergence in
the optimization landscape. The third model, with a significantly lower learning rate of
1 × 10−5 and the same epoch count and other settings, showed a decrease in performance
(93%). This suggests that too low a learning rate might not be sufficient to escape local
minima or to converge to the global minimum within a limited number of epochs, leading
to higher misclassification rates. The fourth model, utilizing a much higher learning rate of
5 × 10−4, a constant learning rate scheduler, and the same weight decay, had the lowest
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accuracy (87%). The constant learning rate likely contributed to this drop in performance,
as it does not allow for the fine-tuning of model weights in the later stages of training,
resulting in a higher number of misclassifications. This model demonstrates the risks of
using a high learning rate with a constant scheduler, which can prevent the model from
adjusting to more nuanced data features, leading to poorer generalization.

Table 3. Comparison of model performance based on hyperparameter configurations.

Model Learning Rate Epochs Scheduler Weight Decay Accuracy

1 6 × 10−5 6 Linear 0.5% 98.69%
2 8 × 10−5 5 Linear 0.5% 95%
3 1 × 10−5 5 Linear 0.5% 93%
4 5 × 10−4 5 Constant 0.5% 87%

4. Experimental Results

The rapid convergence of the proposed model within six epochs, as shown in Figure 6,
suggests an efficient learning process. The graph illustrates the training and validation loss
of an Audio Spectrogram Transformer model over six epochs. The rapid convergence of
the model is evident, taking only six epochs to reach a state of minimal loss. This is a strong
indication of the model’s ability to learn and generalize from the data efficiently.

Observing the trends in the graph, both training and validation losses decrease sharply
and steadily as the number of epochs increases, which is a good sign of the model’s learning
capability. The training loss consistently remains lower than the validation loss, which is
typical as the model is directly learning from the training data. However, the validation loss
also decreases significantly, showing that the model is not overfitting and is generalizing
well to unseen data.

The effectiveness of the proposed model was evaluated using a confusion matrix, as
shown in Figure 7. The presented confusion matrix provides an insight into the classification
performance of a model that distinguishes between healthy, RDS, and sepsis. For the healthy
class, the model correctly predicted 194 instances as healthy, with only one misclassified as
RDS, which represents an accuracy of 99.4%.
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For the RDS class, the model also performed well, correctly identifying 191 cases as
RDS (97.9% of the RDS class) but misclassifying 3 cases as healthy (1.5%) and 1 case as
sepsis (0.5%). For the sepsis class, the model correctly identified 194 cases (99.4% of the
sepsis class), with only one misclassified case as healthy (0.5%).

These results indicate a high level of accuracy across all three categories, with particu-
larly strong performance in correctly identifying healthy and sepsis cases. The precision and
recall rates for each class would be quite high based on these numbers, although the model
shows a slightly higher tendency to misclassify RDS as sepsis and healthy compared to
other types of misclassifications. The high accuracy and low misclassification rates suggest
that the model is robust and effective for this three-class medical diagnosis problem.

The receiver operating characteristic (ROC) curve depicted in Figure 8 illustrates the
multiclass classification performance of a model that discriminates among three classes:
healthy, RDS (respiratory distress syndrome), and sepsis. Each curve represents the trade-
off between the true positive rate (sensitivity) and the false positive rate (1—specificity) for
the respective class against all other classes.
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From the ROC curves, it can be observed that all three classes exhibit excellent classifi-
cation capabilities, with each curve approaching the top left corner of the graph, indicating
a high true positive rate and a low false positive rate. This ROC curve analysis complements
the confusion matrix results by providing a graphical representation of the model’s ability
to classify each condition correctly. It also suggests that the model is likely to maintain high
performance across different decision thresholds, which is crucial for medical diagnostic
tools where the cost of false negatives can be very high.

The AST classifier implemented in this research paper has achieved remarkable results
with an accuracy of 98.6%. This high accuracy indicates that the model is exceptionally
adept at identifying the correct class for almost all instances. In addition, the model
demonstrates outstanding precision and recall, both at 98.7%, signifying that it not only
accurately identifies the majority of positive cases (high recall) but also that the instances it
predicts as positive are indeed correct (high precision). The F1 score, which is the harmonic
mean of precision and recall, is also 98.7%, confirming the balanced performance of the
model in terms of precision and recall, as presented in Table 4.
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Table 4. Evaluation results of AST model.

Metric Value

Accuracy 98.69%
Precision 98.73%

Recall 98.71%
F1 score 98.71

These metrics indicate a highly reliable and effective classification system, which
is critical in applications where the cost of misclassification is high, such as in medical
diagnostics or safety-critical systems. The consistency of all these metrics suggests that
the model is well-calibrated and that there is a harmonious balance between sensitivity to
positive cases and the specificity in predicting them. This level of performance also implies
that the model has learned the underlying patterns in the data exceptionally well, leading
to high confidence generalization to unseen data. This is a significant achievement for
any machine learning model, particularly in the nuanced field of audio analysis, where
distinguishing between different classes can be quite challenging due to the complex nature
of audio signals.

5. Discussion

The results obtained from the comparative analysis of previous researchers’ mod-
els [8,15,40,41] designed to classify audio data of infant cries into different pathologies
underscore the effectiveness of the proposed model in this study, as shown in Table 5.

Table 5. Comparison between the model performance of this research and previous research models.

Comparison Model [8] * Model [15] * Model [25] * Model [18] * Proposed Model

Classes 2 classes 3 classes 3 classes 4 classes 3 classes

Audio features GFCC, HR GFCC, HR,
spectrogram Spectrogram Linear Frequency Cepstral

Coefficients (LFCCs) Spectrogram

ML algorithm Multilayer
perceptron

Fusion deep
learning (CNN) SVM + CNN XGBoost Transformer

Accuracy 95.92% 97.50% 92.5% 92% 98.69%
Precision 95% 97.51% 88.8% - 98.73%

Recall 95% 97.53% 89.3 - 98.71%
F1 score 95% 97.52% 88.9% 92.3% 98.71%

* Best results.

The utilization of audio spectrograms coupled with transformer-based machine learn-
ing algorithms has resulted in superior performance metrics, particularly in terms of
accuracy, precision, recall, and F1 score. This improvement in performance indicators is not
just a numerical increase but represents a significant improvement in the model’s ability to
accurately detect and classify various pathologies.

The success of the proposed model can be attributed to the transformer’s inherent
capabilities for handling sequential data, which is a natural fit for audio analysis. Un-
like traditional deep learning models, which may require extensive feature engineering,
the transformer model leverages self-attention mechanisms to efficiently process raw au-
dio data. This not only simplifies the preprocessing pipeline but also enables the model
to capture nuanced patterns within the audio spectrum that may be indicative of spe-
cific pathologies.

Each model in the table utilizes different approaches and combinations of features
and machine learning algorithms for classifying infant cries into various pathologies.
Model [8] employs a multilayer perceptron (MLP) algorithm along with features such as
Gammatone Frequency Cepstral Coefficients (GFCCs) and heart rate (HR), achieving a high
accuracy of 95.92% with a simplified classification task of two classes. Model [15] employs
fusion deep learning using convolutional neural networks (CNNs) along with GFCC, HR,
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and spectrogram features, achieving an impressive accuracy of 97.50% for classifying
into three classes. Model [25] combines Support Vector Machine (SVM) with CNN for
classification, utilizing only spectrogram features, achieving an accuracy of 92.5% for
three classes. Model [18], which uses XGBoost with Linear Frequency Cepstral Coefficient
(LFCC) features, achieves an accuracy of 92% for four classes. Finally, the proposed
model in this study adopts the transformer architecture, utilizing only the spectrogram
feature, and outperforms all previous models with an accuracy of 98.69% for three classes,
demonstrating the effectiveness of the transformer architecture in capturing complex
patterns in spectrogram data and the simplicity of using a single feature for classification.

From the perspective of previous studies, it is evident that the deep learning approach
(CNN, as represented by model [3]) has been a significant step forward from traditional
machine learning methods (such as the multilayer perceptron of model [2]). However,
the advancement of the proposed model lies in its ability to outperform these already
sophisticated models, suggesting that transformers could be the new frontier in audio
classification tasks.

In the comparison of models for classifying infant cries into different pathologies, the
transformer model proposed in this study outperforms previous researches in terms of
accuracy, precision, recall, and F1 score. It achieves the highest accuracy of 98.69% among
all the models compared. In addition, its precision, recall, and F1 score are also significantly
higher compared to those of the other models.

A notable aspect of the proposed transformer model is its simplicity in utilizing a
single feature, namely the spectrogram. While previous models employed multiple features
such as GFCC, HR, and LFCC, the transformer model achieves superior performance using
only the spectrogram. This simplicity not only streamlines the feature extraction process
but also enhances interpretability and ease of implementation.

Furthermore, the use of the transformer architecture for audio classification demon-
strates its effectiveness in capturing complex patterns within the spectrogram data. Despite
its simplicity, the transformer model demonstrates remarkable capability to detect subtle
variations in infant cries associated with different pathologies, leading to highly accurate
classification results.

The implications of these findings are far reaching. In the clinical setting, the use of
such advanced models can aid in the early diagnosis of infant pathologies by non-invasive
means. This could be particularly beneficial in remote or under-resourced areas where
access to pediatric specialists is limited. Moreover, the ability of the model to produce
accurate results with minimal preprocessing suggests that it could be deployed in real-
world scenarios with less computational overhead.

6. Conclusions and Future Work

This research focused on the development of an advanced algorithmic model for
classifying audio data of infant cries to identify different pathologies. The model uses audio
spectrograms with a transformer-based machine learning framework, a novel approach in
audio classification tasks, particularly in the medical field.

The algorithm was designed to minimize the need for preprocessing of raw audio
data, relying instead on the transformer’s ability to process sequential data and extract
meaningful patterns through its self-attention mechanisms. The results were compelling,
with the proposed model outperforming existing models—a multilayer perceptron and a
convolutional neural network—across all performance metrics: accuracy, precision, recall,
and F1 score.

The implications of such a model are significant, offering the potential for non-invasive,
efficient, and accurate diagnostic support for infant pathologies. This could be particularly
impactful in settings where access to pediatric specialists is limited.

Future research will prioritize a comprehensive analysis to elucidate the significant
impact of the components of the study (spectrogram and transformer) on improving
recognition rates. This will involve examining the outcomes derived from integrating
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Gammatone Frequency Cepstral Coefficients (GFCCs) with transformers and comparing
the performance of spectrogram inputs with convolutional neural networks (CNNs) or
multilayer perceptron (MLP). Such comparative studies are pivotal for delineating the
contributing roles of spectrograms and transformers in enhancing model efficiency. Addi-
tionally, future work will focus on evaluating the model’s effectiveness in a broader and
more diverse dataset to confirm its reliability and adaptability in different populations
and environments; the authors plan to include a wider range of categories in the dataset.
There will also be a focus on incorporating the model into real-time monitoring systems to
provide immediate diagnostic assistance. Research will also focus on integrating different
types of data and improving the interpretability of the model to increase its clinical value.
Importantly, in line with the overall objective of developing a low-cost, early-diagnosis
system for infant pathologies, future efforts will include considering additional pathologies
to broaden the model’s applicability.
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