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Abstract: The preparation of raw images for subsequent analysis, known as image preprocessing, is a
crucial step that can boost the performance of an image classification model. Although deep learning
has succeeded in image classification without handcrafted features, certain studies underscore the
continued significance of image preprocessing for enhanced performance during the training process.
Nonetheless, this task is often demanding and requires high-quality images to effectively train a
classification model. The quality of training images, along with other factors, impacts the classification
model’s performance and insufficient image quality can lead to suboptimal classification performance.
On the other hand, achieving high-quality training images requires effective image preprocessing
techniques. In this study, we perform exploratory experiments aimed at improving a classification
model of unexposed potsherd cavities images via image preprocessing pipelines. These pipelines
are evaluated on two distinct image sets: a laboratory-made, experimental image set that contains
archaeological images with controlled lighting and background conditions, and a Jōmon–Yayoi image
set that contains images of real-world potteries from the Jōmon period through the Yayoi period
with varying conditions. The best accuracy performances obtained on the experimental images and
the more challenging Jōmon–Yayoi images are 90.48% and 78.13%, respectively. The comprehensive
analysis and experimentation conducted in this study demonstrate a noteworthy enhancement in
performance metrics compared to the established baseline benchmark.

Keywords: image preprocessing; image classification; deep learning

1. Introduction

Image preprocessing involves procedures conducted on original images and aims to
ready the images for subsequent analysis or further processing [1]. It is an essential step in
numerous computer vision applications, such as object detection and image classification.
Algorithm efficiency can be enhanced through the application of image preprocessing
techniques [2]. During the image preprocessing phase, various techniques are employed,
including noise reduction, image segmentation, smoothing, normalization, and compres-
sion of image data. These methods contribute to refining and preparing the images for
subsequent analysis or applications [3].

Image preprocessing is applied in diverse scenarios. In [4], image preprocessing
techniques are implemented in the context of retinal microaneurysm detection in fundus
images. They employ specific techniques such as illumination equalization, histogram
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equalization, and adaptive histogram equalization to address illumination imbalances,
enhance the contrast between microaneurysms and the background, and reduce noise.
Image preprocessing is used in [5] to prepare computed tomography (CT) scans and X-
ray images for COVID-19 detection. Contrast-limited adaptive histogram equalization
(CLAHE) is employed in [6] as a preprocessing step in colorectal cancer detection. Weighted
mean histogram equalization is utilized in [7] to reduce noise in lung CT images. Likewise,
noise removal and contrast enhancement of musculoskeletal radiographs are employed
in [8] using CLAHE.

Numerous studies have confirmed the remarkable success of deep learning without
requiring handcrafted image features. Nonetheless, several studies report that image
preprocessing is still necessary to perform before the training process in deep learning
to achieve better performance. In [9], histogram equalization and bilateral filtering are
utilized as preprocessing techniques for COVID-19 detection from chest X-ray radiographs.
By combining the original image with the two filtered images, they create a pseudo-
color image. The experimental results indicate that integrating image preprocessing leads
to higher classification accuracy compared to conducting classification without image
preprocessing. Histogram equalization is also used in [10] to preprocess face images. Its
purpose is to prepare the images for emotion recognition via facial expression classification.
In [11], the preparation of the dataset for CNN (convolutional neural network)-based breast
cancer classification involves background removal, removal of the pectoral muscle, and
application of image enhancements. Similarly, various image preprocessing methods are
used in [12] to enhance the conditions of retinal fundus images. These enhancements aim
to aid in the identification of diabetic eye disease using multiple deep-learning models.

However, image classification is a challenging task that requires effective image-
processing techniques. Images are often subject to noise and distortions, primarily due to
the challenging conditions and the potential damage or degradation over time. Further-
more, given that these images may be captured at different moments and locations and
with varying acquisition equipment, there can be significant disparities in image quality.

In our previous study, we proposed a framework for archaeological pottery X-ray
image classification based on various deep learning architectures, parameters, and tech-
niques [13]. These pottery artifacts contain remnants of various types of food dating back
to the Jōmon–Yayoi period. These include ailanthoides, barley, maize weevil, millet, perilla,
rice, and wheat. X-ray imaging of these potteries is a non-invasive method to determine
the contents and analyze past dietary habits and trade connections. A remaining challenge
persists due to the variable conditions under which these images are captured. This issue
can be mitigated by image preprocessing, as the inherent nature of radiology images ne-
cessitates a preprocessing step [14]. Nevertheless, different image processing techniques
may have different effects on different types of archaeological images, depending on their
resolution, contrast, noise, etc. Therefore, it is important to investigate and compare various
image processing techniques and their impact on image classification, particularly using
deep learning.

In this study, we conduct a comprehensive analysis of numerous established image-
processing techniques for deep learning-based image classification and discuss the ad-
vantages and disadvantages of each preprocessing method. The findings of this study
are important for further research in image analysis of various domains, as they provide
valuable insights and guidelines for choosing and applying appropriate image processing
techniques for different scenarios.

This paper makes several key contributions to the field of image classification as
summarized below.

1. It investigates the impact of image preprocessing methods on classification accuracy
in detail.

2. It thoroughly examines image preprocessing techniques on distinct datasets, including
controlled laboratory-made images and real-world potsherd objects discovered in
archaeological sites.
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3. It enhances performance compared to the previous study by identifying the most
effective image preprocessing method.

This paper is organized as follows. We explain the materials and methods in Section 2.
In Sections 3 and 4, we demonstrate and discuss the effectiveness of each of the image
preprocessing methods. Finally, this study is concluded in Section 5.

2. Materials and Methods
2.1. Image Preprocessing

Image processing refers to the application of algorithms and techniques to manipulate
or enhance digital images for various purposes, such as improving visual quality and auto-
mated decision-making across a wide array of fields. Image processing can be performed
in the spatial domain, involving direct alterations to pixel values, or the transform domain,
where adjustments are applied to an input image within a frequency domain [15]. This
study examined various image processing techniques within the spatial domain. Tech-
niques in the spatial domain fall into two primary categories: intensity transformation,
which manipulates individual pixels within an image, and image filtering, which conducts
operations in the neighborhood of each pixel in the image using a filter.

Image filters can be applied to images with different probabilities p ∈ R where
0 ≤ p ≤ 1. This sets the probability that an image filter will be applied to an input image,
and different probabilities bring different effects to the resulting training set. When p = 0,
an image filter will never be applied to the input image and the original input image will
be employed for training. Conversely, when p = 1, an image filter will always be applied
to the input image, and the original version will never be utilized for training. For values
where 0 < p < 1, there exists a probability that either the original image or the filtered
image will be chosen for training. This introduces an element of randomness or variability
into the process.

In this study, we employ either p = 0.5 or p = 1 depending on the objective of the
filtering. We apply p = 0.5, for instance, in operations like image rotation, flipping, and
transposition, so that either the processed images or original images are used in different
iterations of the training process, based on that probability. It is important to emphasize
that in this mode, the total number of train images remains constant. This mode is referred
to as a non-expanding mode.

Conversely, p = 1 is used for two purposes. Firstly, it standardizes images across
all splits. For instance, in the context of the CLAHE, it acts as an image standardization
method. Thus, it ensures that only the CLAHE-processed images are considered for training
and testing, and the original images are not utilized in this mode. This choice is motivated
by the logic that a model trained with images preprocessed using specific filters should also
proficiently predict similarly processed images. Secondly, p = 1 is employed to expand
the training set for certain operations. This mechanism is referred to as dataset-expanding
mode. For instance, when applied to image flipping, it doubles the resulting training set
size as it contains both the original and flipped images. This expanded set is then employed
for training the model to enhance the generalizability of the model by providing more
training images. Furthermore, several image filters are combined into image processing
pipelines, allowing for a comprehensive image enhancement approach.

2.2. Smoothing and Sharpening

Smoothing, as an image transformation technique, aims to reduce sharp intensity
transitions that manifest as fine details such as dots and edges within an image [15]. It is
frequently utilized to enhance images by reducing noise, given that image noise typically
appears as abrupt intensity transitions. Image denoising remains a challenge in the image
processing domain [16]. Failure to adequately address issues related to noise can lead
to numerous inaccuracies in classifications [17]. Also referred to as low-pass filtering,
smoothing has the additional purpose of reducing irrelevant details in images.
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In this study, we employ smoothing to investigate whether fine details in the images
play a role in archaeological image classification. We utilize Gaussian smoothing, which
is the most commonly used image smoothing technique, by convolving the input image
with a Gaussian kernel. The standard deviation of the kernel can be adjusted to control the
degree of the smoothing, thereby influencing the reduction of fine details. Hence, we can
investigate the relationship between the amount of details present in images and its impact
on classification accuracy.

As opposed to image smoothing, the objective of image sharpening is to highlight
a sharp transition in intensity in an image, which appears as fine details. Image sharp-
ening is employed in this study to examine whether the enhanced details of the image
correspond to changes in image quality for classification. By examining the effects of both
image smoothing and sharpening, we aim to discern whether it is the fine details or the
overall structure of the images that is more important for image classification. In our
implementation, the input image is sharpened and superimposed on the original image.
The visibility of the sharpened image is adjusted using the parameter α where 0 ≤ α ≤ 1.
Specifically, when α = 0, only the original image is visible, and when α = 1, only the
sharpened image is visible. This approach enables the investigation of the relationship
between image detail enhancement and its impact on classification results. In the case of
image smoothing, Gaussian kernel sizes of 5 and 9 are employed, whereas α values of 0.2
and 0.4 are utilized for image sharpening.

2.3. Rotations, Flips, and Transposition

Geometric transformations, including image rotation, flipping, and transposition, are
basic image preprocessing methods [19? ]. These methods are recognized for enhancing
image classification performance [20]. The rationale is to enhance the diversity of the
images within the training set to improve the generalization ability of the models. This
is analogous to capturing images of a single object from various angles and perspectives.
Hence, these operations are utilized exclusively on the training images. Nevertheless, the
choice and execution of geometric transformations require careful consideration. In certain
cases, such as with chest X-ray images typically captured in an upright position, these
transformations, like rotation and reflection, can potentially distort the images and generate
representations that may not align with real-world scenarios. This would consequently
lead to a reduction in classification accuracy [21].

We conducted experiments using both p = 0.5, where augmentations occur without
expanding the dataset, and p = 1 where the dataset expands dynamically. In the case of
image rotations, various orientations of 90◦, 180◦, and 270◦ were employed. When applied
using all orientations, the resulting expanded training set quadrupled in size compared
to the original set. Furthermore, for image flipping, both vertical and horizontal flips
were employed.

2.4. Histogram Equalization

Depending on factors like the objects, lighting conditions, and the image acquisition
device, images may display issues such as excessive darkness or brightness, or insufficient
contrast, potentially underexposing or overexposing important details in the images. In
such instances, histogram equalization proves to be a valuable technique for normalizing
and enhancing the contrast of such images by manipulating the histogram values.

Histogram equalization corrects the intensity of a pixel through a transformation
function that takes into account the entire image. More specifically, it redistributes the
grayscale values across the entire image, ensuring that the result will exhibit a uniform
histogram [22]. The transformation is formulated as (1) [4].

sj = C(pj) =
G − 1

N

j

∑
i=0

ni, j = 0, 1, 2, · · · , G − 1 (1)
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Here, N is the number of pixels, ni is the count of pixels with an intensity of pi, G stands for
the overall number of gray levels, and C(pj) denotes the cumulative distribution function
of pj.

To process an input image, this method does not require any input parameters. When
applied to images with low contrast, this process will effectively enhance the input image
by rectifying the overall contrast so that the details in the image will be more apparent.
However, it is worth noting that histogram equalization can also drastically alter the
appearance of the image and potentially distort image features [23].

2.5. Adaptive Histogram Equalization

In addition to the global histogram equalization mentioned above, another technique
known as local histogram equalization, or adaptive histogram equalization, can also be em-
ployed. This approach involves dividing the input image into rectangular, non-overlapping
blocks and then computing histogram equalization individually in each local block [22].
Therefore, it allows the variation of contrast levels in different regions of an image. Nu-
merous variations of local histogram equalization technique exist, with contrast-limited
adaptive histogram equalization (CLAHE) [24] being regarded as one of the most com-
mon and effective variations, outperforming global histogram equalization in terms of
results [23,25]. It performs effectively for biomedical images such as MRI and mammo-
grams, enhancing image quality through noise removal and preventing excessive noise
amplification [26].

CLAHE depends on two important parameters: the number of blocks and the clip
limit for contrast limiting. The former specifies how the input image will be divided. This
parameter is defined by two values k and l, which partition the image into a k × l grid of
non-overlapping blocks. The latter parameter, the clip limit, is designed to control the noise
amplification effect by constraining values in the image histogram from surpassing the
predetermined threshold [27]. Subsequently, neighboring image regions are blended using
bilinear interpolation to eliminate artificially induced boundaries between the regions [28].

2.6. Grid Distortion and Elastic Transformation

Grid distortion changes the spatial arrangement of pixels in an image. It works by
employing a grid or mesh that consists of intersecting horizontal and vertical lines overlaid
on an input image. This grid divides the input image into blocks. Then the intersection
points are shifted randomly along with the pixels surrounding those points. As a result, the
shape of objects in an input image will be altered. This method requires two parameters:
the number of blocks and the amount of distortion. In our experiment, this operation was
exclusively applied to images in the train split to increase the variability of object shapes.
This will enhance the model’s robustness and generalization to recognize the same objects
that appear in different shapes.

On the other hand, elastic transform also operates using a grid overlaid on an input
image. However, instead of shifting the intersection points of the grid individually, elastic
transform maps the entire grid itself to a new, random coordinate. The transformation
is achieved by implementing affine displacement, denoted as ∆, where the new position
of every pixel is determined relative to its original location. For instance, if ∆x = 1, it
indicates that each pixel’s new location is shifted by 1 to the right. If ∆x = αx, the image
undergoes scaling by a factor α. Since α might be a non-integer value, interpolation is
essential, typically employing bilinear interpolation [29].

Similar to grid distortion, we utilize elastic transform exclusively to images in the
train split. This operation will introduce additional diversity to the train images without
substantially altering their semantic content.
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3. Experimental Setup

In this work, we aim to enhance the performance of a deep-learning model for classi-
fying archaeological potsherd images. Our focus involves investigating the most effective
image preprocessing technique for this purpose.

3.1. Environment Setup

Computations were carried out on an RTX 3090 GPU equipped with 24 GB of GPU
memory. The training duration for each model ranged between 30 min to 6 h. The PyTorch
framework was employed for model implementation, complemented by functions sourced
from the Albumentations library [30] for image processing purposes.

3.2. Classification Model

In this study, we employ ConvNeXt [31] as the classification model, specifically uti-
lizing ConvNeXt-B (base) as our model variant. ConvNeXt is essentially an evolution
of the ResNet architecture [32], particularly ResNet-50 and ResNet-200, and was mod-
ernized using various design improvements. This development was motivated by the
substantial performance gains observed with recent Vision Transformers [33] that out-
performed ResNet by a significant margin. Notably, the authors of ConvNeXt reported
that its performance exceeds that of the more recent Swin Transformer [34] with similar
computation trequirements.

ConvNeXt was fined-tuned for the capability of classifying images in our dataset.
Considering the stochastic nature of neural networks, the training was conducted on the
same model eight times for each image preprocessing method or pipeline. Code is avail-
able at https://github.com/israel-at-aritsugi-lab/archaeological-classification, accessed on
18 April 2024.

We used the Adam optimizer with β1 = 0.8, β2 = 0.99, ϵ = 10−3, a weight decay of
10−4, and a batch size of 12. Throughout our experiments, the “patience” parameter was
set to 30, meaning that the training process would halt if no improvement in performance
was observed within 30 epochs. Within the train split, we allocated 10% of the images for
validation purposes. The validation portion was selected randomly before the training
phase. This train/validation portion was consistently maintained across training itera-
tions, pipelines, and experiments to ensure a fair and objective comparison. Classification
performance was measured in terms of accuracy (2).

Accuracy =
Correct Predictions

Total Predictions
× 100% (2)

3.3. Dataset

Our dataset contains 1098 images and consists of two parts. The first part is the
Jōmon–Yayoi dataset, which contains X-ray images of ancient potteries from the Jōmon
through the Yayoi period, containing a limited set of 64 images. This part is relatively
small and insufficient for comprehensively evaluating a classification model. Therefore, we
collected the second part of the dataset which we call the experimental dataset, containing
X-ray images of a pot made in a laboratory setting. This second part of the dataset is larger,
totaling 1034 images. This experimental dataset was collected with the same objects as
those contained in the Jōmon–Yayoi dataset. By complementing the Jōmon–Yayoi dataset,
it enables the training of the image classification model and enables the model to acquire
the characteristics of both image types. We divide these images into train and test splits
following a 90:10 ratio, resulting in 929 images for the training split and 105 images for the
test split. This dataset configuration remains consistent with that employed in the previous
study [13].

The dataset consists of seven classes of images, which are ailanthoides, barley, maize
weevil, millet, perilla, rice, and wheat. We arranged the images in such a way that each
class in the test split contains an equal number of 15 images, while the train split consists

https://github.com/israel-at-aritsugi-lab/archaeological-classification
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of approximately 130 images per class. However, it is worth noting that the number of
images in the Jōmon–Yayoi dataset is not evenly distributed across classes, primarily due
to the limited availability of the objects. A breakdown of the dataset’s distribution across
splits and classes is provided in Table 1. Additionally, Figure 1 exhibits sample images
from each class.

Table 1. Distribution of the dataset.

No. Class
Number of Images

Train Test Jōmon–Yayoi

1 Ailanthoides 134 15 8
2 Barley 127 15 0
3 Maize weevil 133 15 36
4 Millet 134 15 15
5 Perilla 135 15 3
6 Rice 132 15 2
7 Wheat 134 15 0

Ailanthoides Barley Maize weevil Millet

Perilla Rice Wheat

Figure 1. Images from each class in the dataset.

All images are in grayscale and are stored in either JPG or TIF formats. Most images
have dimensions of 640× 480 pixels, while other images are in various dimensions, ranging
from 275 × 480 to 1032 × 688 pixels. Each image is resized using bilinear interpolation
so that the shortest side of the image becomes 400 pixels while maintaining the original
aspect ratio. This allows an input image to be scaled up or down based on its original
size. Following this, each image undergoes a center-cropping process to attain a consistent
size of 400 × 400 pixels. This dimension is determined based on an experiment conducted
in [13], which demonstrated the best classification results. All objects are positioned at
the center of the images during acquisition. This ensures that this cropping procedure
does not truncate the objects. Subsequently, normalization is applied using (3) before the
image enters the network. In the formula, µ = 0.5136 and σ = 0.1238, which represent the
mean and standard deviation of our dataset. This normalization procedure is consistently
applied across all experiments.

p′ =
p − µ · 255

σ · 255
(3)

The evaluation of each image processing pipeline’s performance is quantified in terms
of accuracy. Since each model is trained eight times, we consider the maximum and the
average accuracies achieved from each model.
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3.4. Learning Rate

Before experimenting with the image preprocessing methods, we decided on the
learning rate to use in those experiments. Learning rate is a hyperparameter that regulates
the magnitude of the steps taken in optimizing the weights of a neural network during
the training process. Thus, it regulates how quickly or slowly a neural network learns
from the data. Properly tuning this hyperparameter is essential for ensuring that the
model converges efficiently to optimal or near-optimal solutions. In this experiment,
we explored various learning rates, specifically 5 × 10−5, 10−4, 5 × 10−4, and 10−3. No
image preprocessing methods were applied during this experiment, except the required
400 × 400 pixel resizing, center-cropping, and normalization.

The results are outlined in Table 2, highlighting the best accuracy in bold and the
second-best accuracy underlined. Among these learning rates, the highest accuracy was
observed with 5 × 10−5 and 10−4. On the test split, the 5 × 10−5 learning rate results in a
higher accuracy compared to 10−4. Conversely, on the Jōmon–Yayoi split, the 10−4 learning
rate yields a higher accuracy. Since the Jōmon–Yayoi split is more challenging compared
to the test split, we selected the learning rate of 10−4 as the most suitable choice from this
experiment due to its superior accuracy performance. We utilized this learning rate in the
subsequent experiments.

Table 2. Performance of different learning rate values.

Learning Rate

Accuracy (%)

Test Split Jōmon–Yayoi Split

Max. Avg. Max. Avg.

5 × 10−5 83.81 81.43 67.19 59.18
10−4 82.86 79.29 68.75 63.87
5 × 10−4 78.10 72.86 65.63 54.88
10−3 79.05 67.98 53.13 42.97

4. Results and Discussion

In this section, we present and analyze the outcomes of each image preprocessing
method and their influence on the accuracy of the model. We categorize the methods into
two groups: single methods, which employ individual image processing techniques, and
combination pipelines, which integrate multiple image processing methods.

4.1. Single Methods

The results of the single methods are detailed in Table 3. Notably, a plus sign (+)
denotes the application of a dataset-expanding filter while a “(p)” implies the use of a filter
with 0.5 probability in a non-expanding mode. The values next to “CLAHE” mean the clip
limit parameter values, while those next to “Smoothing” represent the kernel sizes, and the
numbers next to “Sharpen” denote the α values.

Additionally, we provide the training and inference times of all models in the table. It
is worth noting that the training times represent the average training times of eight models
for each preprocessing method. The inference times denote the time required to process
the entire test images, rather than just one image. Typically, combination methods require
more time than single methods, and the dataset-expanding mode also exhibited a longer
runtime compared to the non-expanding mode. However, this was not always the case,
as the early stopping mechanism with the specified patience value influenced the training
times. For instance, model training without preprocessing (35′15′′) took longer to complete
than some other single methods.
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Table 3. Accuracy of the single image preprocessing methods.

Method

Accuracy (%) Average Processing Times

Test Split Jōmon–Yayoi Split
Training Inference

Avg. Max. Avg. Max.

No preproc. 80.48 84.76 60.16 62.50 0:35:15 0:00:02.1
Histogram eq. 75.24 80.00 60.35 65.63 0:22:45 0:00:02.5
CLAHE-2 78.57 80.95 59.38 67.19 0:29:52 0:00:02.5
CLAHE-3 79.88 82.86 64.45 70.31 0:33:00 0:00:02.5
CLAHE-4 77.74 85.71 65.43 68.75 0:34:22 0:00:02.5
CLAHE-5 79.64 83.81 65.43 70.31 0:35:45 0:00:02.5
CLAHE-6 81.31 85.71 64.65 68.75 0:30:30 0:00:02.5
CLAHE-7 79.05 81.90 63.09 68.75 0:35:37 0:00:02.4
CLAHE-8 81.90 83.81 62.70 65.63 0:29:22 0:00:02.5
Smooth-3 75.71 78.10 62.70 67.19 0:27:15 0:00:02.2
Smooth-5 78.10 80.00 64.84 71.88 0:27:45 0:00:02.2
Smooth-7 78.93 81.90 67.58 71.88 0:30:45 0:00:02.2
Smooth-9 77.38 81.90 67.58 71.88 0:30:15 0:00:02.1
Smooth-11 77.98 80.00 66.80 70.31 0:31:23 0:00:02.1
Sharpen-0.2 79.40 81.90 60.55 68.75 0:26:00 0:00:02.1
Sharpen-0.3 80.24 84.76 61.33 65.63 0:31:15 0:00:02.2
Sharpen-0.4 80.48 82.86 59.57 67.19 0:32:00 0:00:02.1
Sharpen-0.5 78.93 83.81 51.17 62.50 0:25:52 0:00:02.1
V. flip (p) 79.64 82.86 62.11 65.63 0:29:22 0:00:02.1
V. flip+ 80.24 82.86 62.70 70.31 0:56:45 0:00:02.1
H. flip (p) 83.10 85.71 59.77 67.19 0:29:00 0:00:02.1
H. flip+ 78.57 80.95 62.50 70.31 0:56:45 0:00:02.2
All flips (p) 81.90 84.76 62.50 67.19 0:32:15 0:00:02.1
All flips+ 81.79 86.67 65.43 67.19 1:40:52 0:00:02.1
Transpose (p) 81.67 83.81 63.67 68.75 0:32:00 0:00:02.1
Transpose+ 80.71 82.86 64.45 65.63 0:58:22 0:00:02.1
Rotation 90+ 79.88 81.90 65.04 68.75 1:00:15 0:00:02.1
Rotation 180+ 81.67 85.71 64.06 67.19 0:58:15 0:00:02.1
Rotation 270+ 81.67 85.71 65.04 70.31 0:54:00 0:00:02.1
All Rotations (p) 85.48 87.62 66.60 70.31 0:35:30 0:00:02.1
All Rotations+ 83.93 87.62 66.80 73.44 2:16:22 0:00:02.1
Grid Distort. (p) 82.02 84.76 66.80 68.75 0:30:22 0:00:02.1
Grid Distort.+ 79.88 81.90 65.63 73.44 0:52:22 0:00:02.1
Elastic (p) 80.12 81.90 63.28 68.75 0:39:00 0:00:02.1
Elastic+ 81.79 87.62 62.89 67.19 1:14:37 0:00:02.1

4.1.1. Histogram Equalization

In this part of the exploration, we employ global histogram equalization across all
data splits and aim to achieve a uniform and standardized image distribution. However,
this approach did not yield the desired results. On the test split, the average and maximum
accuracies were inferior to the original results obtained without any image processing. The
average accuracy dropped from 80.48% to 75.24% (−5.24%) and the maximum accuracy
decreased from 84.76% to 80% (−4.76%). On the Jōmon–Yayoi split, the maximum accuracy
improved from 62.5% to 65.63% (+3.13%) and the average accuracy improved slightly from
60.16% to 60.35% (+0.19%).

Similar outcomes were observed when global histogram equalization was combined
with image smoothing, which led to a decrease in both the average accuracy and maximum
accuracy on the test split by 10.48% and 10.47%, respectively. On the Jōmon–Yayoi split,
the average and maximum accuracy slightly improved by 1.17% and 1.56%, respectively.
Based on these results, we decided not to utilize global histogram equalization in any of
the further experiments.

Our suspicion arises from the substantial alteration introduced to the original image.
This discrepancy becomes evident when examining Figure 2, where the visual appearance
of the resulting image differs significantly from the original. This transformation leads to
the loss of fine details in certain important image regions, caused by the global equalization
carried out through histogram equalization. This challenge could be addressed by adopt-
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ing localized histogram equalization methods, e.g., contrast limited adaptive histogram
equalization (CLAHE).

Figure 2. The effect of histogram equalization. In the bottom row are the processed images from the
input images in the top row.

4.1.2. Adaptive Histogram Equalization

This experiment applied contrast-limited adaptive histogram equalization (CLAHE) to
all images in all splits. We varied the clip limit values while keeping the number of blocks
fixed at 8 × 8. We experimented with values ranging from 2 to 8 for the clip limit parameter.

On the test split, the results revealed a positive correlation between the clip limit
values and both the average accuracy and maximum accuracy up to the clip limit value
of 7. According to this experiment, the optimal clip limit was 6 which yielded an average
accuracy of 81.31% the highest maximum accuracy in this experiment of 85.71%. It was
an improvement over the results obtained without preprocessing of 0.83% and 0.95% in
terms of average accuracy and maximum accuracy, respectively. For the clip limit of 7, the
average accuracy as well as the maximum accuracy declined significantly.

In contrast, the pattern found on the test split does not apply in the Jōmon–Yayoi
split, where the positive correlation occurred only up to the clip limit of 5. Interestingly,
unlike the test split, positive outcomes were observed in this split. It achieved the highest
average accuracy of 65.43% and the highest maximum accuracy of 70.31%. These results
outperformed the average accuracy and the maximum accuracy obtained without any im-
age preprocessing by 5.27% and 7.81%, respectively. This aligns with the results presented
in [4], where their proposed multi-preprocessing for retinal microaneurysm detection,
which incorporates adaptive histogram equalization, demonstrated a higher F-score of
57% compared to the scenario without multi-preprocessing of 48.5%. Similarly, in [35],
it was noted that utilizing CLAHE as a preprocessing step led to a substantial accuracy
improvement of 17.83% in predicting diabetic retinopathy based on retinal images.

In addition, it is worth noting that the highest accuracy in this study on the test split
and Jōmon–Yayoi split was obtained with different clip limit values. This difference arises
from the fact that the images in the Jōmon–Yayoi split inherently have higher contrast
levels compared to those in the test split. Since a higher clip limit value results in a stronger
contrast-enhancing effect, the images in the test split required a higher clip limit value.
Consequently, the optimal clip limit value for the test split was higher than that for the
Jōmon–Yayoi split. Hence, this highlights opportunities for future research to standardize
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images with varying conditions, enabling the consistent application of procedures that
perform well across all images.

4.1.3. Smoothing

In this part, we varied the kernel sizes to investigate the impact of image detail reduc-
tion resulting from image smoothing and its influence on overall classification accuracy.
Specifically, we examined kernel sizes of 3, 5, 7, 9, and 11. This smoothing operation was
uniformly applied to all images across all data splits to ensure that the models were trained
and tested using images processed consistently. On the test split, it appears that the kernel
size does not exhibit a clear correlation with the maximum accuracy. However, a positive
correlation is observed between the kernel size and the average accuracy. The highest
average accuracy of 81.9% was achieved using a kernel size of 9. Conversely, using a
kernel size of 11 resulted in a decline in the average accuracy to 80%. However, despite
the presence of correlation, both the highest average accuracy and the highest maximum
accuracy were lower compared to those achieved without any image preprocessing. This
suggests that, for the test split, smoothing removed image details that are essential for
accurate classification.

On the other hand, a positive correlation between the kernel size and both the average
accuracy and maximum accuracy was found in the Jōmon–Yayoi split. The highest maxi-
mum accuracy of 71.88% was achieved when employing a kernel size of 9. This is also the
highest accuracy achieved across all experiments on the Jōmon–Yayoi split. The maximum
accuracy decreased to 70.31% when using a kernel size of 11. This observation suggests that
a kernel size of 11 is excessively large and results in the removal of too many image details.
Consequently, we opted to use a kernel size of 9 for combining smoothing with other image
preprocessing methods to construct combined image preprocessing pipelines. Moreover, in
contrast to the outcomes from the test split, image smoothing led to significantly higher
accuracy compared to the results obtained without any image preprocessing. This obser-
vation makes sense because our images in the Jōmon–Yayoi split, as depicted in Figure 3,
contain a considerable amount of noise which can interfere with the classification process.
As a result, smoothing the images recovered their quality and led to an improvement in
the classification accuracy. This is one of the significant challenges in this study, due to
the different image conditions in the Jōmon–Yayoi images and the experimental images.
Future research could focus on developing a method to harmonize these two image types.

Figure 3. Images from the Jōmon–Yayoi split (top row) with different conditions from those in the
train and test splits (bottom row).

This outcome aligns with findings from other studies that utilized image smooth-
ing/noise reduction which shows its positive impact on overall performance. In [36], image
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smoothing via bilateral filtering improved the image quality measured in peak signal-to-
noise ratio (PSNR) by ∼2 points, while in [37], image denoising improved the system’s
accuracy by 1–3 percent.

4.1.4. Sharpening

In this section, different α values that control the visibility of the sharpened image
on the original image were applied to investigate if there is any relationship between the
amount of high frequency on the images and the classification accuracy. We tried α values
of 0.2, 0.3, 0.4, and 0.5. Similar to smoothing, we uniformly apply sharpening to all images
across all data splits.

In the test split, applying sharpening to the images resulted in higher average ac-
curacy and maximum accuracy compared to the accuracy obtained without any image
preprocessing. An α value of 3 demonstrates the highest average accuracy of 82.5% and the
highest maximum accuracy of 84.76%. However, this did not improve the accuracy from
that obtained without preprocessing and there was no correlation found between α and
the accuracy.

On the contrary, this was different from the observation found in the Jōmon–Yayoi
split, where a negative correlation was found between the two values. The highest average
accuracy of 60.55% and the highest maximum accuracy of 68.75% was obtained using
α = 2. These were 0.39% and 6.25% higher than the accuracy obtained without image
preprocessing. These findings suggest that employing image sharpening with appropriate
adjustments in intensity is an effective preprocessing technique for archaeological images.
A comparable observation is reported in [5], where it is noted that image sharpening
substantially improves the accuracy of chest CT-scan and X-ray image classification.

In addition, distinct impacts of sharpening were evident in the two splits. Accuracy
on the test split generally surpassed that achieved through image smoothing. However,
in the Jōmon–Yayoi split, the situation was reversed, with accuracy dropping below that
of smoothing. This discrepancy arose from the high-frequency nature of images in the
Jōmon–Yayoi split, where sharpening adversely affected image quality. In contrast, images
in the test split lacked high-frequency elements, leading to improved image quality and
subsequently enhanced classification accuracy with sharpening.

4.1.5. Rotations, Flips, and Transposition

Increasing the variability of the train set via image rotations, flips, and transposition
demonstrated satisfactory results, which were evident in both the test split and the Jōmon–
Yayoi split. Each method was explored in both dataset-expanding and non-expanding
modes. Moreover, individual and combined orientations for image rotations and image
flips were tested in this experiment.

For the Jōmon–Yayoi split, the best average accuracy and maximum accuracy of
66.80% and 73.44% were obtained using all rotations in dataset-expanding mode. These
were 6.64% and 10.94% higher than the average and maximum accuracies attained with no
image preprocessing.

Similar positive results were collected using dataset-expanding image transpose and
flips. Favorable results were also established in the test split, achieving the highest maxi-
mum accuracy and average accuracy across all single methods with 87.62% and 85.48%,
which were 2.86% and 5% higher than the no-preprocessing performance. This indicates
that image rotations, flips, and transposition were effective as image augmentation tech-
niques and contributed to the improved generalization of the classification model. These
outcomes motivated the combination of these methods, which is discussed in Section 4.2.2.

It is noteworthy that combining all directions of image rotations (90◦, 180◦, and 270◦)
together resulted in higher maximum and average accuracy than using each direction
individually. Similarly, employing both vertical and horizontal flips together tended to
lead to higher average accuracy compared to using them separately. This observation
held for both the test split and the Jōmon–Yayoi split. In the context of the Jōmon–Yayoi
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split, employing all directions for image rotations, flips, and transposition in the dataset-
expanding mode resulted in superior performance compared to the non-expanding mode.

4.1.6. Grid Distortion and Elastic Transformation

This experiment utilized the dataset-expanding and non-expanding modes for both
grid distortion and elastic transformation. On the test split, the highest average accuracy of
81.79% was slightly better compared to that obtained without any image preprocessing,
which is 80.48% (+0.83%). The maximum accuracy showed a more substantial improvement,
rising to 87.62% from 84.76% (+2.86%). On the Jōmon–Yayoi split, the improvements were
even more prominent. The improvements in the average accuracy and maximum accuracy
were 5.47% and 10.94%, respectively.

These findings demonstrate the effectiveness of both grid distortion and elastic trans-
formation as valuable image augmentation methods that help improve image variability
within the train set. More specifically, the variation introduced by grid distortion and elastic
transformation is in terms of the shape of the objects rather than alterations in contrast and
illuminance levels. Therefore, higher improvements in the Jōmon–Yayoi split compared
to the test split imply that there is higher object shape variation in the Jōmon–Yayoi split,
which was collected in real-world conditions, than in the test split, which was acquired
in laboratory settings. Therefore, it can be inferred that enhancing the variety of object
shapes during training becomes important, particularly when dealing with images that
have diverse shapes.

4.2. Combination Methods

The outcomes of the combination methods are detailed in Table 4. The symbols used
are consistent with those in Table 3.

Table 4. Accuracy of the combination image preprocessing pipelines.

Method

Accuracy (%) Average Processing Times

Test Split Jōmon–Yayoi Split
Training Inference

Avg. Max. Avg. Max.

No preprocessing 80.48 84.76 60.16 62.50 0:35:15 0:00:02.1
Histogram. eq, smooth-9 70.00 74.29 61.33 64.06 0:25:22 0:00:02.7
CLAHE-2, smooth-9 76.67 79.05 67.58 73.44 0:32:30 0:00:02.5
CLAHE-3, smooth-9 77.02 80.95 66.99 70.31 0:29:37 0:00:02.4
CLAHE-4, smooth-9 78.69 81.90 66.02 73.44 0:28:07 0:00:02.5
CLAHE-5, smooth-9 79.17 80.95 69.92 75.00 0:31:00 0:00:02.5
Rotate+, flips+ 85.36 88.57 66.99 70.31 2:59:07 0:00:02.1
Rotate+, transpose+ 85.24 89.52 66.02 71.88 3:04:52 0:00:02.1
Flips+, transpose+ 82.50 89.52 65.82 70.31 1:47:22 0:00:02.1
Rotate+, flip, transpose+ 85.60 88.57 65.43 70.31 3:03:07 0:00:02.2
Rotate+, flip+, transpose+ 84.40 88.57 69.73 73.44 3:29:37 0:00:02.1
Rotate+, flip+, transpose+, elastic 83.69 86.67 68.16 71.88 4:30:15 0:00:02.1
Rotate+, flip+, transpose+, elastic+ 83.33 87.62 69.73 71.88 3:47:30 0:00:02.2
Rotate+, flip+, transpose+, grid 84.52 88.57 68.75 71.88 3:38:30 0:00:02.1
Rotate+, flip+, transpose+, grid+ 83.57 87.62 68.95 71.88 3:51:52 0:00:02.0
CLAHE-2, smooth-9, rotate+, flip+, transpose+ 82.50 85.71 68.95 73.44 3:07:45 0:00:02.4
CLAHE-3, smooth-9, rotate+, flip+, transpose+ 83.69 85.71 71.88 78.13 3:23:52 0:00:02.5
CLAHE-4, smooth-9, rotate+, flip+, transpose+ 84.05 88.57 66.80 71.88 3:55:30 0:00:02.4
CLAHE-5, smooth-9, rotate+, flip+, transpose+ 83.57 85.71 70.12 71.88 3:01:52 0:00:02.6
CLAHE-6, smooth-9, rotate+, flip+, transpose+ 83.45 85.71 71.29 78.13 3:07:00 0:00:02.5
CLAHE-7, smooth-9, rotate+, flip+, transpose+ 84.05 87.62 70.70 75.00 3:29:45 0:00:02.4
CLAHE-8, smooth-9, rotate+, flip+, transpose+ 82.02 84.76 72.46 76.56 3:01:15 0:00:02.4
CLAHE-2, rotate+, flip+, transpose+ 84.17 90.48 65.43 73.44 3:08:07 0:00:02.7
CLAHE-3, rotate+, flip+, transpose+ 84.40 85.71 64.84 73.44 3:44:30 0:00:02.4
CLAHE-4, rotate+, flip+, transpose+ 84.05 88.57 66.80 71.88 3:31:52 0:00:02.5
CLAHE-5, rotate+, flip+, transpose+ 82.38 85.71 63.28 71.88 2:57:52 0:00:02.5
CLAHE-6, rotate+, flip+, transpose+ 83.69 86.67 64.06 71.88 3:02:30 0:00:02.5
CLAHE-7, rotate+, flip+, transpose+ 84.88 86.67 69.14 73.44 3:40:00 0:00:02.6
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4.2.1. Adaptive Histogram Equalization and Smoothing

Next, in this and the subsequent experiments, the combination pipelines are demon-
strated. In this experiment, CLAHE was combined with image smoothing where CLAHE
was applied first to the input image before smoothing. Based on the experiment in image
smoothing, the best kernel size was 9. Thus, the same kernel size was used in this experi-
ment and it was kept fixed. The only variable tested in this experiment was the clip limit of
the CLAHE, specifically the clip limit of 2 to 5.

On the Jōmon–Yayoi split, the highest average accuracy was obtained using the clip
limit of 2 which achieved 69.92%. This was higher than the highest average accuracy
obtained using CLAHE and image smoothing applied individually, which was 65.43%
and 67.58%, respectively. It was also significantly higher than the average accuracy and
maximum accuracy yielded without any image preprocessing, which was 60.16% and
62.5%, respectively, i.e., an improvement of 9.76% and 7.42%. This suggests that this
particular combination is effective.

However, this combination resulted in no improvements in the test split, where the
highest maximum accuracy declined to 81.9% and the average accuracy declined by 1.31%.
The performance was also inferior to the case when only CLAHE was implemented. This
corresponds with the findings from the experiment on image smoothing alone and reveals
its unsuitability for the test split, even in conjunction with CLAHE. Image smoothing
likely removes crucial details in the images and leads to the observed decrease in classifica-
tion performance.

4.2.2. Rotations, Flips, and Transposition

Following the favorable outcomes observed with rotations, flips, and transposition
applied individually to the train set, they were combined in this experiment. It was also
found that better outcomes were observed in a dataset-expanding mechanism than in a
non-expanding mode. That is, the size of the train set expanded proportionally with the
number of combined methods applied. For instance, when flips (vertical and horizontal)
were combined with transposition, the size of the train set would expand by a factor of 4,
which would contain the original images, vertically flipped images, horizontally flipped
images, and transposed images. Therefore, image rotations, flips, and transposition were
applied in a dataset-expanding mode in this experiment. Of these three methods, we
experimented with every combination, i.e., rotations and flips, rotations and transposition,
flips and transposition, as well as using all three methods together.

On the test split, the best accuracy score was obtained by combining rotations and
transposition, attaining 89.52% maximum accuracy and 85.24% average accuracy. The accuracy
values from these methods exceeded the accuracy achieved when each method was applied
separately. This underscores the effectiveness of combining different methods. Moreover, this
performance was among the highest recorded throughout all the experiments.

Furthermore, during the experimentation where two out of the three methods (rota-
tions, flips, and transposition) were utilized, excluding flips and transposition did not result
in a performance drop. However, removing image rotations led to an average accuracy
decrease of 3%. This suggests that among these three methods, image rotations play the
most crucial role in performance enhancement. Indeed, while image rotations are pivotal,
it’s essential not to underestimate the significance of image flips and transpositions. As
detailed in Section 4.1.5, the experiment demonstrates that relying solely on image rota-
tions yielded lower accuracy compared to combining rotations with flips or transposition.
Therefore, the most effective approach is to combine all three of these methods.

On the Jōmon–Yayoi split, among all the combinations, the highest accuracy was
obtained from the combination of all three methods. Although not one of the best accuracy
throughout all the experiments, the results were positive with 73.44% maximum accuracy
and 69.73% average accuracy. This indicates that introducing variations in image orien-
tations proves to be effective in enhancing the diversity of the training set and leads to
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improved classification performance. Hence, these methods were combined with more
image preprocessing methods in the following experiments.

When comparing the results of combinations involving two out of the three methods,
it is worth noting that combinations including image flips tended to yield slightly lower
maximum accuracy, although the difference was not significant. The presence of size
indicators in the bottom-right corners of some images in the Jōmon–Yayoi split might have
influenced these results. Even after being resized to a square shape, a portion of these
indicators remains in the final image inputted to the network. This can be observed by
comparing Figure 3, which depicts the original images before resizing to 400 × 400 pixels,
and Figure 2, which displays the images after resizing to 400 × 400. Vertical flips relocated
these indicators to the upper part of the image and potentially caused disruptions in the
classification process. Therefore, as a part of future work, developing procedures to address
this issue could potentially enhance the overall performance of the system.

4.2.3. Rotations, Flips, Transposition, Grid Distortion, and Elastic Transformation

The conducted experiments involving individual image rotations, flips, and trans-
position, as well as grid distortion and elastic transformation, have yielded promising
outcomes. Therefore, in this experiment setup, those methods were combined to verify if
their combined application could further augment the results. However, it is noteworthy
that grid distortion and elastic transformation were not combined. This decision was made
because both methods alter the entire shape of the image significantly, and combining them
would result in an alteration that is excessively pronounced.

The combination of image rotations, flips, and transposition, coupled with elastic
transformation, reached an accuracy of 71.88% on the Jōmon–Yayoi split and 87.62% on the
test split. Meanwhile, when these transformations were employed in conjunction with grid
distortion, they showed quite comparable performance on the Jōmon–Yayoi split. However,
the combined effect displayed notably improved results on the test split and achieved an
accuracy of 88.57%.

4.2.4. Adaptive Histogram Equalization, Smoothing, Rotations, Flips, and Transposition

The combination of CLAHE and image smoothing demonstrated positive results
in the previous experimentation, particularly for the Jōmon–Yayoi split. Thus, in this
experiment, they were combined with rotations, flips, and transposition, demonstrating one
of the highest outcomes in the preceding experiment when they were applied individually.
Additionally, it was found that combining rotations, flips, and transposition altogether
resulted in the best accuracy. Therefore, the same combination of those methods was
employed as well in this experiment. For image smoothing, the kernel size was constantly
fixed to 9. Hence, one variable that was examined here is the clip limit of the CLAHE, with
values of 2 to 8.

For the test split, as explained in the preceding sections, when CLAHE and smoothing
were applied separately and in combination, the average accuracy declined compared to
the scenario without image preprocessing. Nonetheless, our interest lies in experimenting
with a combination of these two filters along with image rotations, flips, and transposition.
The maximum accuracy on the test split was 88.57%, while the highest average accuracy
achieved was 84.05%. These results demonstrate that the performance surpasses that of
when CLAHE and image smoothing were applied individually. This implies that the
combination is effective, and that image rotations, flips, and transposition methods are
particularly beneficial for enhancing the performance on the test split.

On the other hand, we achieved the best result for the Jōmon–Yayoi split throughout
all experiments with a maximum accuracy of 78.13% and an average accuracy of 71.88%.
This was a strong result obtained by incorporating different image preprocessing methods
and outperformed the best results from our previous study [13] by 10.13%.
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4.2.5. Adaptive Histogram Equalization, Rotations, Flips, and Transposition

The setup in this experiment was identical to the previous one, except that image
smoothing was omitted. This was motivated by the results of the experiment on the test
split using CLAHE, which demonstrated better compared to when CLAHE was combined
with image smoothing. The results confirmed this motivation as both the highest maximum
accuracy as well as the highest average accuracy were the highest for the test split through-
out this entire study. The highest maximum accuracy and the highest average accuracy
were 90.48% and 84.17%, respectively. Furthermore, this experiment reaffirms that image
smoothing was not suitable for improving images in the test split.

However, the opposite condition applied in the Jōmon–Yayoi split, as the accuracy
scores were lower than that when image smoothing was included in the combination. The
best maximum accuracy decreased from 78.13% to 73.44% (−4.69%), while the average
accuracy dropped from 71.88% to 69.14% (−2.74%). This suggests that image smoothing
was essential to enhance the quality of the images in the Jōmon–Yayoi split, given that
many of these images contained excessive high-frequency elements.

4.3. K-Fold Cross-Validation

To validate the results of the system, we conducted a 10-fold cross-validation using
the model that yielded the best outcome, comprising the combination of CLAHE (with clip
limit value of 3), smoothing, rotations, flips, and transposition. The findings are detailed
in Table 5. During the validation process, we observed an average accuracy of 85.43%
across the 10 folds for the test split. Although this was slightly lower than the best average
accuracy of 85.6% achieved in previous experiments, it still demonstrates the robustness of
our model. Similarly, for the Jōmon–Yayoi split, the average accuracy across the 10 folds
was 71.72%, which also showed a minor decrease compared to the best average accuracy of
72.46% from previous experiments. These slight variations validate our earlier findings of
our experimental outcomes.

Table 5. Results of 10-fold cross-validation.

Fold
Accuracy (%)

Test Split Jōmon–Yayoi Split

1 88.57 68.75
2 87.62 71.88
3 82.86 70.31
4 80.95 76.56
5 87.62 64.06
6 84.76 70.31
7 80.95 73.44
8 82.86 76.56
9 85.71 71.88

10 92.38 73.44

Average 85.43 71.72

4.4. Class Activation Maps (CAMs)

Deep learning architectures present a notable challenge due to the inherent opacity
of their derived features and decision-making processes. This lack of transparency often
hinders the ability to provide clear explanations for the model’s decisions, making them
similar to “black boxes”. A promising approach towards interpretability lies in class
activation maps (CAMs), as proposed in [38]. CAMs offer a visual means to unravel this
black box by showing specific areas within an image where these architectures concentrate
their attention during classification. These maps, depicted as heatmap images, illuminate
regions in red, highlighting the network’s focus points.

In Figure 4, two image samples from each class in the dataset are presented alongside
the CAM heatmaps generated from the network. These heatmaps originate from the net-
work trained using both preprocessed and non-preprocessed training images. They provide
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a visual insight into the impact of dataset preprocessing on the network’s attention focus.
Specifically, the CAMs derived from the model trained on preprocessed images distinctly
reveal an improved emphasis on the objects within the images over their counterparts from
the non-preprocessed dataset, for example, in columns (a), (b), and (c). There were some
cases in columns (c), (h), and (l) where misclassifications were made by a model trained
without image preprocessing which were then corrected by proper image preprocessing.

(a) (b) (c) (d) (e) (f) (g)

In
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Ailanthoides Ailanthoides Barley Barley Maize weevil Maize weevil Millet
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Ailanthoides Ailanthoides Wheat Perilla Maize weevil Maize weevil Millet

Pr
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ed

Ailanthoides Ailanthoides Barley Perilla Maize weevil Maize weevil Millet

(h) (i) (j) (k) (l) (m) (n)
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Millet Rice Rice Perilla Rice Wheat Wheat

Figure 4. Samples of the original images from each class: (a,b) ailanthoides; (c,d) barley; (e,f) maize
weevil; (g,h) millet; (i,j) perilla; (k,l) rice; and (m,n) wheat. Below the images on the “input” rows are
the true labels. The second and third rows show the class activation map (CAM) heatmaps. Below
the images on the “baseline” and “proposed” rows are the predicted labels using the corresponding
image preprocessing.

Despite the improvement facilitated by image preprocessing, certain challenges per-
sisted, notably in cases where the model struggled to differentiate between similar objects,
as observed in columns (i), (j), and (k) between Perilla and Rice. Thus, while dataset prepro-
cessing enhances the focus within CAMs, it also highlights ongoing challenges and indicates
directions for future investigation and improvement in deep learning model architectures.
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5. Conclusions

In this study, we thoroughly investigated different image preprocessing techniques
for deep learning-based archaeological image classification as well as the combinations.
We demonstrated that combining different image processing methods is more effective
than applying the methods individually. Our observations indicate that 66% of single
methods and 90% of combination methods yielded higher accuracies compared to no
image preprocessing. Furthermore, 55% of methods on test images and 98% on Jōmon–
Yayoi images led to improved accuracies. This highlights the significance of preprocessing,
especially for images with higher noise levels and under challenging conditions.

The best accuracy scores in our experiments for the test split and the Jōmon–Yayoi
split were 90.48% and 78.13%, respectively. These were superior to those obtained in our
previous study [13] which did not involve any image preprocessing procedures, by 10.13%.
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