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Abstract: Music emotion recognition has garnered significant interest in recent years, as the emo-

tions expressed through music can profoundly enhance our understanding of its deeper meanings. 

The violin, with its distinctive emotional expressiveness, has become a focal point in this field of 

research. To address the scarcity of specialized data, we developed a dataset specifically for violin 

music emotion recognition named VioMusic. This dataset offers a precise and comprehensive plat-

form for the analysis of emotional expressions in violin music, featuring specialized samples and 

evaluations. Moreover, we implemented the CNN–BiGRU–Attention (CBA) model to establish a 

baseline system for music emotion recognition. Our experimental findings show that the CBA 

model effectively captures the emotional nuances in violin music, achieving mean absolute errors 

(MAE) of 0.124 and 0.129. The VioMusic dataset proves to be highly practical for advancing the 

study of emotion recognition in violin music, providing valuable insights and a robust framework 

for future research. 
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1. Introduction 

As the economy grows and people’s material standards improve, there is an increas-

ing pursuit of spiritual enrichment through music, art, literature, and live performances. 

Music, in particular, serves as a powerful form of expression, conveying emotions through 

sound vibrations, melodies, and rhythms, and holds a vital place in our daily lives. Music 

Emotion Recognition (MER) involves the use of computer technology to automatically 

identify the emotional states expressed in music, bridging the gap between the technical 

and the emotional aspects of musical experience. According to the China Music Industry 

Development Report 2022, the scale of China’s digital music industry reached CNY 79.068 

billion in 2021, a year-on-year growth of 10.3% [1]. Despite the challenges of the post-

epidemic landscape and intense competition in the market, the digital music industry 

continues to experience robust growth, demonstrating its vibrant vitality. This surge in 

digital music data, coupled with an increasing demand for music information retrieval, 

highlights the industry’s dynamic evolution. Research indicates that emotion-related vo-

cabulary ranks among the most common terms used in music searches and descriptions. 

Consequently, there is a growing need for music retrieval systems that can categorize and 

recommend music based on its emotional attributes. The technology of music emotion 

recognition involves multiple fields such as musicology, psychology, music acoustics, au-

dio signal processing, natural language processing, deep learning, etc. [2,3]. It is a multi-

disciplinary, interdisciplinary research field [4]. 

Most researchers undertaking MER research use supervised machine learning meth-

ods to achieve music emotion recognition. Yang [5] proposed a CNN-based emotion 

recognition method. By converting the original data into a spectral graph, and then input-

ting the spectral graph into the CNN for emotion recognition. Liu and others [6] use the 

Citation: Ma, S.; Zhou, R. Violin  

Music Emotion Recognition with  

Fusion of CNN–BiGRU and  

Attention Mechanism. Information 

2024, 15, 224. https://doi.org/10.3390/ 

info15040224 

Academic Editor: Claude Frasson 

Received: 25 March 2024 

Revised: 14 April 2024 

Accepted: 15 April 2024 

Published: 16 April 2024 

 

Copyright: © 2024 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Information 2024, 15, 224 2 of 17 
 

 

spectral graph computed by the short-time Fourier transform of the audio signal as input. 

Each music’s spectral graph undergoes convolutional layers, pooling layers, and hidden 

layers, and finally, it goes through SoftMax for prediction. Coutinho et al. [7] added psy-

cho-acoustic features on top of the ComPareE feature set, using LSTM–RNN to achieve 

information modeling on longer contexts, capturing the time-varying emotional features 

of music for music emotion identification. In consideration of the high contextual rele-

vance between music feature sequences and the advantages of Bi-Directional Long Short-

Term Memory (BLSTM) in capturing sequence information, Li and others [8] proposed a 

multi-scale regression model based on deep BLSTM and a fusion of Extreme Learning 

Machines (ELM). Hizlisoy et al. [9] proposed a music emotion recognition method based 

on Convolutional Long Short-Term Memory Deep Neural Network (CLDNN) architec-

ture, which provides the features obtained by the logarithmic Mel filter group energy and 

the Mel Frequency Cepstral Coefficients (MFCC), which are then passed to a convolu-

tional neural network (CNN) layer. Subsequently, LSTM + DNN is used as a classifier to 

deal with problems such as the difficulty of neural network model selection and model 

overfitting. Zheng Yan and others [10] proposed a CGRU model that combined Convolu-

tional Neural Networks (CNN) and Gated Recurrent Units (GRU). After extracting low-

level and high-level emotional features from MFCC features, random forests were used to 

select features from them. Xie and others [11] proposed a new method that combines 

frame-level speech features and attention-based LSTM recurrent neural networks to max-

imize the emotional saturation difference between time frames. In order to speed up the 

model training speed, Wang Jingjing and others [12] combined Long Short-Term Memory 

networks (LSTM) with Broad Learning Systems (BLS), used LSTM as the feature mapping 

node of BLS, and built a new wide and deep learning network LSTM–BLS. Considering 

the effectiveness of deep audio embedding methods in capturing high-dimensional fea-

tures into compact representations, Koh and others [13] used L3-Net and VGGish deep 

audio embedding methods to prove that deep audio embedding can be used for music 

emotion recognition. Huang [14] used only log Mel spectrum as input, using the modified 

VGGNet as the Spatial Feature Learning Module (SFLM) to obtain spatial features of dif-

ferent levels, inputting the spatial features into the Time Feature Learning Module 

(TFLM), based on Squeeze and Excite (SE) attention, to obtain Multiple Level Emotion 

Spatiotemporal Features (MLESTF). In order to reduce Long Distance Dependency in 

Long Short-Term Memory Neural Networks in Music Emotion Recognition, Zhong 

Zhipeng [15] proposed a new network model, CBSA (CNN BiLSTM Self Attention). 

Given the complexity and challenge of obtaining substantial, valid emotional feed-

back in controlled experiments, there is a notable shortage of music datasets featuring 

emotional annotations, especially for musical instruments. This scarcity is particularly 

acute in the field of musical emotion recognition for instruments like the violin. To address 

this gap, we have developed the VioMusic dataset, a specialized collection of violin solo 

audio recordings with emotional annotations. This dataset aims to facilitate the develop-

ment and evaluation of Music Emotion Recognition (MER) models. Furthermore, we have 

introduced a CNN–BiGRU–Attention (CBA) network specifically tailored to mimic hu-

man perception of violin music emotions. This model utilizes CNNs to capture the deep 

emotional features inherent in the music, employs BiGRUs to decode the contextual rela-

tionships among musical emotions, and incorporates an Attention mechanism to focus on 

the most emotionally expressive elements of the music. The experimental results validate 

the effectiveness of the VioMusic dataset and confirm the accuracy and utility of the CBA 

model for emotion recognition in violin music. 

In the next few sections, we will demonstrate the validity of the dataset related to the 

domain of music emotion recognition, the present data collection process and emotion 

annotation process, as well as several experimental scenarios in detail, and analyze the 

performance of state-of-the-art music emotion recognition methods on this dataset. 
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2. Related Work 

Datasets are the basis of music information retrieval research. Rich databases can im-

prove the accuracy of algorithms in the field of music information retrieval, which is of 

great significance for algorithm improvement [16]. Since people started to pay attention 

to MER, many datasets have been designed for it. Here is a brief overview of several com-

mon public music emotion datasets (Table 1). 

Table 1. Summary of public music emotion datasets. 

Dataset Year Raw Audio 

CAL500 [17] 2008 No 

DEAP [18] 2012 Yes 

emoMusic [19] 2013 Yes 

DEAM [20] 2013 Yes 

MagnaTagATune [21] 2013 Yes 

AMG1608 [22] 2015 No 

FMA [23] 2016 Yes 

Emotify [24] 2017 Yes 

PMEmo [25] 2018 Yes 

The CAL500 dataset consists of 500 music tracks covering a variety of musical styles, 

including rock, pop, jazz, classical, and more. This dataset is characterized by a label-

based approach that categorizes each music track into multiple facets and assigns values 

to each facet. The CAL500 contains over 17,000 annotations in total. 

The DEAP dataset contains physiological responses and subjective emotional reac-

tions of volunteers to music and video stimuli. It includes data such as EEG, ECG, and 

skin conductance, as well as self-reported emotional states, making it valuable for emotion 

recognition and affective computing research. 

The emoMusic dataset is specifically designed for emotion recognition in music. It 

consists of audio samples labeled with emotional categories such as happy, sad, angry, 

and relaxed. 

The DEAM dataset is a multimodal music sentiment categorization dataset contain-

ing 120 songs covering a wide range of music genres such as rock, pop, and classical. The 

dataset contains not only audio and textual information but also multiple emotion raw 

data from physiological signals and psychological questionnaires. 

MagnaTagATune is a large-scale dataset of annotated music clips collected from the 

Magnatune online music store. It includes audio samples labeled with a wide range of 

descriptive tags, covering genres, instruments, moods, and more. This dataset is often 

used for tasks such as music tagging, recommendation, and genre classification. 

The AMG1608 dataset is a subset of the Million Song Dataset, focusing on genre clas-

sification. It contains audio samples labeled with genre categories, allowing researchers 

to train and evaluate models for automatic genre recognition in music. 

The FMA is a collection of freely available music tracks with associated metadata, 

including genre labels, artist information, and track features. It is a popular resource for 

researchers and music enthusiasts interested in exploring and analyzing a diverse range 

of music styles and characteristics. 

Emotify is a dataset designed for emotion recognition in music, similar to emoMusic. 

It consists of audio samples labeled with emotional categories, providing a resource for 

training and evaluating emotion detection algorithms in music. 

The PMEmo dataset contains physiological signals and self-reported emotion anno-

tations collected from participants listening to music excerpts. It is used for research in 

affective computing and emotion recognition, providing data for analyzing the relation-

ship between physiological responses and perceived emotions in music. 
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3. Data Collection 

The VioMusic dataset was carefully recorded by three violin players. The dataset con-

tains 264 unaccompanied violin solo works, 1926 music clips cut according to the score, 

the emotional score based on the VA model associated with each track, and a series of 

feature data designed for emotional recognition, with a total size of 1.1 GB, about 7.5 h of 

playing time. The selected music works cover a wide range of emotional pedigree, includ-

ing Chinese and Western classical music, folk melodies, and contemporary pop music. It 

has been publicly released and is available for free download at 

https://github.com/mm9947/VioMusicv (accessed on 24 March 2024). 

3.1. Player Recruitment 

This dataset recruited three performers to record the music data. The first performer 

has a doctorate in Violin Performance obtained in 2022; the second is a graduate student 

at the Central Conservatory of Music; the third is the author of this paper, with 16 years 

of violin study. To cover a wide range of emotional expressions, the dataset includes clas-

sical music from China and abroad, folk songs, and pop music. Recordings from each 

performer were collected over a period of 20 to 50 days. 

3.2. Recording Settings 

The recorded pieces all come from violin textbooks. Performers recorded the music 

in a quiet environment using a smartphone or professional equipment based on the emo-

tions marked on the scores (Figure 1). The audio file formats used by each singer are .m4a, 

.wav, and .mp3. The sampling rate of the recordings typically ranges between 44.1 kHz 

and 48 kHz. 

 

Figure 1. Example of musical notation annotation. 

3.3. Emotional Evaluation 

The emotional assessment was annotated by students who have studied music in our 

school. These students had extensive knowledge of music theory. At the same time, the 

authors conducted a training session with the students prior to the annotation of the emo-

tion assessment. In this process, 10 music clips representing extreme emotions (extreme 

values of valance and arousal, respectively) are played to ensure that the students under-

stand and are familiar with the criteria for categorizing emotions and that they can per-

form emotional annotation on a musical dataset without bias. The emotional model is the 

Valence–Arousal (VA) continuous emotional model [26] proposed by Russell, as shown in 

Figure 2. In the VA model, the emotional state is a point that is distributed in the two-

dimensional space containing the valence state and arousal. The vertical axis represents 

arousal, and the horizontal axis represents the valence state. 
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Figure 2. Russell’s Circumplex Model of Emotion. 

When using the potency arousal model, the potency score range is 1–5, where 1 is 

unhappy, and 5 is extremely happy. The arousal score ranges from 1 to 5, with 1 indicating 

very low arousal (loss) and 5 indicating very high arousal (excitement). It can be seen from 

Figure 3 that the annotations of most music clips fall in the second and fourth quadrants. 

In addition, Figure 4 lists the VA emotion change curves of three randomly selected music 

clips from the VioMusic dataset, indicating the significant difference in emotion between 

songs and the trend of relative stability of the same song. 

 

Figure 3. Distribution chart of music fragment annotations. 
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Figure 4. Emotion change curve for different songs. 

For evaluation results, this article uses “Cronbach’s α” [27] to evaluate annotation 

consistency. “Cronbach’s α” is often used in psychometric tests to estimate the reliability, 

which represents the degree to which a group of items measure a single one-dimensional 

potential construct. Generally, when “Cronbach’s α” is higher than 0.7, it can be consid-

ered that the measuring tool has good internal consistency, and the formula is as follows: 

𝛼 = (
𝑘

𝑘 − 1
) × (1 − (

∑ 𝜎𝑖
2

𝜎𝑡
2 )) (1) 

α represents Cronbach’s coefficient; k is the number of measurement items; σ2ᵢ repre-

sents the variance of each measurement item; σ2ₜ represents the variance of the population. 

The average and standard deviation of “Cronbach’s α” for sentiment annotations in 

the VioMusic dataset are presented in Table 2. The results indicate high internal con-

sistency for both valence and arousal annotations, demonstrating the quality of the anno-

tations in this dataset. 

Table 2. Cronbach’s alpha statistic for the sentiment dimension. 

Dimension Mean Standard Deviation 

Arousal 0.775 0.212 

Valance 0.809 0.221 

4. Methods 

This model uses the Mel spectrogram of each music segment as input and the output 

of the CNN as the music feature. It employs the BiGRU layer and the Attention layer to 

capture temporal dependencies and important characteristics in the music features. It 

sends the processed feature information to the fully-connected layer. Finally, the fully 

connected layer serves as a classifier, making the final regression prediction for the music 

segments based on the extracted features (Figure 5). 
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Figure 5. The overall structure of CNN–BiGRU–Attention. 

4.1. CNN–BiGRU Model 

We leveraged the Convolution Neural Network (CNN) model to extract feature ma-

trices 𝑁𝐴×𝐵. The convolutional layer part of the CNN model was used as a feature extrac-

tor, making the output of this model the feature maps extracted by the convolutional layer 

rather than the classification result. The convolution layer part of the CNN model inputs 

the 𝐼𝑀×𝑁 music emotion feature matrix into a two-dimensional convolution layer, which 

uses 𝐾 filters of size 3 × 3. Then, Batch Normalization (BatchNorm2d) is used to perform 

data normalization processing on the output of the convolutional layer. Next, the normal-

ized data is passed into a Rectified Linear Unit (ReLU) activation function. Finally, the 

dimensionality of the matrix is reduced through a MaxPooling operation, retaining key 

information in the music emotion features to obtain the local key music emotion feature 

matrix 𝑁𝐴×𝐵 (Figure 6). 

 

Figure 6. Structure diagram of CNN. 

Next, we feed the music emotion matrix 𝑁𝐴×𝐵 into the BiGRU model for training to 

obtain the serialized music emotion feature matrix 𝐿𝐷×𝐻. Since violin music is a temporal 

art form, we use a deep neural network with a bidirectional gated recurrent unit (BiGRU) 

to capture past and future musical information. 

A Gated Recurrent Unit (GRU) can solve the problem of gradient disappearance or 

gradient explosion that occurs when traditional RNNs process long sequences of data and 

has a simple structure and lower computational cost. GRU controls the information flow 

by introducing a “Gating Mechanism” (Gating Mechanism), which captures the long-dis-

tance dependencies more efficiently in each time step of the sequence. 

The GRU contains two gating units (update gate 𝑧𝑡 and reset gate 𝑟𝑡), which are ca-

pable of preserving information in long-term sequences and are not purged over time or 

removed because they are not relevant to the prediction. The GRU gating structure is 

shown below (Figure 7). 
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Figure 7. Structure diagram of the GRU cycle unit. 

Let the external state at moment 𝑡 be ℎ𝑡. 𝑥𝑡 is the music emotion feature vector at 

the current moment ℎ𝑡−1 is the external state at the previous moment, and they both un-

dergo a linear transformation. The update gate compresses these two pieces of infor-

mation to between 0 and 1 by means of a Sigmoid activation function (1). 𝑥𝑡 and ℎ𝑡−1 

undergo a linear transformation and are then summed and put into a Sigmoid activation 

function to output the activation value (2). The product of the corresponding elements of 

𝑟𝑡 and 𝑈ℎ𝑡−1 is calculated to determine the information to be retained versus forgotten 

(3). During the computation of the final memory, the update gate determines the current 

memory content ℎ̃𝑡 and the information to be collected in the previous time step ℎ𝑡−1. 

The Hadamard product of the activation result of the update gate 𝑧𝑡 and ℎ𝑡−1 represents 

the information retained in the previous time step to the final memory, which, together 

with the information retained in the current memory to the final memory, equals the final 

gated loop unit output (4). The gated loop unit retains only the relevant information and 

passes it on to the next unit, so it avoids the gradient vanishing problem by utilizing all 

the information. 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (2) 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (3) 

ℎ̃𝑡 = tanh(𝑊𝑧𝑥𝑡+𝑈𝑧(𝑟𝑡⨀ℎ𝑡−1)+𝑏ℎ) (4) 

ℎ𝑡 = 𝑧𝑡⨀ℎ𝑡−1 + (1 − 𝑧𝑡)⨀ℎ̃𝑡 (5) 

The BiGRU model’s hidden state representation of each point in time in a musical 

sequence combines information from the future and the past to better capture and inte-

grate such emotional dynamics, thus allowing the model to play a better role in such com-

plex emotional judgments (Figure 8). 
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Figure 8. Structure diagram of the GRU cycle unit. 

4.2. Attention Mechanism 

In order to enable the model to pay more attention to information related to emotion, 

we also integrate the Attention mechanism on the basis of the BiGRU model. The Attention 

layer will calculate the weight of the hidden layer output at the last time according to the 

characteristics (6) of all time steps and the corresponding Attention weight (7) and then 

calculate a new music feature representation (8). This music feature will be transferred to 

the subsequent full connection layer. The input of the Attention layer is the hidden layer 

state 𝑂𝑛, passing through two layers of BiGRU. Its model structure and Attention weight 

calculation formula are as follows (Figure 9): 

 

Figure 9. Attention mechanism model. 

𝑒𝑖 = 𝑣tanh(𝑊ℎ𝑖 + 𝑏) (6) 

𝛼𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖) (7) 

𝑟𝑛 = ∑ 𝛼𝑡𝑂𝑛

𝑖

𝑛=1

 (8) 

where 𝑒𝑖 and 𝛼𝑡 represents the Attention score and weight corresponding to the music 

feature at time 𝑡, and 𝑟𝑛 represents the weighted hiding state of the Attention layer at 

time 𝑛. 

The input of the full connection layer is the output 𝑟𝑛 of the Attention mechanism. 

Sigmoid is selected as the activation function to predict the VA value of the 𝑡ℎ music clip. 

The prediction formula is as follows: 

𝑦𝑛 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑟𝑛 + 𝑏0) (9) 
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where 𝑦𝑛 represents the VA value of the first music clip t, 𝑊𝑜 is the weight matrix, and 

𝑏0 is the offset term. 

4.3. Metrics 

This article calculates the Pearson correlation coefficient (r) and mean absolute error 

(MAE) as evaluation metrics for valence and arousal. The MAE is a common method for 

measuring the magnitude of error and can be used to assess the gap between predicted 

and actual values. The Pearson correlation coefficient is a statistical measure for quantify-

ing the linear relationship between two variables. Its values range from −1 to 1, where 0 < 

r < 1 indicates a positive correlation, and −1 < r < 0 indicates a negative correlation. 

𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2 ∑(𝑦𝑖 − �̅�)2
 (10) 

𝑀𝐴𝐸 =
∑|𝑦𝑖 − �̂�𝑖|

𝑁
 (11) 

In the given context, 𝑁 refers to the number of music segments, 𝑦𝑖  represents the 

true values of the emotional content of the music segments, and �̂�𝑖 represents the pre-

dicted values of the emotional content of the music segments. 𝑥𝑖 and 𝑦𝑖  represent the 

𝑖th pairs of observed values in the sample data, while �̅� and �̅� represent the mean of 𝑥 

and 𝑦, respectively. 

4.4. Feature Fusion 

Low-Level Descriptors (LLDs) provide basic descriptions and features for audio data, 

serving as important data foundations for audio signal processing and music information 

retrieval. In this experiment, we utilized the Librosa [28] library to extract LLDs, which 

include timbre, pitch, rhythm, and vibrato, among others. 

Vibrato is a unique technique in string instrument playing, where the musician rapidly 

oscillates the finger on the string. Vibrato can enhance the impact of the music and lend 

individuality to the performer [29]. For example, in a sorrowful piece of music, vibrato can 

make a particular note more prominently express the emotion of sadness. Figure 10 displays 

the vibrato amplitude variations in two music excerpts from the VioMusic dataset. 

 
(a) 

 
(b) 

Figure 10. Vibrato amplitude variation curve for different songs. (a) More emotionally powerful 

music clips. (b) Music clips with low mood swings. 
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5. Experiment and Results 

5.1. Experimental Setup 

5.1.1. Loss Function 

To train our model, we utilized mean absolute error (MAE) as the loss function, 

which calculates the mean absolute difference between the target values and the predicted 

values. The violin has a wide dynamic range during performance, allowing for seamless 

transitions from very soft to very loud sounds. Therefore, the model needs to accurately 

predict complex emotional variations that arise from this extensive dynamic range and 

consistent timbre changes. 

The MAE provides a uniform weight to all prediction errors, meaning it does not 

overly react to outliers. This helps to reduce interference from outlier predictions and 

aligns with our expectation of the model not penalizing prediction errors too harshly 

based on their magnitude. The formula for calculating MAE is as follows:  

𝑀𝐴𝐸(𝑖) =
1

𝑁
∑|𝑦𝑖 − �̂�𝑖|

𝑁

𝑖=1

 (12) 

where 𝑦𝑖  represents the target value, �̂�𝑖 represents the predicted value, and 𝑁 is the to-

tal number of samples. 

5.1.2. Model Settings 

The training set and test set are divided in the ratio of 8:2. The CNN layer has a filter 

size of 3 × 3, and the input image size is (128, 128) with 3 channels. We employ the Adam 

optimizer for the BiGRU layer with an initial learning rate of 10−3. The model comprises 

a total of 3 BiGRU layers, trained over 30 epochs with a batch size of 64. In the Attention 

layer, the weight matrix W is initialized with a ‘normal’ distribution, while the bias vector 

b is initialized with ‘zeros’. In the fully connected layer (FC), we use the Sigmoid function 

as the activation function. The model uses root mean square error (RMSE) as the evalua-

tion metric for accuracy. Additionally, we have implemented the EarlyStopping callback, 

which stops training if the performance does not improve within 10 epochs and restores 

the weights to the best-performing ones. 

5.2. Result 

5.2.1. Comparison of Emotion Recognition under Different Models 

We compared the performance of CNN–Attention, CNN–BiGRU, and CNN–BiGRU–

Attention models in predicting arousal and valence in terms of their performance. 

We compared the performance of the different models with CNN–BiGRU–Attention 

on the tasks of predicting emotional arousal (arousal) and validity (valence). 

From the results in Table 3, the CBA model scored the highest Pearson correlation 

coefficient for both valance and arousal values, with 0.524 and 0.576, respectively, while 

in terms of the mean absolute error (MAE), the CBA model significantly outperforms the 

CA model and the CB model, with an MAE of 0.124 and 0.129, respectively. The experi-

mental results confirm the effectiveness of the BiGRU and Attention mechanisms. 

Table 3. Evaluation metrics results for different models. 

Model 
Arousal Valence 

r MAE r MAE 

Linear Regression 0.459 0.136 0.517 0.148 

CNN 0.432 0.176 0.512 0.146 

CNN–Attention 0.480 0.127 0.460 0.145 

CNN–SelfAttention 0.483 0.125 0.468 0.139 

CNN–BiGRU 0.502 0.127 0.570 0.136 
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CNN–BiGRU–SelfAttention 0.562 0.134 0.516 0.133 

CNN–BiGRU–Attention 0.612 0.120 0.599 0.123 

In the task of violin music emotion recognition, we not only hope that the model can 

capture the overall trend of emotion change but also hope that the model can accurately 

predict the specific emotion values. The CBA model succeeds in achieving a better balance 

between the two metrics by combining the local feature extraction ability of the CNN, the 

long-range dependency capture ability of the GRU network, and the information filtering 

ability of the Attention mechanism. This also reflects the importance of considering local 

information, long-range dependencies, and key information in music to improve the ac-

curacy of continuous music emotion recognition. 

Through Figure 11, we can visualize that the predicted and actual data have a high 

degree of matching, which clearly proves that arousal and valence can be calculated for 

fitting. 

 

Figure 11. The trend of actual versus predicted values. 

Table 4 demonstrates the performance evaluation metrics of CBA models after ex-

tracting deep music emotion features using different deep learning models. There are dif-

ferences in the performance of different deep learning models in the arousal and valence 

dimensions. For example, DenseNet121, DenseNet169, and DenseNet201 all achieve high 

levels of correlation coefficients in the arousal dimension and perform relatively well in 

the valence dimension. ResNet152 and DenseNet169 perform better in emotion recogni-

tion, only in the valence dimension. The DenseNet family of models showed better per-

formance in most cases because each layer was connected to all previous layers, enhancing 

the transfer of deep musical features in each layer and improving efficiency while reduc-

ing the number of parameters. The Xception model performed more generally in both the 

arousal and valence dimensions because of the dataset used for the experiments. The small 

amount of data, coupled with the complexity of the Xception model, may lead to an in-

creased risk of overfitting, reducing the model’s ability to generalize and leading to poor 

performance on unseen data. 

Table 4. CBA model performance after extracting deep music emotion features using different deep 

learning models. 

Model 
Arousal Valence 

r MAE r MAE 

VGG16 0.524 0.124 0.576 0.129 

ResNet50 0.544 0.133 0.494 0.129 

ResNet101 0.446 0.123 0.465 0.140 

ResNet152 0.570 0.126 0.573 0.124 
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InceptionV3 0.457 0.151 0.401 0.152 

InceptionResNetV2 0.438 0.157 0.409 0.150 

DenseNet121 0.612 0.120 0.592 0.130 

DenseNet169 0.579 0.125 0.599 0.123 

DenseNet201 0.590 0.125 0.537 0.128 

Xception 0.410 0.150 0.420 0.141 

As can be seen from Table 5, we compared three music emotion recognition models. 

Based on the MAE index, the model designed in this experiment has a better utility in this 

field of music emotion recognition. 

Table 5. A comparison table of state-of-the-art methods. 

Model 
MAE 

Arousal Valence 

RNN (124, 124 LSTM) [30] 0.150 0.170 

𝐿3-Net  [31] 0.136 0.143 

ACP-Net [32] 0.131 0.130 

CNN–BiGRU–Attention 0.120 0.123 

Table 6 shows the effect of different data processing methods on the model perfor-

mance in the emotion recognition task. Training and testing the model using the raw data 

yielded correlation coefficients of 0.459 and 0.442 and mean absolute errors of 0.147 and 

0.139. The correlation coefficients improved slightly after image enhancement was applied 

to the data. After standardizing the data, the correlation coefficients were further im-

proved, and the mean absolute errors were reduced, indicating that data standardization 

can improve the correlation and accuracy of the model. This is because data standardiza-

tion can reduce the correlation between deep music emotion features and improve the 

model’s ability to generalize the data. Normalized data makes it easier for the model to 

learn the true distribution of the data rather than being influenced by the scale and range 

of features. Combining the two methods of image enhancement and data normalization 

gave the best results with correlation coefficients of 0.612 and 0.120 and mean absolute 

errors of 0.599 and 0.123. Both correlation coefficients and mean absolute errors have been 

significantly improved and reduced, suggesting that the combination of the two methods 

has a positive impact on model performance. By combining different data processing 

methods, we can better improve the generalization ability of the model and reduce the 

risk of overfitting. 

Table 6. Impact of different data processing methods on model performance. 

Data Processing 
Arousal Valence 

r MAE r MAE 

Raw data 0.459 0.147 0.442 0.139 

Image enhancements 0.527 0.139 0.498 0.138 

Data standardization 0.532 0.136 0.533 0.133 

Image enhancement and data normalization 0.612 0.120 0.599 0.123 

In the task of recognizing emotional content in violin music, we not only aim for the 

model to capture the overall trend of emotion changes but also to accurately predict spe-

cific emotional values. Looking at Figure 12, the CBA model successfully achieved a good 

balance between both metrics by combining the local feature extraction ability of CNN, 

the long-term dependency capturing ability of the GRU network, and the information fil-

tering ability of the Attention mechanism. This also highlights the importance of 
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considering local information, long-term dependencies, and key information in music for 

improving the accuracy of continuous music emotion recognition. 

  
(a) (b) 

Figure 12. Comparison of RMSE for different models. (a) Comparison between CA and CBA. (b) 

Comparison between CB and CBA. 

5.2.2. Feature Fusion Experiment 

In the comparative experiments of feature fusion, for each audio sample, we add si-

lent segments to make the length of each audio sample 60 s. When extracting the vibrato 

rubbing string feature, we set the vibrato frequency range from 196 Hz to 3520 Hz based 

on the reference range of the violin’s pitch (Table 7). 

Table 7. Evaluation metrics results for different feature fusion methods. 

Features 
Arousal Valence 

r MAE r MAE 

Mel 0.524 0.124 0.576 0.129 

Mel + MFCC 0.651 0.114 0.656 0.118 

LLDs 0.673 0.106 0.710 0.108 

During the feature fusion experiments, we found that using LLDs (Low-Level De-

scriptors) achieved better results compared to using only Mel spectrogram features or 

only fusing MFCC features. The MAE (mean absolute error) decreased by 0.018 and 0.021 

when using LLDs compared to using only Mel spectrogram features. Furthermore, it de-

creased by 0.008 and 0.010 compared to only fusing MFCC features. The Pearson correla-

tion coefficients also improved by 0.149, 0.134, and 0.022, 0.054, respectively. 

This indicates that for the VioMusic dataset, LLDs contain more essential information 

regarding the trend of music emotion changes, enabling better capture of subtle variations 

and dynamic features in the music. Therefore, fusing LLDs with deep features allows for 

a more comprehensive representation of music characteristics, leading to improved accu-

racy in predicting emotional trends. 

5.2.3. Comparison of Different Loss Functions 

In the CBA model development, we used two different loss functions, MAE (mean 

absolute error) and MSE (mean squared error), for training the model. To assess the over-

all performance of the model, RMSE (root mean square error) was used as an evaluation 

metric. Figure 13 illustrates the experimental results using different loss functions, demon-

strating that the model trained with the MAE loss function outperforms the one trained 

with the MSE loss function in terms of recognition accuracy. 
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Figure 13. Comparison of MSE and MAE loss functions. 

In the VioMusic dataset, emotions conveyed by violin music are continuous and dy-

namic. The MAE (mean absolute error) loss function is particularly effective in this context 

as it robustly handles outliers in music features and accurately captures the overarching 

trends of emotional fluctuations. This ensures that the model consistently performs well, 

adeptly adapting to a wide range of emotional transitions, from the subtlest shifts to the 

most intense variations. 

6. Conclusions 

We have developed the first violin solo audio dataset, VioMusic, which comprises 

solo performances from three different artists and offers insights into emotional recogni-

tion. This dataset marks a significant milestone in music emotion recognition, filling a no-

table void where violin solos were previously unrepresented. Our experimental results 

show that integrating shallow acoustic features into the music emotion recognition model 

substantially boosts the recognition rate. This enhancement suggests that violin solo audio 

data possess a rich array of features, such as timbre and pitch, which significantly contrib-

ute to the improved performance of the model. However, it is crucial to acknowledge cer-

tain potential biases and limitations that arose during the sample collection process. These 

primarily stem from the limited equipment and the varying levels of technical expertise 

of the recording personnel. As a result, the sound quality of these recordings may not 

always reach the high standards of professional studio recordings and might include in-

stances of noise and background interference. Additionally, variations in the quality of the 

instruments and the expertise of the recording personnel could affect the overall quality 

of the dataset. Another important limitation to consider is related to the CNN–BiGRU–

Attention model used in this experiment. This model depends heavily on a substantial 

amount of labeled data for effective training and performance. Acquiring enough labeled 

data for specific domains or tasks can be challenging, which may impact the model’s ef-

fectiveness. Despite these challenges, the creation of VioMusic and the insights gained 

from integrating shallow acoustic features have opened exciting new avenues for future 

research in music emotion recognition. These developments pave the way for enhanced 

model performance and a deeper understanding of the field. Moving forward, we plan to 

continue exploring additional musical features for violin music emotion recognition to 

further our research and applications in this innovative area. 
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