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Abstract: The most common preprocessing techniques used to deal with datasets having high dimen-
sionality and a low number of instances—or wide data—are feature reduction (FR), feature selection
(FS), and resampling. This study explores the use of FR and resampling techniques, expanding the
limited comparisons between FR and filter FS methods in the existing literature, especially in the
context of wide data. We compare the optimal outcomes from a previous comprehensive study of FS
against new experiments conducted using FR methods. Two specific challenges associated with the
use of FR are outlined in detail: finding FR methods that are compatible with wide data and the need
for a reduction estimator of nonlinear approaches to process out-of-sample data. The experimental
study compares 17 techniques, including supervised, unsupervised, linear, and nonlinear approaches,
using 7 resampling strategies and 5 classifiers. The results demonstrate which configurations are
optimal, according to their performance and computation time. Moreover, the best configuration—
namely, k Nearest Neighbor (KNN) + the Maximal Margin Criterion (MMC) feature reducer with no
resampling—is shown to outperform state-of-the-art algorithms.

Keywords: feature selection; feature reduction; wide data; high dimensional data; imbalanced data;
machine learning

1. Introduction

Within the machine learning field, the term “wide data” [1] refers to datasets contain-
ing a much greater number of features than instances. This type of data is common in
bioinformatics [2,3], and usually presents two main problems that affect the performance
of learning algorithms: the curse of dimensionality and data imbalance.

The curse of dimensionality [4] refers to the difficulty of accurately generalizing
problems with high-dimensional datasets when using machine learning algorithms. This
increases both the processing time and required space, as well as the risk of overfitting, as
it makes it difficult to distinguish meaningful patterns from noise.

Considering the low number of instances, wide data are prone to imbalance caused by
the large difference in the number of instances per class [5]. The algorithms trained with
this data may be biased towards the majority class, making it difficult to accurately classify
data belonging to the minority classes.

One of the solutions that may mitigate these problems is the use of preprocessing
techniques. In particular, the curse of dimensionality can be addressed with feature selection
(FS) [6] and feature reduction (FR) [7] methods. FS methods identify and select the most
informative and relevant features from a given dataset, discarding the noisy or redundant
data. In contrast, FR methods transform the original feature space into a lower-dimensional
one using the information present in the original features.

Information 2024, 15, 223. https://doi.org/10.3390/info15040223 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040223
https://doi.org/10.3390/info15040223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-0330-1605
https://orcid.org/0000-0002-3269-0806
https://orcid.org/0000-0002-0608-2743
https://orcid.org/0000-0001-6965-0237
https://orcid.org/0000-0001-8808-412X
https://doi.org/10.3390/info15040223
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040223?type=check_update&version=1


Information 2024, 15, 223 2 of 20

Resampling methods [8] solve the imbalanced data problem through removing in-
stances from the majority class or creating new ones for the minority class.

There are many application examples of these methods in different areas. For ex-
ample, in medicine, FR improves the accuracy of epilepsy diagnosis through analyzing
electroencephalography signals, avoiding invasive techniques [9]. FS has been also used
for breast cancer detection [10] analyzing microarray data. Regarding engineering, the
authors of [11] used Principal Component Analysis (PCA) in several predictors to remove
noise from building energy consumption datasets. In another example, in fault diagnosis,
FS was applied to select the best features extracted from magnet DC motors [12] or rotating
machinery [13]. Furthermore, FR techniques are valuable in text mining tasks, such as
document classification, e.g., in [14] PCA and Latent Semantic Indexing (LSI) were used to
extract useful features for an SVM classifier.

This study aims to find the best strategies to process wide datasets, composed of
combinations of FS or FR, resampling, and classifiers, through evaluating their performance
and computation time. In the literature, studies comparing dimensionality reduction
techniques with resampling methods have been limited to the use of FS [15]. In this case,
new FR experiments are compared to the best results from [16], which extensively compared
various FS, resampling methods, and classifiers on a wide dataset.

As mentioned in Section 2, the use of FR techniques with wide datasets requires
thorough research to identify compatible approaches. For example, applying nonlinear
transformations requires estimation to handle out-of-sample instances.

The scope of this study excludes the use of wrapper FS methods. As detailed in
Section 3, their high computational cost is a crucial factor when processing wide data, as
it presents a large number of features. Both the FS and FR algorithms used require the
dimensionality to be set, which simplifies the comparison and visibility of the results, as
the dimensionality can be set to be the same. The obtained results are analyzed to address
the following objectives of this study:

1. To find an FR method that is compatible with wide data and provides a means to
perform nonlinear transformations over out-of-data instances.

2. To compare the two previously mentioned types of preprocessing techniques (FR and
FS) and determine which is more suitable to use on wide datasets.

3. To determine whether balancing is important while using FR methods and, if so,
whether it is more convenient to use it before or after the FR step.

4. To determine the best FR method for each classifier.

While previous studies have included some comparisons of FS and FR algorithms over
the same datasets [17], these evaluations are not particularly exhaustive. They predominantly
focus on basic and widely used FR techniques, avoiding the use of nonlinear approaches.
Furthermore, the lack of use of wide datasets makes it impossible to discern which techniques
are optimal in such cases, as not all algorithms are compatible with such data.

Performing a large number of experiments to compare FS and FR approaches for wide
datasets is one of the main novelties of this study. Due to the high presence of the imbalance
problem in wide data, this study also focuses on resampling techniques in combination
with FR and FS preprocessing methods. The code for all of the algorithms, allowing for
their standardized use, can be found on GitHub (https://github.com/Ismael-rp/feature_
reduction_feature_selection_wide_data_comparison, accessed on 15 May 2024).

The remainder of this paper is organized as follows. First, in Sections 2–4 the back-
ground for all the preprocessing methods used (i.e., FR, FS, and resampling) is provided.
In Section 5, the experimental setup is detailed, while the results are shown in Section 6.
Finally, the conclusions, limitations, and future work are presented in Sections 7–9, respec-
tively. Finally, the conclusions and future work are presented in Section 7.

2. Feature Reduction

Feature reduction (FR) or manifold learning [7] methods are preprocessing techniques
used to reduce the number of dimensions of high-dimensional datasets. This is useful

https://github.com/Ismael-rp/feature_reduction_feature_selection_wide_data_comparison
https://github.com/Ismael-rp/feature_reduction_feature_selection_wide_data_comparison
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for improving the performance of learning algorithms, enhancing data visualization, and
facilitating feature extraction from images. The present study focuses on FR for wide
data classification.

As previously explained, high dimensionality poses a significant challenge to classifi-
cation algorithms, as it complicates the distinction between useful and noisy features. FR
methods attempt to solve this problem through creating a new dataset with the desired
dimensionality, combining all the original features. A good FR method should be able to
determine the structure of the original dataset (manifold) and preserve it in a lower dimen-
sional representation. This structure is divided into local and global structures. Preserving
the local structure refers to preserving the distance of all individual points to their nearest
neighbors, whereas the global structure refers to the rest of the further points. Preserving
both structures simultaneously is difficult [18], and in FR methods, usually, only one is
well retained.

There are some taxonomies that can be used to discriminate FR algorithms according
to their behavior, and some of them can be very extensive, such as the one presented in
the study [7]. The present manuscript divides FR methods according to two properties:
supervised/unsupervised and linear/nonlinear. Unsupervised methods ignore the data labels
when creating the new dataset, which makes them useful for clustering problems. On the
other hand, supervised methods utilize data labels, allowing classes to be separated more
effectively and, therefore, making these methods more suitable for classification problems.

Linear FR methods transform the data using a linear transformation which minimizes
or maximizes some criteria and, at the same time, reduces the dimensionality as desired.
As shown in Equation (1), matrix A with dimensions of (r × c) is reduced to a B matrix
with k dimensions using a kernel or linear transformation K.

r



 A



c︷ ︸︸ ︷
∗ c




K



k︷︸︸︷

= r



B



k︷︸︸︷
(1)

Non-linear transformations are required to uncover the hidden manifold in nonlinear
data. As most of these algorithms are unsupervised, all of the methods used in this study
are unsupervised. Unlike their linear alternatives, due to their intrinsic behavior, nonlinear
methods do not provide a way to reproduce the transformation on out-of-sample data;
however, the authors of [19] presented a generalized and accurate approximation to solve
this issue.

Based on the fact that every point in the space is linearly relocated to a new position in
the lower-dimensional space under a nonlinear transformation, this linear transformation
can be approximated through the following three steps. (1) Retrieve the K out-of-sample
nearest neighbor instances from the training dataset. As the authors recommend, the K
value was set to 5. (2) Reduce this neighbor sub-dataset to the desired dimensionality
using Principal Component Analysis (PCA). (3) Using linear regression, obtain the linear
projection to transpose the neighbor sub-dataset into the final positions obtained with the
FR method.

The PCA and linear regression models are applied to the out-of-sample instance to be
transformed. This process is repeated for each out-of-sample instance.

Unlike traditional datasets, wide data has a much greater number of columns than
rows (r << c), preventing some of the most popular linear and nonlinear FR algorithms
from being able to calculate the projection.

The FR methods used in this study are listed below, following the taxonomy
mentioned above:



Information 2024, 15, 223 4 of 20

• Linear

– Unsupervised

* Principal Component Analysis (PCA) [20] is the most popular FR method,
which reduces the feature dimensionality while maintaining the maximum
data variance.

* Locality Pursuit Embedding (LPE) [21] respects the local structure through
maximizing the variance of each local patch according to Euclidean distances
(unlike PCA, which preserves the global structure).

* Parameter-Free Locality Preserving Projection (PFLPP) [22] is a parameter-free
version of the Locality Preserving Projection (LPP) algorithm [23], which is a
linear version of the nonlinear graph-based Laplacian Eigenmaps method [24].

* Random Projection (RNDPROJ) [25] projects the data into a new random
spherical hyperplane that is randomly selected using the origin. It is not a
trivial computation problem.

– Supervised

* Fisher Score (FSCORE) [26] finds the projection that maximizes the ratio
between each feature mean and the standard deviation of each class.

* Locality Sensitive Laplacian Score (LSLS) [27] is based on the Laplacian
score FS method [28]. It adjusts the Laplacian graph using the class label to
simultaneously minimize the local within-class information and maximize
the local between-class information.

* Local Fisher Discriminant Analysis (LFDA) [29] is an improved version of
the FDA-supervised FR method, which is suitable for reducing datasets in
which individual classes are separated into several clusters.

* Maximum Margin Criterion (MMC) [30] projects the data while maximizing
the average margin between classes.

* Sliced Average Variance Estimation (SAVE) [31] calculates the projection
matrix by averaging the covariance of the data of each slice in which the
whole dataset has been divided.

* Supervised Locality Pursuit Embedding (SLPE) [32] is a supervised version
of the LPE algorithm, which enhances the model using label data.

• Non-linear

– Classical Multidimensional Scaling (MDS) [33] computes the dissimilarities be-
tween pairs of objects (assuming Euclidean distance). This matrix serves as the
input for the algorithm that outputs a coordinate that minimizes a loss function
called strain.

– Metric Multidimensional Scaling (MMDS) [34] is a superset of the previous
method. It iteratively updates the weights given by the MDS using the SMA-
COF algorithm, in order to minimize a stress function such as the residual
sum of squares.

– Locally Linear Embedding (LLE) [35] bases its performance on producing low-
dimensional vectors that best reconstruct the original objects through computing
the kNN and using this information to weight them.

– Neighborhood Preserving Embedding (NPE) [36] first identifies the structure of
the data neighborhood in the original space, then determines a linear subspace
minimizing the reconstruction error of the local neighborhood structure [37].

– Locally Embedded Analysis (LEA) [34] aims to preserve the local structure of the
original data in the computed embedding space.

– Stochastic Neighbor Embedding (SNE) [38] is a probabilistic approach that places
the data in a low-dimensional space that optimally preserves the neighborhood
of the original space.

– An Autoencoder [39,40] is a kind of artificial neural network that is trained in
an unsupervised manner. The aim of the autoencoder is to capture the hidden
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information in the high-dimensional input space of the dataset. Autoencoders
have the same number of artificial neurons in their first (input) and last (output)
layers, while having less in their center layers (see Figure 1). During training,
Autoencoders attempt to generate the same information in the output layer that
is presented in the input layer. Therefore, the center layer aims to capture the
intrinsic information of the dataset and, thus, can be used for feature reduction.

Encoder Decoder

Input Output

Code

Figure 1. Schematic representation of an Autoencoder.

3. Feature Selection

Feature selection [6] is an alternative preprocessing approach to FR, which aims to
solve the curse of dimensionality. Instead of combining all features into a completely new
low-dimensional dataset, FS methods identify which features are the most suitable for the
classification step. These methods attempt to discard the noisy, irrelevant, and redundant
features that limit the performance of the classifier.

Machine learning models that only use a few features are more interpretable than those
that combine all original features into a new dataset. Generally speaking, the three types of
feature selectors are filters, wrappers, and embedded:

• Filter methods [41] are mainly based on statistical measures. They analyze the features
and rank them in an ordinal or numerical way according to their importance. Although
these methods do not usually achieve the best performance for any classifier, they
evade overfitting.

• Wrapper methods [42] perform any search algorithm to find the best feature subset for
a specific classifier, according to a certain metric. Some of the most common methods
are the recursive feature elimination (RFE) and genetic implementation methods.
These methods obtain better performance than others; however, they tend to overfit
and their computational cost is usually too high.

• Embedded methods [43] take advantage of the properties of classifiers such as support
vector machines or decision trees to determine the importance of a feature subset.
Although the selected subset can be used to train any model, it may perform better on
the base classifier used to obtain it.

The method used for comparison with the best FR configuration is the SVM-RFE [44],
the superior performance of which on wide data has been proven in a previous study [16]
when compared with six of the most popular filters and embedded approaches (i.e., Ttest,
Chi-squared, Random forest importance, ANOVA, Information gain, and ReliefF). SVM-
RFE is an embedded FR method that recursively eliminates features according to their
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performance contribution, removing the feature whose associated weight in the current
iteration is the minimum.

4. Imbalanced Data

There is a great chance that wide data suffer from imbalance due to the associated
low number of instances. As previously stated, having a great difference in the number
of instances between classes often causes a problem for the classifier [45], as its output
may be biased with respect to the most-represented class. This problem can be solved
through the use of any of the three types of resampling methods: removing instances from
the majority class (undersampling methods), creating new instances for the minority class
(oversampling methods), or combining both methods (hybrid methods).

The methods used in this study, which are the most popular ones, are described
as follows:

• Random Undersampling (RUS) [46] removes instances randomly selected from the
majority class.

• Random Oversampling (ROS) [46] duplicates instances randomly selected from the
minority class.

• Synthetic Minority Over-sampling Technique (SMOTE) [47] creates synthetic instances
of the minority class. For the creation of new instances, SMOTE randomly selects
instances from the minority class. The feature values of the new instances are com-
puted through interpolating the features of two instances randomly selected from the
k nearest neighbors of the original instance (k being a parameter of the algorithm).

5. Experimental Setup

In this section, the experimental setup is explained. Some of the decisions made,
such as datasets, classifiers, or balancing strategies applied, were the same as in our
previous study [16].

5.1. Cross-Validation

For this study, 5 × 2-fold cross-validation was performed, where the original dataset
was randomly split into 2 parts 5 times, and each part was used for training and testing;
thus, every instance was used for both training and testing 5 times.

This type of cross-validation is particularly appropriate for imbalanced data as, con-
sidering the low number of instances for some classes, performing the usual 10-fold cross-
validation would leave a small number of the minority class instances on the training set [48].

5.2. Data Sets

A total of 14 wide datasets were used to compare the methods, the main characteristics
of which are listed in Table 1. In addition to information commonly used in the field, we
include the ratio between features and instances, due to their wide nature. All of them
contained two classes and their features were numeric. Every fold from the cross-validation
was standardized, setting its mean to zero and standard deviation to one. The test folds
were standardized using the mean and standard deviation obtained from the training folds.
The imbalance ratio [49,50] in the table was computed as the number of instances in the
majority class divided by the number of instances in the minority class.
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Table 1. Data sets used in the experimental study. Datasets 1–9 were used in [51], while 10–14 were
used in [52]. The column names refer to dataset name, number of examples, number of features, ratio
features/examples, minority and majority class labels, min and max percentage of instances for the
minority and majority classes, and imbalance ratio. 1 https://jundongl.github.io/scikit-feature/
datasets.html, 2 http://csse.szu.edu.cn/staff/zhuzx/Datasets.html, accessed on 7 April 2024.

Data Set #Ex. #Feat. #Feat.
#Ex. Class (min.; maj.) %min.; %maj. IR

1 Colon 1 62 2,000 32.26 (Normal; Tumor) 0.35; 0.65 1.86
2 MLL_ALL 1 72 12,582 174.75 (ALL; rem) 0.33; 0.67 2.03
3 MLL_AML 1 72 12,582 174.75 (AML; rem) 0.39; 0.61 1.56
4 MLL_MLL 1 72 12,582 174.75 (MLL; rem) 0.28; 0.72 2.57
5 SRBCT_1 1 83 2,308 27.81 (1; rem) 0.35; 0.65 1.86
6 SRBCT_4 1 83 2,308 27.81 (4; rem) 0.30; 0.70 2.33
7 Lung_1 1 203 12,600 62.07 (rem; 1) 0.32; 0.68 2.12
8 Lung_4 1 203 12,600 62.07 (rem; 4) 0.10; 0.90 9.00
9 Lung_5 1 203 12,600 62.07 (rem; 5) 0.10; 0.90 9.00

10 Leukemia_BM 2 72 7,130 99.03 (BM; rem) 0.29; 0.71 2.45
11 TOX_171_1 2 171 5,748 33.61 (1; rem) 0.26; 0.74 2.85
12 TOX_171_2 2 171 5,748 33.61 (2; rem) 0.26; 0.74 2.85
13 TOX_171_3 2 171 5,748 33.61 (3; rem) 0.23; 0.77 3.35
14 TOX_171_4 2 171 5,748 33.61 (4; rem) 0.25; 0.75 3.00

5.3. Dimensionality and Number of Features

For fairness when comparing FR and FS methods, it is appropriate to configure them
to obtain datasets with the same dimensionality as the output. However, the number of
features is limited in some of the nonlinear FR methods (SNE, MDS, MMDS, and LLE).
Therefore, in such cases, the maximum dimensionality was set to the number of instances
belonging to each fold.

5.4. Resampling Strategies

Each one of the three resampling methods detailed in Section 4 was used in two ways:
(1) balancing before performing dimensionality reduction or (2) balancing after dimension-
ality reduction. Therefore, there were a total of seven strategies, including the option of not
performing resampling.

5.5. Classifiers

According to [53], the most popular algorithms for high-dimensional data are as
follows: k-nearest neighbors (KNN), SVM-Gaussian, C4.5 trees, Random Forest, and Naive
Bayes. For this reason, these five classifiers were used in this study.

5.6. Parameters

After preliminary experiments involving tuning the algorithm parameters, the param-
eters of the algorithms were set as stated in Table 2. This table lists all the algorithms used,
as well as their corresponding parameters and implementation packages. Most parameters
were set as defaults while others, such as the SVM-G classifier and SMOTE, were optimized
as detailed in [16].

The SVM-G classifier was optimized using a grid parameter search, with c = 109 and
γ = 107, resulting in optimal performance on all datasets. For SMOTE, values of k ranging
from 1 to 20 were tested, and the performance was slightly better when the recommended
value of 5 was used. Regarding the balancing algorithms, the balancing ratio was set to 1
for all datasets, such that the number of instances for both the majority and minority classes
was the same.

As explained in Section 2, an algorithm to approximate the transformation on out-of-
sample instances on nonlinear FR is needed; this is denoted “transformation approximation” in
the table and, as the authors recommended, the parameter k was set to 5. Finally, autoencoders
had a single inner layer with as many neurons as the desired output dimensionality size.

https://jundongl.github.io/scikit-feature/datasets.html
https://jundongl.github.io/scikit-feature/datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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Several well-known functions (linear, rectilinear uniform, sigmoidal, and tangential) were
considered. The tangential function learned the fastest, requiring only 10 epochs to reach the
best performance on the training fold; hence, it was selected as the activation function.

Table 2. All the algorithms used in the study are grouped according to their type,
including their parameters (when applicable) and their corresponding R packages, all
of then have been accessed on June 2023. * The asterisk indicates that, in the
method, the parameter K was set to 5 in the transformation estimator needed for
the nonlinear feature reducers explained in Section 2. 1 https://cran.r-project.org/
web/packages/class/index.html; 2 https://cran.r-project.org/web/packages/e1071/index.html;
3 https://cran.r-project.org/web/packages/RWeka/index.html; 4 https://cran.r-project.org/
web/packages/randomForest/randomForest.html; 5 https://cran.r-project.org/web/packages/
naivebayes/index.html; 6 https://cran.r-project.org/web/packages/Rdimtools/index.html; 7 https:
//www.bioconductor.org/packages/release/bioc/html/sigFeature.html; 8 https://cran.r-project.
org/web/packages/unbalanced/index.html.

Algorithms Parameters Package

Classifier KNN k = 1 class 1

SVM-G c = 109, γ = 107 e1071 2

C4.5 Default RWeka 3

Random Forest Default randomForest 4

Naive Bayes Default naivebayes 5

Feature reduction
Linear—Unsupervised

PCA - Rdimtools 6

LPE Default Rdimtools 6

PFLPP - Rdimtools 6

RNDPROJ Default Rdimtools 6

Feature reduction
Linear—Supervised

FSCORE - Rdimtools 6

LSLS Default Rdimtools 6

LFDA Default Rdimtools 6

MMC - Rdimtools 6

SAVE Default Rdimtools 6

SLPE - Rdimtools 6

Feature reduction
Non-linear *

MDS - Rdimtools 6

MMDS - Rdimtools 6

LLE Default Rdimtools 6

NPE Default Rdimtools 6

LEA Default Rdimtools 6

SNE Default Rdimtools 6

AUTOENCODER epoch = 10, activation = “Tanh” h2o

Feature selection SVM-RFE sigFeature 7

Balancing ROS Ratio 1:1 Own impl.
RUS Ratio 1:1 Own impl.
SMOTE Ratio 1:1, k = 5 unbalanced 8

5.7. Metrics

Multiple metrics are commonly used to assess the performance of machine learning
classifiers. In order to provide an unbiased set of performance metrics, five metrics are used
in this study: Area Under the ROC Curve (AUC), F16-Score, G-Mean, Matthews correlation
coefficient, and Cohen’s kappa.

Some of these metrics use the confusion matrix, which consists of a 2 × 2 matrix
(in binary classification) that summarizes the hits and misses of the classifier regarding
a classification problem (see Table 3). The class of interest (usually the less-represented
one) is called the positive class, while the other is called the negative class. The diagonal
captures the hits of the classifier, while the other two cells contain the misses. These can

https://cran.r-project.org/web/packages/class/index.html
https://cran.r-project.org/web/packages/class/index.html
https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/RWeka/index.html
https://cran.r-project.org/web/packages/randomForest/randomForest.html
https://cran.r-project.org/web/packages/randomForest/randomForest.html
https://cran.r-project.org/web/packages/naivebayes/index.html
https://cran.r-project.org/web/packages/naivebayes/index.html
https://cran.r-project.org/web/packages/Rdimtools/index.html
https://www.bioconductor.org/packages/release/bioc/html/sigFeature.html
https://www.bioconductor.org/packages/release/bioc/html/sigFeature.html
https://cran.r-project.org/web/packages/unbalanced/index.html
https://cran.r-project.org/web/packages/unbalanced/index.html
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be either a false positive (FP), when the classifier predicts positive but the actual label is
negative, or a false negative (FN) in the opposite case.

Table 3. Confusion matrix: true positive (TP), false positive (FP), false negative (FN), and true
negative (TN).

Actual Value
Positive Negative

Pr
ed

. Positive TP FP
Negative FN TN

To compute most of the aforementioned measures, some intermediate metrics that
rely on the confusion matrix are needed:

• Recall, or the true positive rate, is the probability of classifying a positive instance
as positive.

recall =
TP

TP + FN
(2)

• Specificity, as opposed to recall, is the probability of considering a negative instance
as negative.

specificity =
TN

TN + FP
(3)

• Fall-out, or the false positive rate, is the probability of the probability of a false alarm occurring.

fall-out =
FP

TN + FP
(4)

• Precision is the probability that an instance is classified as positive.

precision =
TP

TP + TN + FP + FN
(5)

Finally, the five metrics used for the experiment are defined as follows:

• The Area Under the ROC Curve can be calculated in different ways. Although ROC
can also be used to evaluate multiple possible classifier thresholds, in this study, only
one per fold is evaluated using the formula based on the true positive rate (recall) and
the false positive rate (fall-out) from [54].

AUC =
1 + recall − fall-out

2
(6)

• The F1-Score is the harmonic mean between precision and recall.

F1-Score = 2 × precision × recall
precision + recall

(7)

• The G-Mean, which is widely used for imbalanced problems, is the geometric mean
between recall and specificity.

G-Mean =
√

recall × specificity (8)

• The Matthews correlation coefficient (MCC – Do not confuse with the feature reduction
method called Maximum Margin Criterion (MMC).) was originally presented by
Matthews [55] and introduced to the Machine Learning community in [56]. The MCC
has become a well-known performance measure of binary classification not affected
by imbalanced datasets, and the authors of [57,58] have recommended this metric
over AUC and F1-Score.
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MCC =
TN × TP − FN × FP√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(9)

• The Cohen’s kappa measure compensates for the random hits that are usually observed
in classification problems [59].

K =
P0 − Pe

1 − Pe
(10)

where P0 is the ratio of success of the classifier and Pe is the ratio of success expected
by chance.

Finally, average rankings [60,61] were calculated to compare the performances of the
different algorithm combination strategies. To compute the rankings, the strategy that
achieved the best results on a specific dataset received a score of one, the strategy that
achieved the second-best results received a score of two, and so on. In the case of a tie,
the rankings of the tied methods were averaged. Average rankings were then computed
through taking the average of the rankings computed on all datasets.

6. Results

This section attempts to answer the questions presented in Section 1. The performance
of all feature reduction methods was compared, indicating the difference when any balanc-
ing method was used. Finally, the best algorithm configuration (i.e., FR or FS and classifier)
was identified, including the feature selectors.

In order to reduce the number of figures and tables in this section, only the results for
the MCC metric are shown for the advantages explained in Section 5.7. The Supplementary
Materials contain the information for all other metrics, from which it can be assessed that
the results obtained for them were similar.

6.1. Best Feature Reducers

Table 4 compares the performance (average ranks) of all 90 possible configurations,
obtained when combining the 5 classifiers with the 17 feature reducers plus the classifiers
themselves without any preprocessing method (i.e., 18 configurations). The option
without preprocessing, where the classifier was trained with all the features, was used
as a baseline.

As can be seen from the table, the best configuration combined the supervised FR
algorithm MMC and the KNN classifier. The second-best configuration was SVM-G using
no preprocessing method. As in our previous study [16], the best results were obtained
with the KNN and SVM-G classifiers.

Not all classifiers performed in the same way with all FR methods. The most suitable
FR algorithm for each classifier is presented in Table 5 (the average ranks were computed
independently for each classifier). Although the MMC and the KNN were positioned at
the top of the ranking. MMC only outperformed the rest when coupled with KNN. For
SVM-G, the best option was not using FR, whereas for the rest of the classifiers, FSCORE
performed the best.
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Table 4. Comparison of average ranks using the MCC metric, the 90 possible configurations when mix-
ing our 5 classifiers and the 18 FR preprocessing methods, including as baseline the non-preprocessing
option. The color code indicates the type of algorithm, linear unsupervised , linear supervised, or

nonlinear unsupervised .

Classifier FR Algorithm Average Rank
KNN MMC 1.96
SVM-G No 2.54
SVM-G FSCORE 9.21
KNN FSCORE 9.29
KNN No 10.71
SVM-G LLE 10.71
SVM-G MDS 10.71
SVM-G MMDS 10.71
RF FSCORE 13.39
KNN LLE 13.57
NBayes FSCORE 14.79
NBayes No 15.36
KNN MDS 15.43
KNN MMDS 15.43
SVM-G NPE 15.43
KNN PCA 16.64
SVM-G SNE 19.36
RF No 19.39
KNN NPE 21.00
NBayes LLE 21.64
SVM-G Autoencoder 21.86
KNN SNE 22.07
KNN LPE 22.79
NBayes MDS 26.50
NBayes MMDS 26.50
C4.5 FSCORE 28.11
NBayes NPE 29.57
NBayes SNE 29.93
KNN Autoencoder 30.36
C4.5 No 30.68
C4.5 NPE 30.86
NBayes PCA 31.36
C4.5 MDS 34.14
SVM-G LSLS 34.21
KNN SAVE 34.36
RF NPE 34.43
NBayes Autoencoder 34.64
C4.5 PCA 35.21
C4.5 LLE 35.57
C4.5 MMDS 37.00
RF Autoencoder 38.71
SVM-G LPE 38.79
C4.5 LPE 40.07
KNN LSLS 40.50
NBayes LSLS 42.86
RF LSLS 43.93
C4.5 Autoencoder 46.00
C4.5 LSLS 49.64
C4.5 MMC 49.93
RF LPE 50.43
SVM-G SAVE 52.14
RF SAVE 52.36
SVM-G LEA 53.43
RF MMDS 56.64
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Table 4. Cont.

Classifier FR Algorithm Average Rank
SVM-G RNDPROJ 56.64
C4.5 SNE 57.21
RF MDS 57.64
RF PCA 58.50
NBayes LPE 59.43
RF LLE 59.50
NBayes LEA 61.29
NBayes SAVE 62.14
RF LEA 62.21
RF MMC 62.50
KNN LEA 63.21
C4.5 SAVE 65.00
KNN RNDPROJ 67.43
NBayes RNDPROJ 67.50
NBayes MMC 67.93
RF RNDPROJ 70.50
KNN LFDA 71.93
RF SNE 73.89
C4.5 RNDPROJ 76.07
KNN SLPE 77.00
C4.5 SLPE 78.11
RF LFDA 78.14
RF SLPE 78.21
KNN PFLPP 78.43
RF PFLPP 78.64
SVM-G SLPE 78.75
C4.5 LEA 79.29
C4.5 PFLPP 79.29
NBayes PFLPP 79.29
SVM-G LFDA 79.29
SVM-G MMC 79.29
SVM-G PCA 79.29
SVM-G PFLPP 79.29
NBayes SLPE 79.43
C4.5 LFDA 79.79
NBayes LFDA 80.11

Table 5. Comparison of average ranks using the MCC metric, the 18 FR preprocessing methods,
including as baseline the non preprocessing option. Each ranking is performed by a different
classifier in order to detect what is more suitable. The color code indicates the type of algorithm,
linear unsupervised , linear supervised, or nonlinear unsupervised .

Feature Reducer Average Rank

(a) KNN
MMC 1.07
FSCORE 3.86
No 4.57
LLE 5.29
MDS 5.93
MMDS 5.93
PCA 6.29
SNE 7.50
LPE 7.86
NPE 8.07
Autoencoder 10.79
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Table 5. Cont.

Feature Reducer Average Rank

SAVE 11.29
LSLS 12.57
LEA 14.57
RNDPROJ 15.43
LFDA 16.14
SLPE 16.79
PFLPP 17.07

(b) SVM-G

No 1.07
FSCORE 3.86
LLE 4.21
MDS 4.21
MMDS 4.21
NPE 5.93
Autoencoder 6.64
SNE 7.21
LSLS 8.79
LPE 9.71
SAVE 11.57
LEA 11.86
RNDPROJ 12.43
SLPE 15.71
LFDA 15.89
MMC 15.89
PCA 15.89
PFLPP 15.89

(c) C4.5

FSCORE 3.46
NPE 3.57
MDS 4.43
No 4.54
LLE 4.71
PCA 5.36
MMDS 5.64
LPE 6.14
Autoencoder 8.79
LSLS 9.64
MMC 9.93
SNE 11.93
SAVE 13.36
RNDPROJ 15.25
SLPE 15.82
LEA 16.04
PFLPP 16.04
LFDA 16.36

(d) RF
FSCORE 1.29
No 2.07
NPE 3.50
Autoencoder 4.50
LSLS 6.14
LPE 7.43
SAVE 8.36
MMDS 9.36
MDS 9.64
PCA 10.14
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Table 5. Cont.

Feature Reducer Average Rank

LEA 11.00
LLE 11.00
MMC 11.36
RNDPROJ 12.93
SNE 14.93
LFDA 15.64
SLPE 15.64
PFLPP 16.07

(e) NBayes
FSCORE 2.86
No 3.14
LLE 3.79
MDS 5.71
MMDS 5.71
NPE 6.14
SNE 6.21
PCA 6.29
Autoencoder 7.00
LSLS 9.43
LPE 12.50
SAVE 12.71
LEA 13.00
MMC 13.86
RNDPROJ 14.00
PFLPP 16.14
SLPE 16.21
LFDA 16.29

6.2. Best Preprocessing Algorithm

Having identified the best FR and classifier combination (i.e., MMC with KNN), before
comparing it with the best FS method (SVM-RFE with SVM-G), we determined which of
the seven balancing techniques was the best for each combination, in order to conduct a
fairer comparison.

One of the objectives of this study is to compare FR and FS methods on wide datasets.
In the previous section, the best FR and classifier combination (i.e., MMC with KNN)
was identified, whereas the best FS and classifier combination in our previous study [16]
was SVM-RFE with SVM-G. In order to carry out a fair comparison between these two
configurations, it was necessary to determine the most suitable balancing technique for
each of them. The seven possible balancing strategies were described in Section 4.

The resampling technique was chosen last as, as stated in [16], it is the least influential
preprocessing step, which is highly dependent on the number of selected features.

In Table 6, average ranks for both configurations (including the no-balancing approach)
are shown. For the FR method, there was a tie between not using any balancing at all and
using resampling (ROS or SMOTE) as a post-balancing method. For the sake of simplicity,
the option of not balancing was chosen.

For the FS method, there was again a tie using ROS balancing either before or after
preprocessing. The selection of either of the two options was arbitrary and, so, the initial
balancing option was used.

With the aim of assessing whether or not the differences between these two configura-
tions are significant, Bayesian tests [62] were used to compare them one vs. one.

This hypothesis test is conducted to compare two different methods, obtaining the
probability that one is better than the other, or that both have practically equivalent per-
formance. In this test, this equivalence is represented by the so-called region of practical
equivalence (ROPE). A parameter for the ROPE is needed, in order to declare the size of
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this region. If the difference between two parameters is in the ROPE, it is considered that
there is no significant difference between them. If this area is too big, the test indicates that
there is no statistical difference between the methods.

The results of performing the Bayesian tests when setting the ROPE to 0.01 for com-
parison of the best configurations under each of the five metrics are provided in Figure 2.
The left side of the triangles corresponds to the use of an FS configuration (balancing using
ROS before the FS with SVM-RFE and using SVM-G as a classifier), whereas the right side
corresponds to the FR alternative (using the FR method MMC with the KNN classifier). For
three out of the five metrics (F1-Score, MCC, and Kappa), the FR combination performed
significantly better than the FS combination; meanwhile, the other two (AUC and G-Mean)
did not show any significant differences. As none of the tests supported the left side
(SVM-RFE) and most of the tests suggested that the right side (MMC) performed better, it
can be determined that, for these datasets, the FR option was the best one.

Table 6. Average ranks using the MCC metric of the balancing strategies for (a) the best configuration
that uses an FS method and (b) the best configuration that uses an FR method.

Balacing
Average Rank

Prior Posterior

(a) SVM-RFE + SVM-G

ROS No 3.11
No ROS 3.11
No SMOTE 3.46
No No 3.57
SMOTE No 3.86
No RUS 4.25
RUS No 6.64

(b) MMC + KNN

No No 3.50
No ROS 3.50
No SMOTE 3.50
No RUS 3.68
SMOTE No 4.00
ROS No 4.29
RUS No 5.54

The execution times of the 18 preprocessing methods (i.e., 17 FR methods and the
best FS method) are shown in Figure 3, sorted according to the average time needed to
process all of the dataset folds. The best FS method (SVM-RFE) and the preprocessing
methods that performed the best for at least one classifier are highlighted in blue. Their
averages are listed in Table 7. The high variance between execution times obtained for the
same preprocessing method was due to the varying size of the datasets. The most accurate
methods (MMC and SVM-RFE) were also among the fastest, being considerably faster
than the worst method; however, MMC was generally slower than SVM-RFE. Finally, the
FSCORE method, which showed promising performance relative to the baseline, completed
processing within a few seconds.
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SVM−RFE
(0.0470)

ROPE

(0.2110)

MMC
(0.7420)

(a) F1

SVM−RFE
(0.0605)

ROPE

(0.0990)

MMC
(0.8405)

(b) MCC

SVM−RFE
(0.0615)

ROPE

(0.1245)

MMC
(0.8140)

(c) Kappa

SVM−RFE
(0.0612)

ROPE

(0.7943)

MMC
(0.1445)

(d) AUC

SVM−RFE
(0.0637)

ROPE

(0.7465)

MMC
(0.1898)

(e) G-Mean
Figure 2. Results of performing Bayesian tests for each of the five metrics comparing the best FS
and FR configurations. The best FS configuration is represented on the left side (balancing using
ROS before selecting the features with SVM-RFE and using SVM-G as classifier), whereas the best FR
configuration is shown on the right side (reducing dimensionality with MMC and KNN as classifier).

LEA
NPE

LFDA
MDS
SNE
LLE

SLPE
MMDS
PFLPP

MMC
SAVE

LPE
SVM−RFE
RNDPROJ

PCA
AUTOENCODER

FSCORE
LSLS

0 50,000 100,000 150,000 200,000
Time (seconds)

Figure 3. Box plots in the y-axis with the 18 preprocessing methods shown alongside the time taken
to process each fold (in seconds). The methods are sorted according to their average execution time
(shown as a central red dot). The preprocessing methods with highest-ranking performances for at
least one classifier are highlighted in blue, and the best FS method (SVM-RFE) is also highlighted.
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Table 7. Average execution time (hours, minutes, and seconds) for each preprocessing method to
compute every fold, sorted in ascending order.

Preprocessing
Time

Hours Minutes Seconds

LSLS 3
FSCORE 3
AUTOENCODER 15
PCA 5 16
RNDPROJ 21 17
SVM-RFE 1 24 56
LPE 2 23 15
SAVE 2 36 4
MMC 4 8 58
PFLPP 6 7 9
MMDS 6 55 17
SLPE 8 42 3
LLE 10 27 7
SNE 10 46 2
MDS 11 11 34
LFDA 11 43 20
NPE 12 3 17
LEA 19 11 8

7. Discussion and Conclusions

In this research paper, the question of whether FR or FS performs better when consid-
ering wide data was answered. It was empirically proven that the best configuration of an
FR algorithm determined in this study (MMC + KNN) outperformed the best FS algorithm
(SVM-RFE + ROS + SVM-G) in the previous literature [16].

During the search for the best FR algorithm for use on wide data, it was found that
not all the FR methods perform in the same way for all the classifiers. In this study, the best
FR method was the MMC for KNN and FSCORE for the other classifiers, except SVM-G,
which ranked second after the no-preprocessing stage.

As a general recommendation, our suggestions for practitioners dealing with wide
data problems can be summarized as follows: (1) Start with the FSCORE method, as it
is very fast and shows good performance. (2) When higher classification performance is
desired, the MMC + KNN or ROS + SVM-RFE + SVM-G configuration can be used, with
MMC providing better performance without the need for resampling and evading the time
required for parameter tuning in the SVM-G classifier. Nevertheless, it must be noted that
MMC has a higher processing time than SVM-RFE.

Different classifiers may benefit from different preprocessing methods. This study
also provides performance results for FR methods, which are some of the most popular
algorithms for high-dimensional data. If any of the classifiers used in this study are more
suited to a specific problem, it is suggested that the results are checked to determine the
best preprocessing method for that particular classifier.

8. Limitations

As with the majority of studies, the design of the current research is subject to lim-
itations. When assessing machine learning strategies on extensive datasets, the limited
number of instances for testing raises the risk of selecting a sub-optimal model as the top
performer [63]. We have attempted to address this problem by using a relatively large
number of datasets and applying 5 × 2-fold cross-validation (i.e. splitting the dataset into 2
folds and repeating the process 5 times).

Although we have found a very effective model configuration, the algorithms used
during both studies are a relatively small representative collection of each of the applied
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domains (FS, FR, resampling, and classification). Therefore, there could be other configura-
tions equally even more suitable for these and other broad data problems.

Finally, it is important to remember that the data used in the experimentation are
exclusively from microarrays. Therefore, their applicability in other contexts may produce
different results. Nonetheless, we consider that these results can serve as a reference.

9. Future Work

Different approaches to reduce the data dimensionality of wide data, such as wrapper
FS methods or combinations of FR and FS, can be explored in future work.

A future research direction is the use of FR or FS in other areas, for example, in meta-
learning, where data characteristics are studied in order to determine the most suitable
preprocessing and classifier algorithms.

Another unexplored area is the analysis of feature reduction and feature selection
methods in semi-supervised contexts, where there are only a few labeled instances and
usually a large number of unlabeled instances [64]. These preprocessing algorithms may
take advantage of the manifold assumption that the data lie on or near a low-dimensional
manifold within the high-dimensional input space.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/info15040223/s1, Tables S1–S5 show the average rank of all
feature reducers used in this study. The previous ranks divided by the five classifiers are shown in
Tables S6–S10 to see which feature reducer perform better on each classifier. Tables S11–S15 show the
average rank of each of the seven balancing strategy for both the best feature reducer and feature
selector algorithms we compare at the end of the study.
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