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Abstract: This paper discusses using ground-based imagery to determine the attitude of a flying
projectile assuming prior knowledge of its external geometry. It presents a segmentation-based
approach to follow the object and evaluates it quantitatively with simulated data and qualitatively
with both simulated and real data. Two experimental cases are considered: One assumes reliable
target distance measurement from an auxiliary range sensor, while the other assumes no range
information. The results show that in the case of an unknown projectile-camera distance, with
projectile dimensions of 1.378 m and 0.08 m in length and diameter, the estimated distance, in-
plane location, and pitch angle accuracies are about 50 m, 0.15 m, and 6 degrees, respectively. Yaw
angle estimation is ambiguous. In the second case, assuming that the projectile—camera distance is
known resolves the ambiguity of yaw estimation, resulting in accuracies of about 0.15 m, 3 degrees,
and 20 degrees for in-plane location, pitch, and yaw angles, respectively. These accuracies were
normalized to a 1-km projectile-camera distance.

Keywords: image segmentation; projectile attitude determination; 2D TETRIS

1. Introduction

The photogrammetric determination of target attitude/object pose is a well-studied
machine vision problem. The target attitude can be efficiently solved when given suffi-
ciently resolved imagery and benign backgrounds. However, for ground-based imagery of
objects in flight, such as aircraft, birds, or projectiles, the resolution can be marginal, and en-
vironments are rarely benign, i.e., there are varying lighting conditions, low signal-to-noise
ratios (SNRs), cluttered backgrounds, and poor target contrast. Fortunately, for cooperative
tests, the external geometry of airborne objects can be known a priori to whatever accuracy
is desired. Using geometry encourages the development of a model-based method for
estimating the attitude of a maneuvering airborne object. However, due to the intrinsic
limitation of the considered application, detailed target information, such as color, texture,
and depth, as exploited in many robot applications [1,2], are either not available or cannot
be reliably exploited to match the projection of the 3D target model with the measured
scene image. For example, what can be observed in ground-based imagery of projectiles
in flight is the rough shape of the target. Using the shape causes one to resort to a seg-
mentation technique, along with the development of effective similarity measures that are
independent of color, gradient, and depth information, thereby discovering the matched
target mask rendered from the 3D target model to determine the projectile attitude.
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Flying projectile
video

This study considers a scenario where a robust tracking module is in place to capture
images of a flying projectile. It describes a segmentation-based flying projectile attitude
determination workflow using ground-based monocular imagery with a priori knowledge
in terms of an exact 3D projectile model. This is a practical scenario in the fields of testing
and evaluation. The developed workflow is given in Figure 1, and it consists of three
modules: detection and segmentation (DS), profile matching (PM), and shape-guided
segmentation (SS). The DS module aims at detecting and segmenting the flying projectile
in the current frame and produces an initial segmentation mask. Next, the PM module
estimates the target attitude based on the segmentation mask, followed by searching for
the best match between the segmentation mask and the rendered projectile profile. The
result is an estimate of the projectile attitude. Since the initial mask is obtained through
blind segmentation, it is expected that there is room for segmentation improvement, e.g.,
by incorporating the shape information into a segmentation algorithm. To this end, the
rendered profile is exploited as a shape prior in the SS module to update the segmentation
mask, and it is sent back to the PM module for refined projectile attitude estimation.
Specifically, in this study, we compare three shape-guided image segmentation methods
in the SS module: a modified Gradient Vector Flow Active Shape Model (GVF-ASM), a
novel Shape-Incorporated Segmentation with the GraphCut criterion (SIS-Cut), and 2D
Template Transformer Networks for Image Segmentation (TETRIS). GVF-ASM is devised
by combining the active shape model (ASM) [3] into the gradient vector field Snake [4].
SIS-Cut is inspired by the criterion adopted in graph cut segmentation [5], and 2D TETRIS
is a 2D implementation of TETRIS [6]. TETRIS is a machine-learning-based approach for the
segmentation of coronary lumen structures in 3D cardiac computed tomography. Since it is
very challenging, if not impossible, to obtain the ground-truth attitude of a flying projectile,
simulated flying projectile imagery is needed to quantitatively evaluate the Imagery-Based
Projectile Attitude Detection and Estimation (IMADE) solution and to generate the required
training data, and it turns out that very few annotated frames are required to train the
models employed in the DS and SS modules.

Initial mask Updated mask

Projectile
Attitude
Estimate

Shape-Guided
Segmentation

Detection &
Segmentation

Known 3D Projectile Model

Figure 1. The developed workflow of segmentation-based flying projectile attitude determination
using ground-based imagery with a priori knowledge.

IMADE uses a 3D flying projectile simulation program to generate synthetic ground-
based flying projectile imagery using the Unity 3D game engine, version 2019.2.0. The
complete 3D flying projectile simulation program includes the following features: (1) a
Unity software application that renders realistic projectile images with different config-



Information 2024, 15, 201

30f25

urations. The application provides a user-friendly graphical user interface (GUI) that
allows users to easily configure projectile models and complex environments with different
physics characteristics. (2) The program also includes various textured 3D projectile models
that are available for users to select for 3D projectile simulations and benchmark data
generation, (3) a ground-truth data generation function that records real-time ground-truth
annotation data, including six-DoF motion data of the projectile captured with multiple
virtual cameras simultaneously, 2D semantic segmentation masks, and 3D bounding box
annotations of the projectile, allowing users and collaborators to test and evaluate against
state-of-the-art image segmentation approaches, and (4) a data parsing program that parses
the metadata of the dataset generated by the above programs.

This paper is organized as follows. Section 2 provides a brief review of the literature
on model-based projectile attitude determination from monocular images. The developed
3D flying projectile simulation program is described in Section 3. The implementations of
the modules shown in Figure 1 are provided in Section 4. Section 5 describes the datasets
used in the experiments and the experimental results. Section 6 lists conclusions with
future directions.

2. Literature Review on Model-Based Target Attitude Determination

Attitude determination, which is commonly known as pose estimation, is an important
step in applications such as aerial refueling [7], unmanned aerial vehicle (UAV) docking [8],
and many industrial intelligence applications [9].

A closely related IMADE application that has been extensively studied is spacecraft
attitude determination. Spacecraft attitude determination is critical for many essential
tasks in space missions, e.g., formation flying, on-orbit servicing, and debris removal [10].
In general, the quality of the imagery captured for spacecraft attitude determination is
considerably higher than that considered in this work due to the close-range nature of the
tasks considered. A comparison of the typical actual and simulated images considered in
spacecraft attitude determination and the flying projectile attitude determination consid-
ered in this study is provided in Figure 2, where (a) shows three actual camera images from
the Spacecraft Pose Estimation Dataset (SPEED) [11], (b) depicts three synthetic images
from the SPEED training set, (c) presents three real images of a flying projectile considered
in the IMADE work, and (d) illustrates three simulated projectile images generated with
the IMADE simulation program. To the best of our knowledge, no prior work has consid-
ered the problem of flying projectile attitude determination from ground-based imagery.
Therefore, this section provides a brief review of the literature on the general approaches to
estimating the 6D poses of objects.

(a) )
EEE BRIE

(© (d)

Figure 2. A comparison of typical images for spacecraft pose estimation and the flying projec-
tile images considered in this work. (a,c) Actual images; (b,d) synthetic images. See the text for

more information.

Detecting objects and estimating their poses in 3D have been extensively studied in
robot manipulation [12] and augmented reality [13,14]. Various existing methods can be
categorized from different perspectives. One such perspective is based on the data source,
including options such as RGB-D cameras, dual RGB cameras [7,15], single RGB cameras,
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and others. These methods utilize RGB images and registered depth data (RGB-D) [1,2,16],
only depth data [7,15,17], or only RGB images. Most recent works focus on using only
RGB images due to the limitations imposed by depth sensors, i.e., the depth readings are
not reliable in an outdoor environment. In what follows, methods that involve only RGB
images are reviewed.

2.1. Template-Based Methods

Early object pose estimation research is cast as a template-based 3D object detection
problem [18], and each template corresponds to a specific object pose. Thus, a large
number of templates are required, and only coarse pose estimation is achieved [18-21].
For example, to detect an object under full coverage of viewpoints, about 2000 templates
are generated [20]. The approaches that convert the 6D pose estimation problem into a
pose classification problem by discretizing the pose space can be considered template-based
approaches if one considers each individual class as a template. The work presented in [22]
generates templates synthetically rather than using real annotated data, which requires
expert knowledge and a complex setup [23]. In this way, much finer viewpoints (~20,000)
are sampled to create templates for each object of interest. To generalize the synthetic
templates to work with real object images, the authors of [23] proposed an augmented
autoencoder (AAE) with domain randomization (DR) to reconstruct synthetically generated
objects from real detected objects.

2.2. Keypoint-Based Methods

Keypoint-based methods, which are currently the most accurate and dominant ap-
proaches for pose estimation, adopt a two-stage pipeline: They first detect a few 2D key-
points of an object in an RGB image and match them with the keypoints from the 3D object
model. Once a keypoint-based correspondence is established, an efficient Perspective-n-Point
problem (PnP) algorithm [24] can be applied to find the transformation between the object
coordinate system and the camera coordinate system. Traditional keypoint-based methods
directly utilize point [25] or corner [19] features, edge features [26], or a combination of
both [27] from 2D images to derive the points to match the corresponding 3D points in
the object model. The PnP is a relatively simple approach for sufficiently textured objects
where handcrafted features show promise in identifying the keypoints [28,29].

For textureless objects, recent works resort to machine-learning-based approaches to
predicting the keypoints and establishing correspondences. The BB8 approach (bounding
box using eight corners) [30] uses segmentation to identify image regions that contain ob-
jects and regresses the keypoints, which are defined as the 2D projections of the corners of
an object’s 3D bounding box from the segmented image regions. Yolo6D [31] adopted a sim-
ilar approach but without resorting to segmentation. Another category of methods [32,33]
uses heatmaps predicted from image patches to represent keypoints to address the issue
of partial occlusion. Each heatmap is a 2D Gaussian distribution centered at the keypoint
location with a small standard deviation. To additionally handle the case of truncated
objects, a pixel-wise voting network (PVNet) [34] was proposed to learn a vector-field
representation for robust 2D keypoint localization.

2.3. Direct Pose Estimation

Unlike keypoint-based methods, which involve a two-stage pipeline, direct pose
estimation approaches aim at directly regressing the 6D pose [35-37].

LieNet [35] detects and segments object instances in an image analogous to modern
instance segmentation networks, such as a mask region-based convolutional neural net-
work (R-CNN), but it contains a novel additional sub-network for 6D pose estimation.
LieNet estimates the rotation matrix of an object by regressing a Lie-algebra-based rotation
representation and estimates the translation vector by predicting the distance of the object
from the camera center. Deep Iterative Matching (DeepIM) [36] is a 6D pose refinement
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approach. Given an initial pose estimation, DeepIM is trained to predict a relative pose
transformation to iteratively refine the pose.

SSD-6D [37] extends the Single-Shot MultiBox Detector (SSD) by additionally out-
putting viewpoint classification and in-plane classification, which are used to directly
estimate the 6D object pose. In [38], an end-to-end 6D pose estimation CNN with three
heads was developed to predict the object class, estimate the object center, and regress the
quaternion representation of object orientation.

3. Synthetic Data Generation

The IMADE simulation program was developed to facilitate the development of
the a proposed solution, including through the generation of ground-based flying pro-
jectile imagery and ground-truth annotations. Figure 3 shows the main interface of the
IMADE simulation program developed using the Unity 3D game engine. It includes back-
ground models, 3D projectile models, and camera models, which are briefly described in
the following.

€ MissileSimulationProgram

x
8 Auto Focus

Adjust to: -

Scenario settings
Seed: 539662031
Number of Frames: 60

@ Rotation Randomizer
X: min-10 max 10
Y: min -10 max 10

Z: min-10 max 10

C:Users/huame/AppData/Locall ow/BMCC and
CCNY/MissileSimulationProgram

. Render Smoke Trail - Cam: 1

Smoke Position: _

Launch Angle:
Projectile Model:

Time: (S : E
Weather: _

Figure 3. Flying projectile simulation program interface.

3.1. Background Models

The simulation program includes a 3D terrain model that allows users to configure
different time and weather conditions, including cloudy and clear skies. Figure 4 shows
the data that are captured at 9 a.m. with a clear sky and 6 p.m. with a cloudy sky.
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Figure 4. (a) The left image shows a scene captured at 9 a.m. with a clear sky, and (b) the right image
shows a scene captured at 6 p.m. with a cloudy sky.

3.2. 3D Projectile Models

Seven projectile models have been created using the C4D modeling program and
imported into the Unity 3D game engine. Users are allowed to choose any projectile
model to generate benchmark data or shape prior images. The C4D program allows users
to configure the position of a projectile’s launch platform and destination, as well as its
launch angle to simulate various projectile trajectories. The projectile’s initial velocity
and trajectory are calculated with a projectile model based on the initial and destination
positions, along with the launch angle.

3.3. Camera Models

The IMADE simulation program allows users to configure multiple (up to five) virtual
cameras to record projectile simulations at different locations using the Unity Perception
library. The program provides two camera models, a wide field of view (FOV) without
tracking the projectile, and a focused view with tracking the projectile. The projectile is
rendered at the center of the images.

3.4. Ground-Truth Annotation

The IMADE simulation program generates ground-truth annotations using the
Unity Perception program, which is a third-party asset for Unity. It is designed to create
randomized scenarios, label objects, and capture images for the purpose of being fed to
a machine learning model. There are many settings that allow users to adjust Perception
to their needs. These settings include changing the capture speed, the duration for
which Perception captures, what objects need labels, what objects are seen/unseen by
Perception, etc. Furthermore, Perception creates JSON (JavaScript Object Notation) files
for every image captured with much of the necessary information and ground-truth
data, and it allows users to add other information. Since the Unity Perception program
stores projectile and camera data in JSON files, we developed a Python program to parse
ground-truth data and convert them into a CSV (comma-separated values) file. To parse
the ground-truth data generated following the projectile simulation, we used the Unity
Dataset Insights package.
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4. Approaches

The details of the modules shown in Figure 1 are given in this section.

4.1. Detection and Segmentation Module

The first step in the workflow shown in Figure 1 is a module for target detection and
segmentation. Unlike the double-thresholding-based method presented in [39], IMADE
employs MaskR-CNN [40], a state-of-the-art instance segmentation approach developed
for simultaneous object instance detection, classification, and segmentation. It was built
by extending the Faster R-CNN architecture via a branch for predicting an object mask in
parallel with the existing branch for bounding box recognition. Mask R-CNN takes the
same two-stage procedure that Faster R-CNN takes. The first stage is a Region Proposal
Network (RPN), which is identical to that included in Faster R-CNN, and the second stage,
in addition to predicting the class and box offset, also outputs the binary mask for each
region of interest.

4.2. Profile-Matching Module

The purpose of the profile-matching (PM) module is to determine the target attitude
from a given mask detected and segmented with Mask R-CNN or the mask resulting
from the SS module. PM additionally renders the projectile profile from the determined
target attitude to facilitate refined segmentation in the SS module, as described in Figure 5.
There are two components in the PM module: mask-based pose estimation and profile
matching, which involves differentiable rendering and optimization with respect to the
pose parameters. The inputs of the PM module are the segmentation mask (the mask
detected with Mask R-CNN or the segmentation masks resulting from the SS module) and
the 3D projectile model.

Initial
segmentation

Refined segmentation

refined pose estimation
Differentiable rendering
+

Optimization w.rt. pose
parameters

3D model

Figure 5. The profile-matching module.

4.2.1. Mask-Based Pose Estimation

Given the mask of a flying projectile, its pose can be estimated from the knowledge of
the projectile dimensions and the intrinsic parameters of the viewing camera, as explained
with the help of the plots given in Figure 6.



Information 2024, 15, 201

8 of 25

Figure 6. Mask-based pose estimation.

Pitch and Yaw Estimation

Shown in Figure 6a is a mask detected with Mask R-CNN with the pitch and yaw
indicated in the plot. With the quantities H, W, and L for the height, width, and length,
respectively, as shown in Figure 6a, Equations (1) and (2) relate the geometric parameters
to the pitch and yaw.

H = L-sin(pitch) 1)

W = L-cos(pitch)-sin(yaw) 2)

where H and W are measured from the mask image, and they indicate the height and width
of the bounding box of the mask. L is the length of the projectile as seen with a 0° pitch
and +90° yaw, as illustrated in Figure 6b. L can be precisely computed from the projectile
dimensions, the intrinsic parameters of the camera, and the distance between the projectile
and the viewing camera. Once H, W, and L are obtained, the pitch and yaw can be obtained
by solving Equations (1) and (2). Alternatively, when the centroid of the projectile coincides
with the image center, the pitch can be directly estimated as the angle between the projectile
mask and the horizontal axis, as indicated in Figure 6a. Though this is the case considered
in the simulation data, it may not be always true in real situations (see Figure 12 for real
images of a flying projectile where the projectile centers are typically different from the
image centers).

Ambiguity of Yaw Estimation

The ambiguity of yaw estimation is illustrated in Figure 7, which shows that two
rendered projectiles with different yaw angles may correspond to the same detection mask.
The ambiguity results from the fact that only a rough segmentation mask can be obtained
from Mask R-CNN due to the marginal resolution of the ground-based imagery, as well as
the possible occlusion from the exhaust plume. Simply put, given the detection mask, one
cannot uniquely determine the value of the yaw. Specifically, if yaw = —90 + y, then from
Equation (2),

-w

- L-cos(pitch) ®)

—sin(yaw) = —sin(y — 90) = cos(y)

Since the cosine is an even function, one knows that yaw = —90 — y is also a solution.
Similarly, when yaw = 90 + y, its segmentation mask is indistinguishable from the one
resulting from yaw =90 — y.

To solve this issue of yaw estimation, the distance between the viewing camera and
the target projectile, which is denoted as Tz, is crucial. More accurately, the change in Tz
between two consecutive frames provides the cue for determining which one of the two
possible yaw angles is correct, as illustrated in Figure 8, which is based on the following
observation: If the yaw angle is greater than —90 (or smaller than 90 if the projectile is
heading to the right), then the projectile is flying away from the viewing camera, resulting in
a distance that increases with time. On the other hand, if the yaw angle is less than —90
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(or greater than 90 if heading to the right), then the projectile is flying toward the viewing
camera, yielding a distance that decreases with time. Therefore, by looking at the sign of the
rate of change in the distance dTz, IMADE can determine if the yaw is greater than 90 (or less
than 90 if heading to the right) or less than —90 (or greater than 90 if heading to the right).
This yaw orientation strategy is used to obtain the results provided in Section 5 when Tz is
known. When Tz is unknown, IMADE cannot use the dTz value from the estimated Tz, as
it is highly non-smooth.

>—-90
Or
<-90

Figure 7. Ambiguity of yaw estimation with unknown Tz.

IfdTz> 0 = Yaw > — 90

/ IfdTz < 0 9 Yaw < — 90

dTz<0

Figure 8. A solution for resolving the ambiguity of yaw estimation.

Estimation of Tx, Ty, and Tz

Tx, Ty, and Tz are the relative translations between the projectile and the viewing
camera in the horizontal, vertical, and depth directions, respectively. Tx and Ty can be
estimated from the centroid of the mask, as indicated in Figure 6a. Tz, the distance from
the viewing camera to the target projectile, can usually be precisely measured with an
additional range sensor and provided as prior knowledge, in addition to the exact 3D
model of the projectile. Nevertheless, three approaches for the initial estimation of Tz are
developed in this effort. The first approach is when the projectile center coincides with
the image center. In this case, the pitch can be directly measured as the angle between
the mask and the horizontal axis (see Figure 6a). Given the pitch angle, together with
the measured height of the bounding box H, L can be computed accordingly and, in
turn, can be exploited for the estimation of Tz, which is inversely proportional to L. The
second approach for the estimation of Tz is based on the measured projectile diameter d,
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as indicated in Figure 6a. Unlike the projectile length, which cannot be measured directly
from the mask, as both pitch and yaw are unknown, the projectile diameter is directly
measurable. Based on the measured diameter d, together with the actual diameter of the
projectile and intrinsic parameters of the camera, Tz can be directly inferred. Since the
measured projectile diameter is obtained in the units of pixels, the estimated value of
Tz will be discrete. See Figure 15¢ for an example. The third approach is carried out by
matching the rendered projectile silhouette and the reference mask with respect to the pose
parameters, including Tz.

4.2.2. Pose Estimation through Profile Matching

After image-/mask-based pose estimation, the estimated pose is fed to the second
component consisting of differentiable rendering followed by optimization with respect to
the pose parameters. There are three inputs: the reference mask, the initial pose estimate
obtained using the mask-based method that was previously described, and the 3D model
of the projectile. Differentiable rendering is used to render the projectile profile according
to the given projectile pose estimate. Then, optimization is performed to minimize the
difference between the rendered projectile profile and the given reference mask. In this
work, two loss functions are considered. The first one, loss;, is the mean squared error (MSE)
between the reference image and the rendered projectile silhouette. Since the segmentation
masks obtained from MaskR-CNN are not always single connected components (see
Figure 9a for an example), loss;, alone is not always sufficient. To overcome this issue of
non-connected components, a second function, loss,, is devised. We define loss, as the
sum of the squared distances (SSD) between the positions of the head and tail points or
extreme points, as depicted in this work; these are extracted from the reference image and the
rendered silhouette. Figure 9 illustrates the extreme points extracted from a reference image
and a rendered silhouette. Mathematically, the second loss function, loss,, is defined as

loss, = dist*(Head1, Head2) + dist?(Tail1, Tail2) (4)

Then, the total loss is the simple weighted sum of /0ss;;, and loss,.

.

e

(a) (b)

Figure 9. Extreme points in (a) a reference image, which is a mask detected with MaskR-CNN, and
(b) a projectile profile rendered with Pytorch3D.

For differentiable rendering, we employed PyTorch3D [41], which provides efficient,
reusable components for 3D computer vision research and works with PyTorch. When the
distance Tz between the flying projectile and the viewing camera is known, the total loss
is optimized with respect to all of the pose parameters except for Tz. On the other hand,
when Tz is not known, all pose parameters are estimated through optimization. In order
to obtain a smoother estimate of Tz, after profile matching is complete, we estimate Tz
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as a linear combination of the current estimate of Tz and the previous estimate of Tz, as
described in Equation (5):

T.(t) =rT.(t)+ (1 —r)To(t—1) (5)

where T,(t) is the smoothed Tz at the current time ¢, T;(#) is the current estimate of Tz
obtained from profile matching, T, (t — 1) is the estimate of Tz obtained at time t — 1, and r
is a parameter used to control the smoothness of the resulting value of Tz.

4.3. Shape-Guided Segmentation

Three shape-guided segmentation approaches are devised and tested for IMADE. The
first two are based on classical segmentation methods, and the third one is a machine
learning (ML)-based method.

4.3.1. GVF-ASM

The GVF-ASM method incorporates Gradient Vector Flow Snakes [4] and active shape
models [3]. Gradient Vector Flow (GVF) is an external force for Snakes that was proposed
to increase the capture range and make it possible for a Snake to progress into prolonged
concave regions. To devise a shape-guided segmentation method based on GVF, active
shape models (ASMs) were considered. ASMs have been adopted for the incorporation
of shape priors in various segmentation approaches [42,43] to overcome the common
limitation of classical segmentation approaches due to their sensitivity to the quality of
images. Active shape models are designed to capture the natural variability within a
class of shapes for image searches in an iterative refinement algorithm analogous to that
employed in active contour models. In other words, ASMs place strong constraints on how
an active contour can evolve. Therefore, it is natural to combine ASMs and active-contour
models in order to locate partially occluded objects in noisy, cluttered images.

The first step in an ASM is to construct a “point distribution model” (PDM) based on
a set of examples of an object. The PDM is constructed by manually placing a set of points
representing the structure of the object of interest. The set of points are then automatically
aligned to minimize the variance in distance between equivalent points. The model gives
the average positions of the points and has several parameters that control the main
modes of variation found in the training set. Given such a model and a contaminated image
containing an example of the object modeled, image segmentation involves choosing values
for each of the parameters to find the best fit of the model to the image. To determine the
best fit for each point, the ASM determines a displacement that moves it to a better location.
In [3], a heuristic approach was used to calculate a suggested movement for each model
point. Also suggested in [3] was the use of an external force field in the traditional active-
contour model formulation. This is where GVF can be applied, as GVF was developed
as an improved external force based on a given image. These local deformations are then
transformed into adjustments for the pose, scale, and shape parameters of the PDM.

For IMADE, we developed and implemented a simplified active shape model, as
described in Algorithm 1.

Algorithm 1: GVF-ASM

Input: Target chip and a shape prior in the form of a binary mask.
Output: Segmentation mask

Step-1: Set i = 0 and compute the gradient vector field of the target chip. Denote the current
boundary points of the shape prior as X; and the gradient vector flow field there as dX;.

Step-2: Find a rigid transformation M(s, 0) and t = [tx, ty]T such that M(s, 0)-X; + tis as close to X;
+ dX; as possible, where s is the scaling factor, 6 is the rotation angle, and ¢ is the
translational vector (we adopted the algorithm described in [3] for this step).

Step-3: Use the pose parameters s, 0, ty, and t, to transform X; and obtain the boundary points of
the next iteration X; , 1.
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4.3.2. SIS-Cut

The second shape-guided segmentation method devised was inspired by GraphCut
segmentation. GraphCut is a combinatorial optimization method that can be used to
find the global optimum of a pseudo-Boolean function f in polynomial time. In image
segmentation applications, the pseudo-Boolean function f or, more commonly, the energy
function E; has the following form:

Ei =) pep Ro(Ap) T 0ena, 24, Bra (6)

where p is a pixel, P is the set of all pixels constituting the image, Ap, which is 0 or 1, is the
label for p, R, (A,) is the individual pixel-matching cost (regional term) for pixel p, N is
the set of neighboring pixels, By 4 is a boundary term that discourages intensity difference
between p and g, and y is a weight used to balance the regional term and the boundary term.
GraphCut segmentation divides an input image into two regions, the background region
Rp and the foreground region Rr. The division is approached such that (1) the intensity
distributions are close to the known sample background and foreground distributions and
(2) the intensity values of neighboring pixels belonging to different regions are as distinct as
possible. GraphCut segmentation is not fully automatic in general, as it requires user input
to estimate the required background and foreground distributions. IMADE incorporates a
given shape prior into it for segmentation against highly cluttered backgrounds. To this
end, inspired by the GraphCut segmentation criteria (1) and (2), we devised a procedure,
Shape-Incorporated Segmentation with the GraphCut criteria (SIS-Cut), to maximize the
distance between the distributions of the foreground and background regions defined by a
segmentation mask. The details of SIS-Cut are given in Algorithm 2. In Algorithm 2, the
transformation considered is 2D affine transformation with seven parameters: the scale in
X, scale in Y, rotation angle, shear in X, shear in Y, translation in X, and translation in Y.
Also, Nelder—Mead simplex optimization is employed so that gradient information is not
required in the optimization process.

Algorithm 2: SIS-Cut

Input: Target chip and a shape prior in the form of a binary mask.
Output: Segmentation mask

Step-1: Denote the region covered by the given shape prior as P. Perform morphological dilation
to expand the covered region and denote it as .

Step-2: Set IP as the foreground region and "\ P as the background region. Obtain the probability
mass functions of the intensities of the two regions and denote them as pr and pp,
respectively.

Step-3: Employ the Nelder—-Mead simplex optimization technique to maximize the following
criterion with respect to the 2D transformation parameters:

dist(pr,pg) = 3 (KL(pr, pp) + KL(pp, pr)) (7)

4.3.3. 2D TETRIS

TETRIS [6] stands for Template Transformer Networks for Image Segmentation with
Shape Priors, and it was originally described for the segmentation of coronary lumen
structures in 3D cardiac computed tomography. The novelty of TETRIS lies in the intro-
duction of template transformer networks, where a shape template is deformed to match
the underlying structure of interest through an end-to-end trained spatial transformer net-
work [44]. TETRIS has the advantage of explicitly enforcing shape priors without the need
to devise an image-to-segmentation likelihood function. This is achieved by leveraging the
representational power of neural networks while explicitly enforcing shape constraints in
segmentations by restricting the model to perform segmentation through deformations
of a given shape prior. Additionally, TETRIS guarantees that the segmentation is a single
connected component, as it does not restrict the network to making pixel-wise classifica-
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Measured scene

Detected |
flying target I

tions. Instead, a neural network (NN) is trained to align the shape prior to the structure of
interest that is visible in the input image. Using priors is especially advantageous when
the data are ambiguous, such as those with a low resolution, poor target contrast, partial
occlusion, and a cluttered background. The workflow of 2D TETRIS is given in Figure 10.
The input of the network consists of the target chip that contains the flying projectile and
a given shape prior in the form of a binary template, as shown in the purple dashed box.
The network consists of two modules: a transformation prediction module and a template
warping module. The output is a warped template serving as the segmentation of the
flying projectile.

Ground truth

Transformation
parameter
. regression

______ -

_______ - Template warping
prediction module \\; module

.
Uniform _
i [ o
_____ generator - /
Input ! @

Figure 10. Workflow of the proposed 2D template transformer network-based segmentation.

Transformation Prediction Module

There are two parts of the transformation prediction (TP) module. The first one is a
feature extractor, and the second one is a transformation parameter regressor. Regarding
the feature extractor, most of the existing feature extraction neural networks used for
object classification tasks can be employed, e.g., Visual Geometry Group (VGG) [45],
ResNet [46], and different versions of Inception networks [47—49]. The transformation
parameter regressor (TPR) developed in [6] was complicated, since it adopted a model that
was free from deformation. The TPR model requires deformation field regularization to
avoid physically non-plausible deformation. In the IMADE application, 2D rigid or affine
transformations involving four to six parameters suffice. For this reason, 1-2 simple fully
connected layers are sufficient to predict the required transformation parameters.

Template Warping Module

The purpose of the template warping module is to generate a warped template based
on the transformation parameters received from the transformation prediction module.
Three steps are involved in this module. First, the uniform grid generator generates a
uniform grid based on the size of the image patch containing the detected flying target.
For example, if the size of the image patch is m x n, then a uniform grid of m x n will
be generated in this step. Next, the transformer in the second step is used to generate a
dense deformation field based on the transformation parameters received from the first
module. The result is a deformed grid, as illustrated in Figure 10. The final step includes the
sampler, which samples the input shape prior (the template, a binary mask) to generate the
warped template, as shown in Figure 10. During training, the warped template is compared
with the ground-truth segmentation to compute the loss function to be minimized. A
simple L, norm loss function suffices. Since the loss is differentiable with respect to the
transformation parameters, the complete network can be trained end to end.
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Shape Prior Generation

One important step in training 2D TETRIS is the generation of shape priors. For train-
ing purposes, the shape priors can be generated based on the ground-truth segmentation
mask. By randomly and slightly altering each ground-truth pose parameter, many shape
priors can be generated for each target chip. In our experiments, which are provided in
Section 5.4, five shape priors were generated for each target chip based on the ground-truth
segmentation masks for the training set. An alternate and potentially more effective strat-
egy is to randomly generate training shape priors at runtime. We envision that this strategy
will eliminate the potential overfitting problem, as the shape priors are not pre-generated.

5. Experimental Procedures and Results

This section first describes the datasets used in the experiments, followed by the
procedures and results obtained from each module depicted in Figure 1.

5.1. Datasets

Both simulated and real data are considered in our experiments. Simulated data allow
us to quantitatively analyze the results, while only qualitative analysis is available when
real data are employed.

5.1.1. Simulated Data

Figure 11 provides the scene setting used to generate the datasets for the experiments,
including the background terrain and the locations of the projectile launcher and target
in Unity’s world coordinate frame in terms of meters. Three video clips were generated:
training, validation, and test clips. Table 1 provides the configurations adopted in each
clip. In Table 1, we see that the three datasets were generated with different projectile
launch angles, times of day, and random seeds, which ensured that no identical target chips
were used in the training, validation, and testing phases. Three simulated target chips are
provided in Figure 2d.

Rocket Launcher

(=230, 11, -570)
Figure 11. Scene setting used to generate the simulation data.
Table 1. The datasets generated by the IMADE simulation tool.
Train Validation Test
Launch Angle 40 41 39
Time of the day 17:00 17:30 17:15
Random seed 539662031 539662032 539662033
Weather Cloudy Cloudy Cloudy
Camera 1 1 1

# of frames 175 175 175
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5.1.2. Real Data

We qualitatively tested our solution on one real video clip. Several sample target chips
with a size of 256 x 256 that were extracted from it are provided in Figure 12. The first
363 frames were purposely skipped, as the targets could not be reliably captured around
the center of the images within this range. In Figure 12, we observe that the projectile’s
visibility worsens with the increase in its frame number due to the increasing distance from
the viewing camera.

#364 #464 #564 #6064 #764
#864 #964 #1064
#1364 #1464 #1564

Figure 12. Example target chips cropped from the center of the real flying projectile video.

5.2. Mask R-CNN
5.2.1. Simulated Data

We employed the pre-trained mask-rcnn-R-50-FPN-3x model from Detectron2 [50].
This pre-trained model was fine-tuned by using 175 target chips cropped from the center of
the training dataset. The Mask R-CNN module was configured such that only the detection
with the top confidence score was returned. Several exemplary MaskR-CNN detection
results together with the ground-truth segmentation masks in red are provided in Figure 13.

Figure 13. Exemplary Mask-R-CNN detection results (simulation data).

5.2.2. Real Data

The same fine-tuned MaskR-CNN model was used in this experiment. However,
when Mask R-CNN was configured to return only the masks with the top confidences for
the real dataset, we noticed that it sometimes wrongly detected the projectile exhaust as the
projectile. We also noticed that it may have included the projectile exhaust in the returned
mask. However, if it was configured to return the top two masks, then the correct mask
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was almost always included. For this reason, when we applied Mask R-CNN on the real
dataset, it was configured to detect the masks with the top two confidence scores. Then,
by computing the mean intensity of the regions covered by the masks and selecting the
one with a lower value to exclude the possible projectile exhaust, the correct mask could be
detected and selected. Typical results are provided in Figure 14, where we observe that it
worked reasonably well.

Figure 14. Exemplary Mask-R-CNN detection results (real data).

5.3. Mask-Based Pose Estimation

Once the initial target segmentation mask was obtained from MaskR-CNN, the next
step was to apply the mask-based pose estimation approach described in Section 4.2.1 to
estimate the projectile pose. We note that profile-matching-based pose estimation was not
employed when the segmentation mask was obtained from MaskR-CNN. This was due to
the fact that MaskR-CNN produced segmentation masks that were not shape-preserving,
making the profile-matching-based approach either problematic or sub-optimal.

5.3.1. Simulated Data

When simulation data are used, since the ground-truth annotation is available, the
cases of both unknown Tz and known Tz are considered.

Unknown Tz

When Tz is not known, we estimate it by measuring the diameter d of the projectile
from each 2D image frame, as described in Section 4.2.1. The estimated translations and
pitch and yaw angles are provided in Figure 15, where the units of Tx and Ty are in pixels,
Tz is in meters, and the pitch and yaw are in degrees. As discussed in Section 4.2.1, since
the measured projectile diameter d is discrete, so is the estimated distance Tz, as observed
in Figure 15. The ambiguity of yaw estimation is clearly observed.

7.5

5.0 4

2.54

—2.5 1

—=5.0 4

—10.0

10.0
Tx_Truth —— Ty_Truth Tz_Truth
Tx_Estimate 7.5 Ty_Estimate 350 Tz_Estimate
5.0 4 300 7
2.5 250 ~
A
oo & Al AL 0.0 00NN 4 200 T A1
L - 1 _,/
—2.5 150 A
-5.0 100
—7.5 1 50 4
-10.0 o
o 25 50 75 100 125 150 175 o 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
(a) (b) (0)

Figure 15. Cont.



Information 2024, 15, 201

17 of 25

80

60

40

20

—— Pitch_Truth
——— Pitch_Estimate

—— Yaw_Truth

150 1 —— Yaw_Estimate

100 -

50 1

—20 _50 4
—a0 ]
—100 A
—60 1
—150 -
801
o 55 S50 75 100 125 150 175 o 25 s0 75 100 125 150 175
(d) (e)
Figure 15. Estimated pose parameters (orange) and their ground-truth values (blue). From left to
right: (a) horizontal displacement in pixels, (b) vertical displacement in pixels, (c) distance in meters,
(d) pitch angle in degrees, and (e) yaw angle in degrees.
Known Tz
When Tz is assumed to be known, the ambiguity of yaw estimation is resolved by
referencing the sign of d1z, as discussed in Section 4.2.1. The estimated in-plane translations,
pitch, and yaw are given in Figure 16, where the in-plane translations are exactly the same
as those obtained previously, as they do not depend on Tz. However, a slight improvement
in the pitch estimate is observed, and the ambiguity of yaw estimation is resolved.
10.0 10.0
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Figure 16. Estimated pose parameters (orange) and their ground-truth values (blue) when Tz is
known. From left to right: horizontal displacement in pixels, vertical displacement in pixels, pitch

angle in degrees, and yaw angle in degrees.
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5.3.2. Real Data

For the real dataset, since no ground truth is available, we present the results in terms
of the generated shape priors.

In each image shown in Figure 17, the mask generated with MaskR-CNN is displayed
in green, and the shape prior generated by rendering the projectile silhouette from the 3D
projectile model using the estimated pose parameters is displayed in red. In Figure 17, we
observe that the estimated target poses are in good agreement with the masks detected
with MaskR-CNN, which validates the mask-based pose estimation approach described
in Section 4.2.1, but it also indicates that the performance of MaskR-CNN is crucial, as it
directly impacts the accuracy of the determined target attitudes.

—

Figure 17. Masks detected with MaskR-CNN (green) and the associated shape priors (red) generated
from the pose parameters estimated by using the mask-based pose estimation approach.

5.4. Shape-Guided Segmentation

We present the quantitative segmentation results using the Jaccard index or intersection
over union (IoU) score when simulated data are used, and the qualitative results are
presented by displaying segmentation masks on top of the target chips when the real data
are used in this section. Two cases are considered when simulated data are used, depending
on if the initial pose parameters are estimated with unknown Tz or known Tz.

5.4.1. Simulated Data

We first provide a visual comparison among the different segmentation methods by
displaying the segmentation masks in a typical target chip in Figure 18, where the detection
with MaskR-CNN detection, the shape prior generated from the estimated pose, and the
segmentation masks obtained from the three shape-guided segmentation approaches are
displayed in yellow and are superimposed with the ground-truth masks in green. Visually,
we observe that MaskR-CNN performs very well, except that the detailed shape of the
projectile tail is not preserved. Also observed is that 2D TETRIS outperforms GVF-ASM and
SIS-Cut. To evaluate them quantitatively, Figure 19 presents the IoU scores. On each box,
the central mark indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively. Figure 19 shows the IoU scores of different
shape-guided segmentation approaches. (a) Shape priors are estimated while assuming
unknown Tz. (b) Shape priors are estimated while assuming known Tz.

Whisker plots were created to extend to the most extreme data points that were not
considered outliers, and the outliers were plotted individually using the ‘+" marker symbol.
Several observations can be made from Figure 19. (1) MaskR-CNN performs very well
on this simulation dataset, with a median IoU score of 0.64, considering that it is a blind
detection and segmentation method that outputs rough profiles of each target, which
explains why the best IoU scores are under 0.8. (2) The shape priors generated according to
the pose estimated with known Tz are slightly better than those generated with unknown
Tz in terms of the median IoU score. (3) Though the best IoU scores of the generated shape
priors are better than those of MaskR-CNN detection in both cases, their median values
are lower. A possible reason is that the roll angle is not estimated in this work, which
results in a mismatch in the tail of the projectile when the shape prior is rendered from the
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3D model. See Figure 20 for more details. (4) Both GVF-ASM and SIS-Cut are unable to
improve the segmentation accuracy. In fact, the resulting segmentation masks are worse
than the given shape priors estimated from the MaskR-CNN detection. (5) The machine-
learning-based approach, 2D TETRIS, however, significantly improves the segmentation
accuracy by increasing the median IoU scores by about 30% (from about 0.6 to 0.78) and
greatly reduces the difference in the 25th and 75th percentiles of the IoU scores in the cases
of both unknown Tz and known Tz.

Segmentation Performance (unknownTz)

Figure 18. Qualitative comparison of different segmentation approaches. (a) MaskR-CNN; (b) gen-
eration of the shape prior according to the estimated pose; (¢) GVF-ASM segmentation; (d) SIS-Cut
segmentation; (e) 2D TETRIS.
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Figure 19. IoU scores of different shape-guided segmentation approaches. (a) Shape priors are
estimated while assuming unknown Tz. (b) Shape priors are estimated with known Tz.

\\

(a) (b)

Figure 20. An example showing why the IoU scores of MaskR-CNN detection can be higher than those
of the corresponding shape priors. (a) MaskR-CNN detection (yellow) and ground-truth segmentation
(green) (b) The corresponding shape prior (yellow) and ground-truth segmentation (green). Notice
that the MaskR-CNN detection mask is completely inside the ground-truth segmentation mask, while
the shape prior rendered with a 3D model has a visible difference at the tail of the projectile due to
the mismatched roll angle, which explains why the median IoU score of the shape prior is lower than
that of MaskR-CNN detection.
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5.4.2. Real Data

We used the same MaskR-CNN model in this experiment. Since no ground truth
was available when a real video clip was used, in Figure 21, we provide the segmentation
results for the 364th, 564th, and 764th frames in red and the given shape priors in yellow for
MaskR-CNN detection and the three shape-guided segmentation methods. Surprisingly,
the MaskR-CNN model that was fine-tuned with synthetic data performed quite well on
this real video clip, and visually, 2D TETRIS performed better than the GVF-ASM and
SIS-Cut methods.

Figure 21. Real data segmentation results (red) and associated given shape priors (yellow) in the real
dataset. From left to right: Mask R-CNN, GVF-ASM, SIS-Cut, and 2D TETRIS.

5.5. Performance Evaluation

This section compares the accuracies of the projectile attitudes estimated from the
segmentation masks resulting from MaskR-CNN, GVF-ASM, SIS-Cut, and 2D TETRIS when
using the simulation data with ground-truth annotations. Unlike the results presented
in Section 5.3.1, when the segmentation masks were obtained from the shape-guided
segmentation module, three pose estimation methods were employed. The pose estimation
methods were mask-based estimation, pose estimation via profile matching without Tz
smoothing, and pose estimation via profile matching with Tz smoothing. In the last case of
profile matching, the parameter r in Equation (5) was set to 0.1.

5.5.1. Unknown Tz

Five pose parameters—Tx, Ty, Tz, pitch, and yaw—are estimated when the distance Tz
is unknown. Shown in Figure 22 are the accuracies of each pose parameter, except for yaw,
normalized to a distance equal to one kilometer. Yaw estimates are not included due to
the ambiguity of yaw estimation when Tz is unknown. Three pose estimation methods are
used for each segmentation method, except for MaskR-CNN. This is because segmentation
with MaskR-CNN is not shape-preserving, making profile matching problematic. Overall,
the Tz and pitch estimation results support that 2D TETRIS segmentation results in the best
pose estimation.
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Figure 22. Comparison of the projectile attitude determination performance in the case of unknown
Tz among four different segmentation approaches: detection and segmentation with MaskR-CNN,
GVE-ASM, SIS-Cut, and 2D TETRIS. Except for MaskR-CNN, three pose estimation approaches are
used to estimate each pose parameter.

5.5.2. Known Tz

When Tz is known, four pose parameters—Tx, Ty, pitch, and yaw—are estimated.
Shown in Figure 23 are the accuracies normalized to a distance equal to one kilometer.
Similarly to the case of unknown distance, the 2D TETRIS segmentation results in the
best performance, as observed from the pitch and yaw estimation results. Specifically,
the estimation errors for pitch and yaw are within 3 degrees/km and 20 degrees/km
when 2D TETRIS is employed using the Tz-smoothed pose estimation approach. For the
horizontal and vertical distance with respect to the viewing camera, all methods result in
an error of less than 0.2 m/km, and again, MaskR-CNN results in the most accurate target
location estimations. In addition, regarding the same segmentation and pose estimation
methods, the accuracies achieved when Tz is known are higher than those achieved when
Tz is unknown.
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Figure 23. Comparison of the projectile attitude determination performance in the case of known
Tz among four different segmentation approaches: detection and segmentation with MaskR-CNN,
GVE-ASM, SIS-Cut, and 2D TETRIS. Except for MaskR-CNN, three pose estimation approaches are
used to estimate each pose parameter.

5.5.3. Runtime Comparison

Lastly, we report the actual runtime performance of each of the three shape-incorporated
segmentation approaches considered in our experiments. In Table 2, we detail the process-
ing time for each segmentation method when handling 175 simulated images with a size of
256 x 256. These experiments were conducted on a PC equipped with an Intel i5-9400 CPU
running at 2.90 GHz with 16 GB RAM and an NVIDIA GeForce RTX 3060 graphics card
with 12 GB memory.

Table 2. Actual runtimes of the three considered shape-incorporated segmentation approaches.

GraphCut
GVF-ASM Criterion-Based 2D TETRIS
Time 1502 (s) 995 (s) 7.12 (s)
Framerate (ratio) ~0.12 fps (1) ~0.18 fps (1.5) ~25 fps (208)
Code Matlab™ Matlab™ Python
(O] Windows 10 Windows 10 Ubuntu 20.04
Hardware CPU CPU CPU + GPU

Notably, the machine-learning-based method, 2D TETRIS, demonstrates remarkable
efficiency and holds the potential to result in a near real-time application with proper
software and hardware optimization.

6. Conclusions

This paper presents a model-based Imagery Projectile Attitude Detection and Estima-
tion (IMADE) method for ground-based monocular imagery. Due to the limitations of the
imagery resolution, signal-to-noise ratio, target contrast, and potentially highly cluttered
background, IMADE performs image segmentation and estimates the projectile attitude
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by matching a segmentation mask and a profile rendered from its 3D model. IMADE
consists of three modules: a detection and segmentation module, a profile-matching mod-
ule, and a shape-guided segmentation module. For the segmentation module, IMADE
adopts a machine-learning-based method, Mask R-CNN, to simultaneously perform blind
projectile detection and segmentation. A pre-trained model that was fine-tuned by using
only 175 simulated target chips was shown to work very well on both simulated and real
datasets. Next, in the profile-matching module, a two-stage approach was developed.
In the first stage, IMADE directly estimates the attitude of the flying projectile from its
segmentation mask, resulting in an attitude estimate, which initializes the second stage
of estimation, where the projectile attitude is estimated by matching the segmentation
mask and its projectile profile generated with a 3D model. Finally, the projectile profile
generated with the 3D model is used as a shape prior in the last shape-guided segmentation
module to improve projectile segmentation accuracy. The resulting segmentation mask
is then fed back to the profile-matching module again to refine the projectile attitude esti-
mate. Three shape-guided segmentation methods are devised and compared in this work.
The first two, GVF-ASM and SIS-Cut, are related to classical active-contour segmentation
and GraphCut segmentation, and the third one, 2D TETRIS, is a machine-learning-based
method. Our preliminary experiments involving a simulated video clip with 175 frames
and a real video clip with 600 frames indicate that the machine-learning-based approach,
2D TETRIS, outperforms the two segmentation methods that are based on classical seg-
mentation approaches. Specifically, our results from the simulated dataset indicate that,
when the range information can be reliably obtained and segmentation with 2D TETRIS is
adopted, the projectile attitude can be determined within 0.2 m in translation, 3 degrees in
pitch angle, and 20 degrees in yaw angle when the target-camera distance is normalized to
one kilometer.

Future directions that can be pursued to improve the projectile attitude determination
accuracy include the following: (1) Instead of using single ground-based monocular images,
images collected from multiple ground-based monocular cameras can be used. Multiple
perspectives potentially eliminate the ambiguity of yaw estimation discussed in this paper
by imposing consistent estimates from multiple cameras [46] and increasing the estimation
accuracy. (2) Instead of the offline shape prior generation used in the training phase of 2D
TETRIS, an online shape prior generation approach can be adopted to dramatically increase
the diversity of training shape priors. (3) Temporal information can be more effectively
exploited to improve the performance. Currently, the temporal information is only used to
resolve the ambiguity of yaw estimation when Tz is known and to smooth the Tz estimate
when it is not known a priori, yet it is shown to improve the accuracies of all pose parame-
ters. We plan to investigate how to exploit the temporal information to detect outliers in
the results of MaskR-CNN, which are the basis for accurate attitude determination.
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