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Abstract: Objects thrown from tall buildings in communities are characterized by their small size,
inconspicuous features, and high speed. Existing algorithms for detecting such objects face challenges,
including excessive parameters, overly complex models that are difficult to implement, and insuffi-
cient detection accuracy. This study proposes a lightweight detection model for objects thrown from
tall buildings in communities, named S-YOLOv5, to address these issues. The model is based on the
YOLOv5 algorithm, and a lightweight convolutional neural network, Enhanced ShuffleNet (ESNet),
is chosen as the backbone network to extract image features. On this basis, the initial stage of the
backbone network is enhanced and the simplified attention module (SimAM) attention mechanism is
added to utilize the rich position information and contour information in the shallow feature map to
improve the detection of small targets. For feature fusion, the sparsely connected Path Aggregation
Network (SCPANet) module is designed to use sparsely connected convolution (SCConv) instead
of the regular convolution of the Path Aggregation Network (PANet) to fuse features efficiently.
In addition, the model uses the normalized Wasserstein distance (NWD) loss function to reduce
the sensitivity of positional bias. The accuracy of the model is further improved. Test results from
the self-built objects thrown from tall buildings dataset show that S-YOLOv5 can detect objects
thrown from tall buildings quickly and accurately, with an accuracy of 90.2% and a detection rate of
34.1 Fps/s. Compared with the original YOLOv5 model, the parameters are reduced by 87.3%, and
the accuracy and rate are improved by 0.8% and 63%, respectively.

Keywords: lightweight; objects thrown from tall buildings; sparsely connected convolution; attention
mechanism

1. Introduction

The detection of objects thrown from tall buildings in communities is essential for
public safety and social governance. With the acceleration of urbanization and the improve-
ment of urban infrastructure, the number of high-rise residences is increasing. However,
accidents involving objects thrown from a height have also increased, becoming a severe
problem in contemporary urban development. Objects thrown from tall buildings endanger
both personal safety and property. Therefore, it is crucial to trace the source of incidents
of objects being thrown from tall buildings. Currently, the leading solution is to install
video surveillance equipment on the external walls of high-rise residential buildings to
collect evidence and deter potential objects being thrown from tall buildings. However,
it is difficult to identify the behavior of objects thrown from tall buildings quickly and
accurately by only relying on traditional video surveillance technology [1]. In the field of
the detection of objects thrown from tall buildings, visual images provided by visible light
signals have a high resolution, detail-rich information, and high real-time performance, so
visual images have significant advantages in dealing with the problem of objects thrown
from tall buildings. In recent years, target detection technology based on visual images has
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aroused extensive research interest, providing a new solution to this social problem. Using
computer vision technology to identify objects thrown from tall buildings in real time can
effectively improve the monitoring system’s performance and achieve the rapid detection
of objects thrown from tall buildings.

Communities’ demand for the lightweight and efficient detection of objects thrown
from tall buildings is currently difficult to meet, and existing lightweight detection mod-
els [2] perform poorly in dealing with the problems of the small size of objects, inconspicu-
ous features, and high speed. To address this, this paper proposes an improved YOLOv5
detection model specifically for the complex detection of objects thrown from tall buildings,
and its main contributions include the following:

(1) In this paper, we design the S-ESNet backbone network to improve the performance
of small target detection. The network accomplishes this by enhancing initial features
and integrating the SimAM attention mechanism.

(2) An SCPANet module is proposed, utilizing SCConv architecture to achieve efficient
object detection on high-resolution feature maps.

(3) To reduce the sensitivity of the Intersection over Union (IoU) of objects thrown from
tall buildings to target position deviation, the NWD loss function is introduced to
improve the model’s accuracy.

2. Related Works

Deep learning has received significant attention in image processing and target detec-
tion in recent years due to its superior feature extraction capabilities. While developing this
field, researchers have proposed numerous deep-learning-driven target detection methods
dedicated to achieving a balance between lightweighting the model, increasing the com-
putational speed, reducing the number of parameters, and improving the target detection
accuracy. In 2016, Iandola et al. [3] proposed a SqueezeNet model that used small kernel
convolution to compress the feature dimensions and verified the model’s effectiveness on
the ImageNet dataset, significantly reducing the number of parameters and maintaining
the detection accuracy. From 2017 to 2019, Zhu et al. [4–6] developed the MobileNet family
of models using deeply separable convolution and Squeeze-and-Excitation (SE) attention
mechanism [7]; they tested the models on the ImageNet dataset and showed the efficiency
and faster speed of the models. In 2018, Ma et al. [8] designed the ShuffleNet network,
effectively reducing the computational effort of point-by-point convolution through group
convolution and channel blending techniques. They verified the efficient performance of
the network on the ImageNet dataset. In 2019, Tan et al. [9] proposed the MnasNet network,
demonstrating its performance on ImageNet through multi-objective optimization and
hierarchical search space optimization for excellent performance and flexibility. In 2020,
Han et al. [10] proposed the GhostNet network, which reduces the computational effort in
the ImageNet dataset by generating Ghost feature maps while demonstrating increased
computational efficiency. In the same year, Tan et al. [11] proposed the EfficientDet model,
which utilizes a Bidirectional Feature Pyramid Network (BiFPN) and composite scaling
methods to achieve fewer model parameters and higher running speeds on the COCO
dataset. In 2021, Zhu et al. [12] improved YOLOv5 by introducing Transformer Predic-
tion Heads [13] and convolution block attention model (CBAM) [14] on the VisDrone2021
dataset, which improved the accuracy and recall of target detection. In 2022, Ma et al. [15]
proposed MoCoViT network, which adopts the Mobile Self-Attention mechanism (MoSA)
and Mobile Feed Forward Network (MoFFN), and through experiments on the COCO
dataset, it is demonstrated that the network can maintain good performance while reducing
model complexity and memory footprint.

The lightweight model studied above reduces the number of layers and channels in the
high-resolution stage by rapidly reducing the sampling rate of the feature map. While this
effectively reduces the amount of computation, it results in a significant loss of rich feature
information, which reduces the accuracy of small target detection. The models optimized
for small objects, on the other hand, despite improving the detection performance, also
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subsequently increase the computational burden and limit their applicability in community
applications for the detection of objects thrown from tall buildings due to the limitation of
computational resources.

In this study, a lightweight detection model, S-YOLOv5, is proposed to address the
challenge of the existing algorithms in detecting objects thrown from tall buildings, which
makes it challenging to satisfy both detection accuracy and operation speed. The model
employs the ESNet [16] backbone network to reduce the model size and enhance the
detection accuracy by strengthening the initial phase of the backbone network in combi-
nation with the SimAM [17] attention mechanism. Meanwhile, lightweight optimization
is performed at the feature fusion layer. In addition, the model integrates NWD loss [18]
to reduce the sensitivity of IoU [19] to small target localization bias, further improving
the accuracy. Through experimental validation, the model demonstrates high detection
accuracy and fast processing capability on the self-constructed objects thrown from tall
buildings dataset, which is suitable for the real-time monitoring of the behavior of objects
thrown from tall buildings.

3. Lightweight Model S-YOLOV5
3.1. S-YOLOV5 Network Architecture

Given the small size of objects thrown from tall building detection targets, insufficient
feature information, and fast speed change, the existing detection scheme lacks target
recognition performance. It cannot meet communities’ requirements for real-time detection.
For this reason, this paper proposes a novel object thrown from tall buildings detection
model, S-YOLOv5 (Figure 1), based on the YOLOv5 network architecture, aiming to
accelerate the detection speed and improve the accuracy. The model consists of four
parts: input layer, backbone network, neck network, and head. The backbone network is
responsible for extracting features, while the neck network is responsible for the fusion
of features.
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mechanism to construct a novel S-SENet backbone network. Compared with the original 

Figure 1. S-YOLOv5 network structure.

In this paper, improvements are made to the backbone network and the neck net-
work. For the backbone network, two extra ES Block modules are added after the first
downsampling, and the SE attention mechanism is optimized to the SimAM attention
mechanism to construct a novel S-SENet backbone network. Compared with the original
architecture of YOLOv5, S-SENet improves the detection accuracy of tiny objects thrown
from tall buildings while keeping the model lightweight. The PANet [20] structure is
improved for the neck network by replacing the traditional convolution with SCConv [21].
This adjustment slightly reduces the detection accuracy, reduces the number of model
parameters, and improves the detection efficiency. In addition, NWD Loss is introduced to
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reduce the sensitivity of the model to the positional deviation of objects thrown from tall
buildings, which further enhances the detection accuracy of the model.

3.2. Backbone Network S-ESNet

Initial high-resolution features carry important detail information in the backbone
network, which is critical for the identification and localization of small targets. Current
lightweight backbone networks tend to rapidly reduce the resolution of these features,
resulting in the loss of many layers and channels while maintaining a high resolution.
Although this reduces the computational complexity, it also means that a lot of feature
information is lost. To improve the detection performance of small targets, this study
proposes a novel lightweight backbone network called S-ESNet, the structure of which is
illustrated in Figure 2. The network mainly consists of one (Convolution, Batch Normaliza-
tion, and Hardswish Activation) CHB module, three SES2_1 modules, and four SES1_X
modules, where X denotes 1, 2, or 5. Compared with the initial ESNet, S-ESNet adds two
extra ES Block modules in the first downsampling stage. By delaying the primary stage
of downsampling and increasing the computational resources, the network can extract
and save more low-level semantic information [22], which in turn improves the detection
accuracy of objects thrown from tall buildings.
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Figure 2. S-ESNet backbone network.

The backbone network’s core improvement optimizes the attention mechanism in the
ES Block structure. Like MobileNetV3, ESNet also applies the SE attention mechanism in
all blocks, strengthening the ability to characterize target-related features through adaptive
weighting of network channels. However, the SE attention mechanism is weak when
dealing with spatial dimensions, which limits the model’s performance in the detection of
objects thrown from tall buildings.

To further improve the performance of ESNet in this application scenario, this study
improves the attention mechanism in the ES Block from SE to SimAM based on the feature
extraction network architecture of ESNet. As shown in Figure 3, the improved part of the
ES Block is that the SimAM attention mechanism generates a unified 3D attention weight
simultaneously, which enables the model to focus more on deeper information about objects
thrown from tall buildings in the feature space. SimAM is based on the phenomenon of
spatial inhibition in neuroscience, which measures the information density of a neuron and
assigns weights by minimizing an energy function, where the minimum energy function of
E, the nth neuron, can be formulated as

E = − 4(σ̂2+λ)
(t−µ̂)2+2σ̂2+2λ

σ̂2 = 1/M∑M
i=1(xi − µ̂)2

µ̂ = 1/M∑M
i=1 xi

(1)

where σ̂2 represents the variance of all neurons, λ is the regularization coefficient, t is the
target neuron, µ̂ is the search distance, M denotes the number of neurons on each channel,
and x is the neighboring neurons.
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Equation (1) shows that when the energy value is low, the more significant the differ-
ence between neuron x and its surrounding neurons, the higher the importance. The higher
the weight value assigned to x, the greater the value of E is. According to the principle
of the attention mechanism, the Sigmoid function is used to normalize the pair, i.e., the
weight of each neuron can be expressed as sigmoid(1/E). Finally, the input feature layer
performs a Hadamard product operation with attention weights to obtain the augmented
attention feature map.

By replacing the attention mechanism in the ES Block from SE to SimAM, this study
comprehensively evaluates spatial location features and channel information without
increasing the parameters and effectively focuses on essential neurons. This improvement
helps to enhance the feature extraction efficiency and training speed of the network.

3.3. Feature Fusion Module

The feature enhancement module PANet employs a bidirectional multilevel fusion
strategy to integrate bottom-up and top-down features. Given the computational enhance-
ment of PANet due to the backbone network enhancement, this paper proposes SCConv to
reduce the computational burden, which consists of a combination of two different types of
convolutional structures, as demonstrated in Figure 4. The first one is channel-by-channel
convolution (DWConv), which applies a different convolution kernel to each input channel
separately, achieves the convolution operation of a single convolution kernel with a single
channel, and subsequently integrates the output results by point-by-point convolution. The
second is Pointwise Grouped Convolution (PWGConv) [23], which has similar functionality
to standard 1 × 1 convolution.
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The comparison of the number of convolution parameters before and after the im-
provement can be formulated as

DK × DK × M × DF × DF + M × N × DF × DF/g
DK × DK × M × N × DF × DF

=
1
N

+
1

D2
Kg

(2)

where M represents the number of input channels, N represents the number of output
channels, DF represents the size of the input feature map, DK represents the size of the
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convolutional kernel. The molecule in the formula represents the sum of the channel-by-
channel convolution computation amount and the point-by-point convolution computation
amount, and the denominator represents the standard convolution computation amount.
The number of convolutional kernels, N, is generally large during network training, so
the proportion of parameters in the formula is mainly affected by the convolutional kernel
DK and the number of groupings of grouping convolutions. Therefore, the parameter
amount of deep separable convolution in the SCConv module is about 1/D2

Kg of the
ordinary convolution. In summary, SCConv can effectively reduce the connection between
channels, effectively reduce the parameter amount of the model, and improve the model’s
performance in terms of the detection speed.

In this study, a novel lightweight feature enhancement module, named SCPANet,
is constructed based on SCConv, as demonstrated in Figure 5. In the PANet structure,
SCPANet reduces the computational overhead by replacing the traditional 3 × 3 convolu-
tional layers.
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3.4. NWD Loss Function

Figure 6 demonstrates that objects thrown from tall buildings are typically small and
consist of limited pixels, which results in significant IoU fluctuations—ranging from 0.53 to
0.06—even with minor positional changes. Such fluctuations markedly impact the accuracy
of label assignments. By contrast, larger objects that contain more pixels experience less
variation in IoU; a similar positional offset might only reduce the IoU from 0.90 to 0.65.
The conventional IoU methods and their variations thus show a high susceptibility to
the position deviation of these small targets, potentially causing a noticeable drop in the
performance of anchor-based detectors.
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To solve the above problem, this paper introduces the NWD loss function, which
models the bounding box as a two-dimensional Gaussian distribution and evaluates the
similarity between the bounding box and the actual bounding box by predicting their
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corresponding Gaussian distributions. The distribution similarity can be utilized to evaluate
whether the detected targets overlap or not. The normalized Wasserstein distance can be
formulated as

NWD(NA, NB) = exp

−

√
w2

2(NA, NB)

C

 (3)

where NA and NB are Gaussian distributions modeled by A = (cxA, cyA, wA, hA) and
B = (cxB, cyB, wA, hA), W2

2 (NA, NB) is the distance measure, C is a constant closely related
to the dataset. Since NWD is insensitive to the scale of the objects, it has an outstanding
advantage in measuring the similarity between small targets thrown from tall buildings.
The NWD loss is introduced into the regression loss function to make up for the deficiency
of the IoU loss in the detection process of small targets, and at the same time, the ratio of the
IoU to the NWD loss is adjusted to 8:2, as shown in Equation (4). The above improvements
to the loss function help improve the model’s detection performance for small objects
thrown from tall buildings.

Lossloc = IoUloss × 0.8 + NWDloss × 0.2 (4)

4. Experimental Results and Analysis
4.1. Dataset Construction

This paper collects a dataset of objects thrown from tall buildings using community
surveillance and selfie images. It encompasses six types of objects: cigarette butts, stones,
plastic bottles, cans, knives, and clothing. The dataset captures a wide range of community
scenes, various viewpoints, different weather conditions, and multiple throwing actions,
enhancing the model’s ability to generalize. Many data augmentation techniques—such as
level flipping, Gaussian blur, random translation, and affine transformation—are employed
to combat model overfitting during training. These techniques are randomly combined to
enrich the dataset. Figure 7 presents examples of the thrown object images. The dataset
includes 11,064 images, segmented into a training set with 6638 images, a validation set
with 2213 images, and a test set comprising 2213 images, following a 6:2:2 ratio. The image
count for each object type is 2561 for cigarette butts, 1047 for stones, 2410 for plastic bottles,
2310 for cans, 1230 for knives, and 1506 for clothing.
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4.2. Experimental Environment

In this experiment, Python is selected as the programming language, and the detection
model is built using the PyTorch [24] deep learning library. The operating system deployed
for conducting the experiments is CentOS 7.9, equipped with an Intel Xeon Silver 4210R
processor and an NVIDIA Quadro RTX 5000 GPU. Detailed configurations of the relevant
experimental parameters are provided in Table 1.
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Table 1. Experimental parameter settings.

Parameter Parameter Value

Batch size 8
Image size 640 × 640

Learning rate 0.01
Momentum 0.935

Attenuation coefficient 0.0004
Iteration rounds 100

4.3. Evaluating Indicator

In this experiment, the Mean Average Precision (mAP) is used as a criterion for
evaluating the recognition accuracy of the model. The mAP is closely related to the
accuracy (P) and recall (R) of the model [25], which is calculated as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

AP =
∫ 1

0
P(R)dR (7)

mAP =
1
C

C

∑
i=1

APi × 100% (8)

where TP is the number of positive samples predicted correctly, FP is the number of positive
samples mispredicted, and FN is the number of negative samples mispredicted. AP is
the integral of the P-R curve, and the area under the curve is the AP value. The mAP is
the metric obtained by averaging the average precision (AP) [26] across all categories; C
represents the number of categories.

To compare the real-time detection speeds of different models, this study adopts the
number of transmitted frames per second (FPS) as the performance evaluation index. With
the FPS metric, the detection speed of the models can be visualized, and then the real-time
detection performance of the models can be evaluated more accurately.

4.4. Model Training

YOLOv5 utilizes a K-means clustering algorithm to generate anchor frames automati-
cally based on a statistical analysis of different-sized targets in the training set. This study
uses stochastic gradient descent (SGD) as the optimizer and employs a cosine annealing
strategy to regulate the learning rate [27]. The same parametric strategy is adopted to train
the S-YOLOv5 model. As shown in Figure 8, the model performs better in training and
validation loss than the original YOLOv5, which reduces the training loss and validation
loss by 0.0062 and 0.0020, respectively.

By analyzing the accuracy curves at different scales, as shown in Figure 9, the S-YOLOv5
model outperforms the original model in terms of accuracy at multiple scales. With the im-
provement, P and R are improved by 1.4% and 0.86%, respectively. When the IOU threshold
is set to 0.5, mAP0.5 is improved by 0.8%. At different IOU threshold ranges (from 0.5 to 0.9),
mAP0.5:0.9 increased by 0.5%. The results demonstrate that the proposed lightweight im-
provement measures effectively enhance the detection performance of the YOLOv5 network,
enhancing the model’s accuracy in detecting objects thrown from tall buildings.
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Figure 9. The curve of model accuracy.

The confusion matrix is a two-dimensional matrix that expresses the relationship
between the model’s predicted categories and the actual label categories. The confusion
matrix shown in Figure 10 indicates that clothing detection achieved the highest accuracy
of 93%. Cigarette butts, stones, plastic bottles, cans, and knives were also all detected with
over 85% accuracy. The overall performance is relatively balanced. However, the fact that
most objects thrown from tall buildings are small and poorly characterized and are often
captured under conditions with complex backgrounds in natural environments results in
some objects thrown from tall buildings being misidentified.
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This study compares the performance of the improved S-YOLOv5s model with the
initial YOLOv5s model by evaluating it on the validation and test sets containing scenarios
of objects being thrown from tall buildings. According to Table 2, the S-YOLOv5s model
outperforms the original YOLOv5s in terms of precision (P), recall (R), and average precision
(AP). S-YOLOv5s improves P by 1.12% and 1.09%, R by 0.92% and 0.91%, and AP by 0.94%
and 0.92% on both the validation and the test sets. The experimental data show that the
improved algorithm enhances the model’s ability to accurately localize and recognize
objects thrown from tall buildings with improved accuracy.

Table 2. Performance comparison between S-YOLOv5 and YOLOv5 on test and validation sets.

Dataset Model P/% R/% mAP/%

val
YOLOv5 89.12 86.61 89.25

S-YOLOV5 90.24 87.53 90.19

test
YOLOv5 89.14 86.75 89.33

S-YOLOV5 90.23 87.66 90.25

4.5. Comparison Experiment

To validate the effectiveness of the proposed detection model in this study, a com-
parative analysis with five other detection models (Faster R-CNN [28], Efficientdet [29],
and YOLOv7-tiny [30], YOLOv5s) is conducted. All models use the same dataset of ob-
jects thrown from tall buildings with the same training and validation strategy, and the
experimental results are shown in Table 3.

Table 3. Comparative experiment.

Model Backbone
Network mAP/% Parameters/M FPS/S

Faster R-CNN ResNet50 89.9 108.9 2.7
SDD Vgg16 83.6 100.3 20.4

Efficientdet EfficientNet-B0 86.7 15.1 13.5
YOLOv7-tiny Darknet 89.1 6.2 22.8

YOLOv5s C3 89.4 13.7 20.9
S-YOLOv5 S-ESNet 90.2 1.74 34.1

Table 3 shows that the S-YOLOv5 model outperforms Faster R-CNN, SSD, EfficientDet,
YOLOv5, and YOLOv7-tiny regarding the mAP, number of parameters, and detection speed.
Compared to these models, S-YOLOv5 improves on AP by 0.3%, 6.6%, 3.5%, 1.1%, and
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0.8%. Although Faster R-CNN performs well in terms of accuracy as a two-stage model,
its large number of parameters results in a low detection speed of 2.7 Fps/s, which is
unsuitable for community security applications requiring real-time detection. While the
single-stage model improves the speed, it cannot match Faster R-CNN in terms of accuracy.
In contrast, the optimized S-YOLOv5 model increases the detection speed to 34.1 Fps/s
while maintaining a high accuracy of 90.2%.

This study’s proposed S-YOLOv5 model demonstrates excellent performance in stan-
dard reviews. The model is based on the YOLOv5 algorithm, which employs a lightweight
ESNet convolutional neural network as the core network to enhance the feature extraction
efficacy. S-YOLOv5 enhances the initial stage of the core network and incorporates the
SimAM attention mechanism, which enables the model to mine the rich location and con-
tour information of the shallow feature maps more efficiently, and therefore improves the
detection of small targets with better accuracy. In the feature integration module, this paper
achieves the efficient integration of features by cleverly designing SCPANet and using
SCConv. This innovative strategy can effectively improve the target detection efficiency.
Meanwhile, a novel NWD loss function is also incorporated into the study to minimize
the impact on the localization error, improving the detection accuracy. The results of the
model detecting objects thrown from tall buildings are shown in Figure 11, which show it
can effectively recognize cigarette butts, stones, plastic bottles, cans, knives, and clothes.
In conclusion, the S-YOLOv5 model proposed in this paper can accurately and quickly
recognize objects thrown from tall buildings and meet the real-time detection requirements.
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4.6. Ablation Experiment

To verify the performance improvement caused by the improvements in the S-YOLOv5
model to the original network model, three improvement methods, namely, S-ESNet
backbone network, SCPANet module, and NWD loss function, are sequentially added to
the original network model. Ablation experiments are carried out with the same dataset
and training strategy, and the results of the experiments are shown in Table 4.

Table 4. Comparative experiment.

Model S-ESNet NWD Loss SCPANet mAP/% Parameter/M FPS/S

Original
model 89.4 13.7 20.9

Exp1
√

88.8 2.08 32.6
Exp 2

√ √
90.5 - 30.6

Exp3
√ √ √

90.2 1.74 34.1

Experiment I uses the S-ESNet network to lighten and improve the original backbone
network by enhancing its early features and introducing SimAM. Although the replacement
model has a 0.6% decrease in the average accuracy relative to the YOLOv5 model, the
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parameters are reduced by 84.8%, and the detection speed is improved by 55.9%. This
indicates that Experiment I successfully improved the running speed of the model at
the expense of a small amount of accuracy. Experiment II introduces NWD loss on top
of Experiment I. Although the model’s speed decreases slightly, the average accuracy
improves by 1.7% compared to Experiment I. This is mainly because NWD loss helps
improve the model’s accuracy. This is mainly because NWD loss helps to mitigate the
sensitivity to the deviation in the position of objects thrown from tall buildings during
detection. Experiment III introduces the SCPANet necking network based on Experiment
II to improve the real-time detection speed of the model, which improves the detection
speed by 11.4% compared to Experiment II. However, a small amount of accuracy needs
to be sacrificed. This paper explores three step-by-step improvement strategies to achieve
better target detection performance by maintaining high accuracy while lightweighting
the model.

5. Conclusions

In this paper, a new lightweight detection algorithm for objects thrown from tall
buildings named S-YOLOv5 is proposed by systematically analyzing the influencing factors
of lightweight algorithms on the accuracy of the detection of objects thrown from tall
buildings. To cope with the problem of the slow running speed of the detection model and
the difficulty of adapting to lightweight deployment in communities, this paper designs
a new backbone network, S-ESNet. It introduces the SCPANet neck network, which
significantly improves the detection speed. This paper adopts several strategies to address
the problem that objects thrown from tall buildings are small and difficult to detect. In
the first strategy, the shallow feature information of objects thrown from tall buildings
is preserved by enhancing the early features of the backbone network and introducing
SimAM. Secondly, NWD loss is introduced to effectively reduce the sensitivity to the
positional deviation of the IoU of the detection targets of objects thrown from tall buildings,
improving the model’s convergence speed and detection accuracy. The experimental results
show that the S-YOLOv5 algorithm is better than YOLOv5 in detecting objects thrown
from tall buildings. At the same time, more accurate feature recognition and detection
performance can be achieved for small objects thrown from tall buildings. However, there
are some shortcomings in this study. Due to the single relatively limited dataset sample,
it may be complex for the algorithm to accurately capture the exact data of small targets
in the images of objects thrown from tall buildings, resulting in a possible reduction in
the model detection accuracy. To improve model performance, future research needs to
focus on accumulating more diverse and challenging non-cooperative sample data and
redesigning the network structure to reduce the over-reliance on data size.
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Abbreviations

Definition Abbreviation
ESNet Enhanced ShuffleNet
SimAM simplified attention module
SCPANet sparsely connected Path Aggregation Network
SCConv sparsely connected convolution
PANet Path Aggregation Network
NWD normalized Wasserstein distance
IoU Intersection over Union
SE Squeeze-and-Excitation
BiFPN help of Bidirectional Feature Pyramid Network
CBAM convolution block attention model
MoSA Mobile Self-Attention
MoFFN Mobile Feed Forward Network
CHB Convolution, Batch Normalization, and Hardswish Activation
DWConv channel-by-channel convolution
PWGConv point-by-point grouping convolution
P precision
R recall
AP average precision
mAP Mean Average Precision
SGD stochastic gradient descent
FPS frames per second
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