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Abstract: In viticulture, downy mildew is one of the most common diseases that, if not adequately
treated, can diminish production yield. However, the uncontrolled use of pesticides to alleviate
its occurrence can pose significant risks for farmers, consumers, and the environment. This paper
presents a new framework for the early detection and estimation of the mildew’s appearance in
viticulture fields. The framework utilizes a protocol for the real-time acquisition of drones’ high-
resolution RGB images and a cloud-docker-based video or image inference process using object
detection CNN models. The authors implemented their framework proposition using open-source
tools and experimented with their proposed implementation on the debina grape variety in Zitsa,
Greece, during downy mildew outbursts. The authors present evaluation results of deep learning
Faster R-CNN object detection models trained on their downy mildew annotated dataset, using the
different object classifiers of VGG16, ViTDet, MobileNetV3, EfficientNet, SqueezeNet, and ResNet.
The authors compare Faster R-CNN and YOLO object detectors in terms of accuracy and speed.
From their experimentation, the embedded device model ViTDet showed the worst accuracy results
compared to the fast inferences of YOLOv8, while MobileNetV3 significantly outperformed YOLOv8
in terms of both accuracy and speed. Regarding cloud inferences, large ResNet models performed well
in terms of accuracy, while YOLOv5 faster inferences presented significant object classification losses.

Keywords: precision viticulture; agriculture 4.0; computer vision; deep learning; distributed systems
object detection; downy mildew

1. Introduction

Over the last decade, several deep learning models have been developed to help
viticulturists detect abiotic stressful conditions and assist them in their interventions. Using
IoT sensory inputs and deep learning model inferences to provide alerts and indications
has led to accurate farmer practices rangingfrom microclimate to vine level. In this way,
precision viticulture transformed from a stationary, long-range environment monitoring
tool to a georeferenced dense sensory grid of batched inputs and localized deep learning
processes [1]. Such processes, enhanced with digital twins, will further augment farming
practices and predictive interventions [2].

Viticulture 4.0 deep learning models target mostly sustainable grapevine growth, offer-
ing precise time planning, precise viticulture suggestions, and farming interventions. Their
outputs are not deterministically calculated but trained using a time series of annotated
features. Models utilizing dense data inputs provided by real-time or close to real-time
measurements are needed to achieve better-than-best-effort plant-level detections and

Information 2024, 15, 178. https://doi.org/10.3390/info15040178 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15040178
https://doi.org/10.3390/info15040178
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-1360-3367
https://orcid.org/0000-0001-8736-017X
https://orcid.org/0000-0003-0081-2052
https://orcid.org/0000-0002-1695-8999
https://doi.org/10.3390/info15040178
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15040178?type=check_update&version=2


Information 2024, 15, 178 2 of 22

forecasts. Such types of models are becoming deeper with respect to training parameters
and require significantly denser and more frequent data collection to provide accurate
results. Model data inputs, outputs, and trainable hyperparameters should be simplified
to make the measurements, data transformation, and training processes easy to apply as
repetitive autoencoding or labeling processes that can provide a set of different models and,
therefore, inferences of various types of forecasts under different environmental conditions
and prerequisites. This paper focuses on detecting the commonly known infection of
downy mildew in viticulture, whose proportional growth due to climate change, that is,
due to the catastrophic productivity losses of its appearance, affects farming resilience
and sustainability.

Downy mildew (Plasmopara viticola) is a fungus that attacks Vitis vinifera mostly during the
spring when plants are in their most stressful developing stages. Two important environmental
parameters influence downy mildew’s growth with destructive imminent effects on grapes.
These are temperatures between 13 °C and 28 °C and increased humidity levels [3,4]. The
fungus usually overwinters its oospores, which mature in spring. Oospore maturation
starts with mild and rainy conditions in mid-April or the first days of May. Then, they are
transformed into sporangia germinations, which incubate zoospores during wet periods,
spread by wind or rain splashes to nearby leaves or berries [3,5]. As the disease evolves by
releasing zoospores, it rapidly transforms into visible spot lesions that usually appear as a
brownish area spreading on the infected leaf tissue. In the secondary downy mildew infection
cycles, the fungus initiates asexual reproduction, producing new sporangiophores, and the
released zoospores cause new oil spots to emerge in the nearby leaves [4–6]. Usually, the
zoospores reach the berries in the second or third secondary infection cycle, giving them a
whitish appearance [5,6]. This repetitive infectious cycle typically lasts 5–7 up to 18 days,
depending on the environmental conditions [5,6].

Hyperspectral imaging (HSI), acquired from handheld cameras or HSI image acquisi-
tion from drones, can provide detailed color information for vine fungal diseases [7]. The
imaging spans at 400–800 nm bands are set for plant activity monitoring by calculating nor-
malized vegetation coefficients, crucial in environmental remote sensing [8]. Furthermore,
reflectance differences between 470 nm and 700 nm frequency bands can easily distinguish
and extract vine leaf contours [8]. As also mentioned by Lacotte et al. [9], reflectance
differences combined with the use of support vector machines (SVMs) can distinguish
downy mildew spots on symptomatic leaves in the bands of 500–700 nm and 800–1000 nm.
Moreover, Pithan et al. [10] mentioned that 443 nm over 1900 nm ratios could be a help-
ful indicator since spectral changes of more than 14% were observed in downy mildew
occurrences. Regardless of the HSI’s hopeful results, installation problems have arisen. The
problem with handheld cameras’ HSI imaging is the increased camera costs. The same
applies to HSI surveillance drones, with the additional problem of automatic elevation
path planning close to the vines due to the lack of less-than-meter-altitude resolutions [11].

Focusing on the use of RGB cameras for lower deployment costs, combined with the
rapid evolution of object classification and object localization deep learning models, makes
their use one of the most low-cost applicable methods for precision viticulture and detection
of downy mildew appearances. Towards downy mildew detections from RGB images,
probabilistic color segmentation techniques may apply as mentioned in [12], where downy
mildew contours can be identified by modeling mildew cases using classes of multivariate
colorimetric Gaussian distributions. As mentioned in [13], the use of static RGB cameras
placed on vine fields that utilize deep learning object detection models in real-time or close
to real-time intervals can detect abiotic stress signs on vine leaves similar to hyperspectral
camera devices. Moreover, RGB high-resolution images taken by mobile or fixed-location
cameras or low-altitude flying drones (flying 3–5 m above vine clusters) can be used by
deep learning object detection models, offering downy mildew detections as mentioned by
Zhang et al. [14], that is, to identify if vine leaves with or without oil spot contour areas
exist in a given image (object localization), using datasets of annotated downy mildew leaf
images for model training.
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Regarding object detection, models of convolution processes applied to proposed re-
gion image areas in order to generate feature maps are called Region-CNNs. R-CNN models
achieved significant precision scores concerning older OverFeat models [15,16]. Addition-
ally, R-CNN algorithms’ improvements of Fast and Faster R-CNN, which cause changes
to their localization and the feature extraction part of their Region Proposal Network al-
gorithm [17,18] as well as their inherited capability to interchange classification methods
for their classification tasks, make them better and deeper appliance cases than single-
object-entity and fixed-input image-size classifiers such as AlexNet [19], VGGNet [20,21],
ResNet [22], and Inception [23,24], that is, classifiers that have already scored the top
five accuracy scores in the Imagenet dataset [25]. Different Faster R-CNN models can be
implemented using different classification engines of ResNet, VGG, and AlexNet as well
compact AlexNet improvements, called SqueezeNets [26]. Additionally, EfficientNets of
uniformly scaled width–depth layers [27] or even embedded-device targeted models can be
used. Such models are MobileNetV3 models of various sizes that target mobile devices with
their block and layerwise search mechanisms [28,29] and Facebook ViTDet classification
models of nonhierarchical Vision Transformers [30].

On the other hand, You Only Look Once (YOLO) models [31] offer an alternative
object detection approach to Faster R-CNN models and can perform the same base tasks on
images (localization, classification) with the difference that localization is achieved by grid
partitioning, grid intersection techniques, and the use of anchor boxes to detect multiple
objects in one grid cell. In YOLO models, object classification is performed for each grid
cell, and Non Maximum Suppression (NMS) is used to unify common features. YOLO
models aim for object detection at real-time speed as a replacement for SSD detectors [32].
Unlike the two-stage Faster R-CNN detectors, YOLO processes the entire image in a single
Convolutional Neural Network forward pass. The most successful YOLO models are
YOLOv3, which uses the DarkNet-53 classifier [33,34]; YOLOv5 [35]; and YOLOv8, which
utilizes the RTMDet CNN empirical layer structure [36]. As already mentioned, Single
Shot Detectors (SSDs) cope with the same basic principles as YOLO models, such as the
one-pass detection using the VGG-16 classifier, as their classification backbone. In general,
an SSD is a faster inference model than YOLOv3 but lacks significant precision accuracy
and implementation speed compared to recent YOLOv5 and v8 improvements [37].

Few existing system propositions exist in the literature that use deep learning models
based on RGB image data inputs to detect downy mildew occurrences. Kontogiannis
et al. at [13] constructed a panoramic triple-RGB camera node for data acquisition of
vine images and presented their CNN framework and experimentation for vine abiotic
water-stress cases only. Similarly, Garcia et al. [38] proposed moving robotic platforms
equipped with RGB cameras for natural vine image acquisition. They also compared
several semantic segmentation architectures, showing that the DeepLabv3+ model [39],
with ResNet-50 CNN, that included a classifier, achieved the best accuracy results at close
to 85% in detecting vine bunches and leaves.

Hernandez et al. [40] proposed a manual data acquisition process of RGB and hyper-
spectral camera images under laboratory conditions. Their proposed framework includes
image processing for the process of disease severity estimation only by using HLS (hue,
lightness, saturation), histogram equalization for classification, and Hough transformations
for fungus locality area detection.

Boulent et al. [41] proposed a downy mildew ResNet-18 network using RGB im-
ages to detect downy mildew with 95.48% mAP0.5 accuracy with unclear imagery data
acquisition processes.

Zhang et al. [14] proposed a system that utilizes field cameras for the process of image
acquisition, using a 30 cm distance between the camera lens and the grape leaves. They
also proposed a modified YOLOv5 model. Their proposition achieved 89.55% mAP0.5
accuracy with 58.82 FPS. Nevertheless, their proposed data acquisition process is manually
performed. Finally, Zendler et al. [42] experimented with shallow CNNs to detect downy
mildew under controlled laboratory conditions, taking and annotating RGB images of leaf
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discs of regular and downy mildew-exposed leaves. Their experimentation used custom
shallow CNNs, achieving a mean precision of 89–99%.

Focusing on detecting downy mildew in viticulture, this paper proposes a new frame-
work supported by a system implementation for acquiring image and video stream data
from drones and plant-level monitoring cameras. The architecture that supports the frame-
work proposition includes the Hadoop Distributed File System as the image data storage
engine backend [43,44], the open source ThingsBoard platform [45] for data acquisition and
visualization, and deep training agents supported by real-time or on-demand services for
object detection inferences. Object detection services and inference stream engines reside in
separate docker containers [46].

2. Materials and Methods

In this section, the authors present their framework proposition and the system sup-
porting their framework guidelines for the process of downy mildew detection.

2.1. Proposed Object Detection Framework

The authors propose a framework that uses vine-field RGB cameras as data inputs
and tries to detect downy mildew or other vine diseases or viticulture stress caused by
extreme environmental conditions at the vine level, similar to their thingsAI implementa-
tion [47], by utilizing RGB image data and deep learning object detection models. Their
proposition was initially presented at [13] and modified accordingly to support periodic
image and real-time video stream inferences. Figure 1 illustrates the authors’ proposed
object detection framework.

Figure 1. Proposed object detection framework inputs, outputs, and steps.

The proposed detection framework takes RGB data images of vines as input. It com-
prises four processing phases, each requiring the previous one to have been completed
prior to execution. The outputs of each processing phase are inputs for the next, and
so forth. This constitutes a chain of independent processing steps that may stop at one
level without further processing, providing specific data or metadata outputs. The first
phase is the data filtering/data selection process. Normalized image datasets based on
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specific criteria, features, rules, or time frames are the output of this step. Usually, metadata
information is added to the normalized datasets. The second phase includes data partition-
ing based on unsupervised autoencoders or supervised data annotation or classification
tasks. The outputs of phase 2 are the normalized data with the corresponding metadata
localization information.

Phase 3 is the model training process. It constructs and produces trained models
of complex deep-layer structures, with parameters and biases calibrated via forward
and backward operations. The outputs of the training process are models with the best
precision—recall scores achieved over a set of iterations of hyperparameter calibration.
Finally, phase 4 includes the inference process that loads model structures and parameter
values and performs object detections on RGB images or video streams. Object detection
outcomes and confidence scores are data inputs for decision support metrics or thresholds
that trigger notifications for interventions and alerts for farmers.

The authors’ proposed detection framework functionality has been system-level im-
plemented and is presented by the authors in Section 2.2.

2.2. Proposed High-Level System Architecture Incorporating the Framework

The proposed system architecture that supports the authors’ framework is presented
in Figure 2 and includes two arbitrary sources of data acquisition: (1) from the IoT Wi-Fi
camera-equipped devices that periodically upload images to the cloud, and (2) from drones
with high-resolution cameras that can be set to automatic or semiautomatic path-planned
routes and real-time upload image bursts or that can even store short-interval video streams
and upload based on an upload-timeout set parameter.

Figure 2. Proposed high-level system architecture that supports the object detection framework process.

The IoT node devices are illustrated in Figure 3a. Each device includes an AI-thinker
ESP32 dual-core module of a 240 MHz Espressif, Shanghai, China, Tensilica LX6 32bit ARM
core (see Figure 3a (1)), with 512 KB of RAM and 4 MB of PSRAM. An OmniVision OV2640
2MPixel camera is connected to each IoT device. The OV2640 module can capture images
of a maximum size of 1600 × 1200 px. The IoT device also has embedded 2.4 GHz Wi-Fi
and Bluetooth 4.2 modules. The IoT device is powered via a 4.2 V 18650 battery pack (see
Figure 3a (3)) via a 12 to 3.3 V step-down converter (see Figure 3a (2)), and its battery is
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directly powered by a 6 V solar panel (see Figure 3a (4)). Each IoT node device operates
autonomously using a 3200 mAh 18650 battery and a 2 W/6 V attached panel.

The Wi-Fi-LTE access point (see Figure 2 (2)) includes a Teltonika RUT-240 Wi-Fi access
point to LTE gateway device directly powered by a 12 V/100 Ah battery. An 80 W/12 V
photovoltaic panel continuously charges the battery via a PWM 12 V charge controller. On
the Wi-Fi antenna of the access point device, an additional module of a 2 W/12 V powered
signal amplifier is used to boost the 2.4 GHz Wi-Fi signal up to a 2 km coverage range.

(a) (b)

(c) (d)
Figure 3. IoT plant-level monitoring camera nodes, ThingsBoard dashboard, and normal and mildew-
infected leaf inferences using different Faster R-CNN models. (a) IoT plant-level autonomous camera
nodes and their corresponding parts (1)–(4). (b) IoT plant-level monitoring ThingsBoard dashboard.
(c) IoT plant-level inferences using the MobileNetV3 model. (d) IoT plant-level inferences using the
ResNet-50 model.

The access point board is also connected to a 3G/4G dongle for data uploads to the
system’s cloud application services (see Figure 2 (7)). The access point device can cover
areas of at least 1–2 km using unidirectional 4–7 dBi antennas and appropriate power-
boosting low-noise broadband amplifier circuitry. This increases the coverage radius using
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a single connection point for signals at 2400–2500 MHz of 7–15 dBm input signal range,
thus minimizing maintenance and communication provider costs.

The IoT devices connect to a nearby Wi-Fi access point for cloud imagery data
uplinks. The IoT devices are periodically activated using a fixed deep-sleep period of
1–6 h. Upon waking, each IoT uploads captured images by performing HTTP POST up-
links, as illustrated in Figure 2. Moreover, the IoT camera device operates as follows: Once
the IoT devices have access point connectivity, they request network time information
from the internet Network Time Protocol (NTP) service providers to update their internal
system clock. Then, if day hours are detected, the camera module initializes, and the image
is captured and stored in the device’s PSRAM. Then, the data are JPEG-compressed and
uploaded to the ThingsBoard AS [45] data collector service, using HTTP multipart POSTS
of base64 content. Every IoT device has a unique device ID token (UID) for data collector
service authentication and image upload. Upon upload completion, the files are stored in
the Hadoop file storage cluster, and the appropriate dashboard panel encodes the uploaded
base64 file streams to a ThingsBoard dashboard HTML image illustration, as shown in
Figure 3b, for visualization purposes.

Similar to ground monitoring IoT camera devices, aerial surveying drones can operate
using two different modes: (A) capturing and uploading still images with geolocation
information included, acquired by the drone’s GPS receiver, and (B) capturing h.264 video
streams transcoded to MOV files with embedded GPS metadata. Both still images and
video streams can be directly uploaded to the data collector service using HTTP multipart
POST requests. The video streams are of fixed size lengths up to 100 MB to avoid HTTP
timeouts. Each video stream HTTP POST uplink is accompanied by drone timestamps
and UID information as JSON metadata of the HTTP multipart request. The data collector
service can use that as incoming HTTP POST requests’ identification information.

Drone flights must maintain close distances to the vines at the z axis, no more than
3–4 m above them, to have high-resolution leaf imagery data similar to the ones received
by the IoT camera nodes. Nevertheless, since altitude offsets provided by APIs are of
20–30 m accuracy in the area of Eastern Europe [11], drones cannot automatically main-
tain the required minimum z-axis height without human intervention and manual flight
corrections. In order to provide automated drone processes at low-altitude passes, the pro-
posed framework sets the following requirements that need to be fulfilled in the surveyed
area [48]:

1. Aerial LiDaR mapping needs to be performed in the surveyed field area using UAVs
as a preprocessing step to create a 3D survey representation. LiDaR instruments can
measure the Earth’s surface at sampling pulse rates greater than 200 KHz, offering a
point cloud of highly accurate georeferenced elevation points.

2. UAVs’ aerial RTK GPS receivers that receive the RTCM correction stream must be
utilized. Then, point locations with 1–3 cm accuracy in real time (nominal) must be
provided to georeferenced maps or APIs.

3. The fundamental vertical accuracy (FVA) of the open data areas measured must be at
a high confidence level above 92%.

4. The absolute point altitude accuracies of the acquired LiDaR system elevation points
must be in the range of 10–20 cm to offer drone flights close to the vines.

5. UAV mappings of vegetation areas need to be performed with the concurrent uti-
lization of multispectral cameras in the near-infrared band of 750–830 nm so as to
detect and exclude non viticulture areas of low or high refractivity by performing post
processing NDVI metric calculations [49] on map layers.

6. Using EU-DEM [11] as a base altitude reference, appropriate altitude corrections must
be made to the GIS path-planning map grid. Then, the surveying drones need to
perform periodic HTTP requests to acquire sampling altitude corrections. If viticulture
fields’ surface altitude variances are no more than 0.5–1 m in grid surface areas of
at least 1–5 km, then with the exception of dense plantation areas (such as forests,
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provided by NDVI measurements), the altitude values can be set as a fixed vertical
parameter value of drone altitude offset for the specific survey areas.

Following the above guidelines, we may offer automated drone low-altitude image
acquisition based on predefined path plans on map layers.

The data collector service implements phase 1 of our proposed framework. It is a
standalone HTTP service based on the HTTP Python3 uploadserver module. This service
is instantiated on a custom docker container created by the authors [46], where the Things-
Board AS also resides. The data collector accepts still images or video stream uploads.
Then, based on the device UID and date–time information, it forwards the image data to
both the ThingsBoard AS for visualization purposes (see Figure 3b) and the distributed
Hadoop file storage cluster via its master node [43,44].

The phase 2 framework data annotation process is performed using AI containers (see
Figure 2 (6)). AI containers responsible for data annotation are the AI client containers, that
is, custom dockerized Linux boxes [46] with remote X-server access and direct access to
the HDFS file system (see Figure 2 (5)). The annotation process is supervised remotely by
experts using appropriate annotation tools [50]. After image annotation, the images are
appropriately resized for model training processes. Annotated box coordinates stored in
XML files are automatically extracted and corrected for any image size given or selected
during training. Upon image object-class annotation, the client AI containers execute phase
3 model training tasks. The final trained models are also stored in the HDFS file system.

Inference AI clusters perform phase 4 framework inferences. Such clusters instantiate
agents that download the previously trained object detection models using the method
GET on the HTTP-HDFS service [51] of the DB cluster so as to perform object inference
processes on either uploaded images or video streams. Then, upon detection inference
completion, they upload the new images with the inference boxes to the ThingsBoard
AS [45] by performing HTTP POST requests or delivering the real-time inference-annotated
video stream via RTSP/RTP streams (see Figure 4c) with the use of the GStreamer API [52].

Finally, the ThingsBoard platform [45] can be used for detection visualization (see
Figure 3c,d); for GPS drone path-plan visualization (see Figure 4b) taken from the images’
EXIF metadata information [53]; and to issue alerts or notifications based on AI container
inferences and inferred metadata over Slack, SMS, email, or other external push notification
services. The following Section 3 presents the authors’ experimentation of their imple-
mented system for detecting downy mildew and evaluating different YOLO and Faster
R-CNN models.

(a) (b)
Figure 4. Cont.
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(c)
Figure 4. IoT plant-level monitoring camera devices, ThingsBoard dashboard drone GPS locations
acquired from image metadata, and normal and mildew-infected leaf inferences using object detection
models on image streams. (a) IoT plant-level monitored viticulture field using drones. (b) Drone GPS
locations from captured image EXIF metadata [53], as illustrated in ThingsBoard. (c) IoT plant-level
video stream inferences using YOLOv5-small model.

3. Experimental Scenario

The authors experimented in their debina variety viticulture field in Zitsa, Epirus,
Greece, as illustrated in Figure 4b. The experimental setup included the installation of ten
vine-field IoT camera devices, as illustrated in Figure 3a, in the middle of every second row
in the viticulture field at a distance of 40–60 cm from the vine leaves.

The IoT camera nodes forwarded field images to the ThingsBoard cloud platform
container. Each IoT device’s 2MPixel camera could capture hourly 1024 × 768 px, 810 KB
frame buffer images during daytime, compressed to 190–230 KB JPEG images and uploaded
to the ThingsBoard platform using base64 HTTP POSTS. The experiment was performed
from May to August 2023.

Furthermore, weekly images were captured from June–July 2023 using a DJI Mavic 3
Pro drone equipped with a GPS receiver and a 20MPixel camera, as illustrated in Figure 4a,
capable of capturing 3264 × 2448 px images of 7 MB JPEG compressed image size every
2 s, as well video records. GPS information was included in each image as EXIF location
metadata during drone vine passes [53]. Figure 4b illustrates the geolocation metadata
latitude and longitude EXIF image values of a drone pass acquiring 240 images, using the
Python3-exif package and the ThingsBoard platform’s Google Maps module. Figure 4c
illustrates the drone image inference result using the YOLOv5 model, while Figure 5(1,2)
illustrate the image inference results of ResNet-50 and ResNet-152 model implementations,
accordingly [54].

For the year 2023, a downy mildew outburst occurred due to increased levels of rainfall,
specifically in May and June. The authors performed no downy mildew interventions,
closely monitored the disease’s secondary infection cycles’ progress, and collected photos
from the ground-based cameras and drones. The first infections became apparent with a
small number of sporangia incubating at the backs of some leaves on 1st of June. What
followed was a catastrophic collapse. At least one oil spot/tree appeared by 12 June, the
first signs of the disease on the fruit appeared by 20 June, and by 30 June, the whole fruit
had reached necrosis, with most of the leaves/vines having oil spots all over. The resulting
productivity collapse for the year 2023 characterizes these conditions as a significant mildew
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outburst case. In addition, 2023 has been described as a year of mildew outbursts in Zitsa,
in which most nearby farmers did not manage to maintain their vine yield. A few that did
were forced to perform seven to eight interventions from May until the end of August to
save 70–80% of their production, while farmers that performed five to seven interventions
managed to save 30–50% of their vine production, accordingly.

Figure 5. IoT plant-level video stream inferences using (1) ResNet-50 and (2) ResNet-152 models.

The authors collected a dataset containing a total number of 6800 photos from drones
and ground-field cameras. Then, part of the dataset was leaf-annotated using the labeling
tool [50], and the images were resized accordingly based on the sizes mentioned in Table 1
for each experimentation model class. For this experimental scenario, 1200 images were
annotated with at least 7–10 annotations/image using two classes: normal class leaves
and leaves or leaf parts containing mildew oil spots or deformations. A total number of
around 9800 labeled bounding boxes were labeled. The annotations were saved in PASCAL
VOC XML used by Faster R-CNN models and YOLO JSON formats using the Roboflow
annotations transformation tools [55]. PyTorch torchvision was used to train the Faster
R-CNN models [56], and the Ultralytics platform and Python API were used to train the
YOLO models [57].

The experimentally trained models were divided into two model classes that were sep-
arately examined: (1) the cloud-based object detectors class, and (2) the device-embedded
detectors class. The distinctive point among the two classes was the model size that needs
to be memory-resident for each detection. Cloud-based detector model sizes are above
100 MB and can provide as a service from 1 second/frame up to 30 seconds/frame of
concurrent image detection inferences using cloud host virtual machines of at least 16-core
ARM-based Ampere A1 cores and 16 GB of RAM [58]. On the other hand, embedded de-
tectors are device-level instantiated inferences in mobile phones or embedded IoT devices
that are usually small-sized models of less than 100 MB so that the model can load in the
device-restricted memory resources (from 256 MB up to 4 GB of allowed maximum process
memory and four to eight ARM cores available). Table 1 shows each trained model used
and the weight parameters’ storage sizes for these two distinct classes.



Information 2024, 15, 178 11 of 22

Table 1. Trained models’ input sizes, number of trainable parameters, and estimated model sizes.
The table is horizontally line-split into two parts. The first part includes models with many trainable
parameters (size > 100 M) used for cloud inferences. The second part includes models used by
embedded devices or mobile phone applications.

Trained Model
JPEG Compressed
Image Input Sizes

(W × H, MB)

No Trainable
Parameters

Estimated Model
Sizes (MB)

ResNet-152 (640 × 640, 0.49) 199,874,714 980
ResNet-101 (640 × 640, 0.49) 184,231,066 704

YOLOv3-Darknet (640 × 640, 0.49) 84,364,442 338.5
EfficientNet-b0 (640 × 640, 0.49) 84,141,782 337

FRCNN-VGG16 (640 × 640, 0.49) 43,877,530 168
ResNet-50 (640 × 640, 0.49) 41,304,286 159

YOLOv5-small (YOLOv5s) (640 × 640, 0.49) 7,468,160 101.5

SqueezeNet (4128 × 4128, 3.6) 29,876,890 98
ViTDet-tiny (4128 × 4128, 3.6) 22,786,382 87

MobileNetV3 (4128 × 4128, 3.6) 18,935,354 73
YOLOv8-nano (YOLOv8n) (4128 × 4128, 3.6) 3,151,904 29.8

Evaluation Metrics

This experimentation uses the mean average precision and loss evaluation metrics for
model evaluation. Object detection inferences output bounding boxes of detected contours
of objects with their corresponding confidence class level values. The models perform two
main tasks on the generated image feature maps. The classification task that checks whether
a detected object exists in the image, using the maximum class probability to denote the
detected confidence level provided by the location of the detected object’s bounding box
concerning the ground-truth annotation, is calculated by the intersection over union (IoU)
metric as a locality parameter. The IoU metric is calculated based on Equation (1).

IOU =
area(Ap ∩ AGT)

area(Ap ∪ AGT)
(1)

where Ap is the detected bounding box area and AGT is the annotated leaves ground-truth
area (area of overlap over the detected boxes). Using the IoU threshold value of 0.5 to
denote true-positive inferences, the mean average precision (mAP) value is calculated per
test image using all points’ (object detection indices i = 1 . . . n of m classes) interpolation
calculation as derived from Equation (2) [59].

mAPα=0.5 =
1
m

m

∑
c=1

n

∑
i
(ri+1 − ri)Pintp(ri+1) =

1
m

m

∑
c=1

n

∑
i
(ri+1 − ri) max

r′ :r′≥ri+1
P(r′) (2)

where α = 0.5 is the level threshold, Pintp is the interpolated precision value for a detection
calculated as P = TP

TP+FP = TP
all detections , r is the recall value for a detection calculated as

r = TP
TP+FN = TP

all ground truths , P(r′) is precision measured at recall r′, m is the number of the
object detection classes, and i = 1. . .n is the index of the detected boxes. Three types of
losses are commonly considered: train box, classification, and object loss. Train box loss is
the mean squared error bounding box regression loss; the confidence of objects’ presence is
the object loss; and classification loss is the cross-entropy loss.

The train box loss represents how well the algorithm can locate an actual object by
measuring how much the predicted bounding box is misplaced over a ground-truth object
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by calculating the mean sum of the n detected true-positive and false-positive IoU values
based on Equation (3).

LossTB =
1

TPb + FPb

n

∑
i
(1 − IoUi +

p2 d|bp, bgt|
λ2 ) (3)

where d|bp, bgt| is the distance of the central points of predicted and actual boxes, p is the
predicted maximum value, and λ represents the diagonal length of the smallest enclosing
box covering the two boxes [60].

The object loss is expressed by Equation (4). It is defined as the ratio of the absolute
difference between the number of annotated image objects N minus the true-positive detec-
tions m expressed by confidence scores over the annotated objects, where the confidence
score Csi of the i detected object is expressed by the probability that the i anchor box
contains an object.

LossOBJ =

|N −
m

∑
i=1

Csi|

N
(4)

Classification loss is the cross-entropy on the object prediction probability vector
calculated using Equation (5)

LossCLS = −∑
x

p(x) · ln(q(x; θ)) = −ln(q(Ci; θ)) (5)

where p is the ground-truth classification probability vector of an image object detection
x, q is the detected probability vector values of x, q(Ci) is the detection vector probability
value of the ground-truth maximum likelihood class Ci, and i = 1 . . . n is the number of
distinct classes. The use of either log2 or ln in Equation (5) is arbitrary depending on the
loss measurement unit (bits or nats). Parameter θ expresses the hyperparameter values
used by the model.

Table 1 shows the examined models, trainable parameters, and sizes. Figure 6 illustrates
the labelImg tool [50] annotation tasks, using images acquired by either (a) the IoT devices
or (b) drones. The dataset images were obtained in May–July 2023 during a downy mildew
outburst in Zitsa, Greece. The annotated dataset was split 20–80% as validation and training
sets. An additional 300 images (1200 + 300) were kept separate for the models’ testing. Part
of the IoT nodes annotated dataset is available online at [61]. The selected images for either
training or inference from the IoT nodes and drones were collected during midday hours of
minimum cloudiness (cloud coverage up to 40%) and wind speeds of less than 5 km/h. After
image annotation, these IoT node images were used along with the captured drone images,
which were resized to 4128 × 4128 px or 640 × 640 px during model training. During training,
the annotated box coordinates stored in XML files were automatically extracted and corrected
for any image size given or selected.

The models’ evaluation was performed using the following methodology. First, a
model class distinction was performed based on the stored model size in MB. The large
models with sizes above 100 MB were placed in the cloud-based models class. Cloud-based
models usually reside in cloud services, offering inferences as a service. These models have
many trainable parameters and a small image input size to decrease inference processing
time latencies, thus improving interactivity. On the other hand, the embedded models class
of less than 100 MB model sizes can load on mobile devices for edge computing inferences.
Such models have been trained to use the maximum image sizes captured by drone and
IoT cameras. In these models, we tried to retain as much information as possible since
the embedded devices can afford some extra processing efforts due to their small model
sizes. When input images share a comparable set of features, their matching accuracy is
substantially increased, while the reduction in image size facilitates faster processing but
may compromise accuracy. So, the images of bigger sizes are set as a trade-off for the small



Information 2024, 15, 178 13 of 22

number of model parameters that affect model accuracy results. Cloud and embedded
models are evaluated separately; the results are presented in Section 4.

(a)

(b)

Figure 6. Annotation process using LabelImg tool on (a) IoT camera nodes and (b) drone acquired
images. Two distinct annotation classes were used for normal and downy mildew-infected leaves.

According to Table 1, ResNet-152 and YOLOv5-small (YOLOv5s) were the biggest and
smallest cloud models, accordingly. SqueezeNet v1.1 [62] was the biggest for mobile and
embedded devices, occupying 98 MB of memory during inferences, while YOLOv8 nano
required only 30 MB. The following Section 4 presents the models’ evaluation results.

4. Experimental Results and Discussion

The experimental results are also presented based on the previously mentioned class
distinction of cloud and embedded-device models. First, the mAP0.5 values are examined,
then mAP0.5:0.95, and, finally, model losses following a hierarchical evaluation methodology.
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At first, we use the maximum number of epochs for each model; if the mAP0.5 values’
difference between two tested models is less than 5%, then further evaluation is performed
using mAP0.5:0.95, which is the mean of mAP values using IoU threshold values of 0.5 up to
0.95 with a threshold step of 0.05. The model’s loss curves are also considered to examine
each model’s classifier capabilities. Since models may use different box loss functions, only
classification losses are used for cross-comparison results if box losses are close to zero or
significantly smaller than classification losses. If a model has minimum classification losses
and presents a low mAP value, then object losses are the reason for its poor performance.
Table 2 presents the mAP0.5 values for each examined model.

Table 2. mAP0.5 values over 20, 50, and 100 training epochs for both embedded and cloud Faster
R-CNN and YOLO models.

Model mAP0.5-20 Epochs mAP0.5-50 Epochs mAP0.5-100 Epochs

ResNet-152 0.9934 0.995 0.9951
ResNet-101 0.989 0.995 0.995
ResNet-50 0.65 0.92 0.9949
EfficientNet-b0 0.29 0.68 0.868
FRCNN-VGG16 0.9944 0.9949 0.995
YOLOv3-Darknet 0.26 0.78 0.94
YOLOv5-small
(YOLOv5s) 0.92 0.92 0.96

SqueezeNet 0.558 0.783 0.981
ViTDet-tiny 0.16 0.55 0.901
MobileNetV3 0.37 0.64 0.99
YOLOv8-nano
(YOLOv8n) 0.86 0.91 0.94

Examining the cloud models, from Table 2, the ResNet models’ mAP0.5 output results
for 100 training epochs are similar, so further evaluation using mAP0.5:0.95 values and
classification losses are further examined below. FRCNN-VGG16 also presents mAP0.5
values close to the ResNet models for 100 epochs that require further examination. The
same applies to the YOLO models. The EfficientNet-b0 model [63] did not present mAP0.5
values close to all other cloud models, having 8% fewer values than the least mAP0.5 value
achieved by the YOLOv3 model. The authors mark such values as significantly low in
terms of performance, and therefore, the EfficientNet-b0 model is not further examined.
Figure 7 shows the mAP0.5:0.95 values achieved by the cloud models over training epochs.

From the examined cloud models, ResNet models presented the best mAP0_5:0_95
results, followed by the VGG16 Faster R-CNN model. All examined Faster R-CNN models
outperformed the YOLOv5 model, achieving at least 10% better accuracy. YOLOv3 scored
the minimum precision value for 100 epochs, and it was outperformed up to 22% by
YOLOv5 for 100 training epochs. In addition, YOLOv5 was outperformed by the less
accurate ResNet model, ResNet-50, by 13% and by the Faster R-CNN-VGG16 model by
10% for 100 training epochs. Nevertheless, YOLOv5 is considered a fast cloud alternative
for video stream inferences (see Table 3), as it is at least 60% faster than any Faster-R-CNN
model expressed by mean processed frames per second (FPS). Comparing ResNet models
of 50, 101, and 152 residual blocks in terms of mAP0.5:0.95 values for 100 training epochs,
a minimum accuracy increase of 3% was presented between ResNet-101 and ResNet-50,
and no significant accuracy increases were spotted above 1% between ResNet-152 and
ResNet-101. That is, the smallest but faster ResNet-101 can provide almost the same
inference results with a ResNet-152 model 18–20% faster (see Table 3). Figure 8 presents the
classification loss for cloud models expressed using Equation (5).
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Figure 7. Precision—recall mAP scores for threshold values 0.5–0.95 and a step of 0.05 (mAP0.5:0.95)
for cloud object detection models.

Figure 8. Classification loss scores over epochs for cloud object detection models.

As shown in Figure 8, classification losses drop around 30% between ResNet-50 and
the ResNet-101 and ResNet-152 models for 100 epochs. Additionally, classification losses
for ResNet-50 are 17.9–20% higher than the Faster R-CNN VGG16 model. Finally, the
YOLOv3 model presents significantly low classification losses for training epochs above
70, close to the ResNet-50 values and lower than the YOLOv5 classification losses. This
indicates the significant localization losses of the YOLOv3 model as the number of epochs
increases due to its low classification loss output results with respect to the low achieved
mAP0.5:0.95 values.
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Examining the embedded models, from Table 2, all models present mAP0.5 values for
100 training epochs of value differences of no more than 5%. So, all models are further
evaluated. Figure 9 presents the mAP0.5:0.95 values achieved by the embedded models over
training epochs.

From Figure 9, the MobileNetV3 model [64] presented the best mAP0.5:0.95 precision
value of 87%, 2.7–3% better than YOLOv8n of 84.4% precision value. The maximum number
of epochs used in the training of YOLOv8n was 100, indicated as the default parameter
by [57]. Nevertheless, due to the linear decrease of the classification loss curve of YOLOv8n,
as shown in Figure 10, more training epochs may be required to achieve significant results
(100–600 epochs), as mentioned by [65]. YOLOv8 also underachieves in terms of speed,
around 35% less than MobileNetV3, thus making MobileNetV3 the most accurate and fast
embedded object detection model, followed by YOLOv8n and then the SqueezeNet model.
Embedded models yield smaller accuracies than cloud models, achieving up to 87.6%
mAP0.5:0.95 maximum precision value for 100 training epochs of the MobileNetV3 model in
comparison to the Faster R-CNN ResNet-152 model of 0.947% precision value. Moreover,
YOLOv5s outperforms the YOLOv8n model in terms of precision for 100 training epochs
by 8%.

Figure 9. Precision—recall mAP scores for threshold values 0.5–0.95 and step of 0.05 (mAP0.5:0.95) for
embedded and mobile device object detection models.

Figure 10 illustrates classification losses of the embedded models. Figure 10 shows
that ViTDet-tiny [66] fails to adequately perform, presenting mAP0.5:0.95 precision values
below 60% due to significant classification losses. MobileNetV3 presents the least losses,
which decrease nonlinearly over epochs, while the SqueezeNet model maintains a linearly
decreasing classification loss curve over epochs, with more losses than the MobileNetV3
model. The YOLOv8n model, until 50 epochs, significantly decreases its classification loss
more than MobileNetV3. However, above 50 epochs, its classification loss starts to fluctuate
above MobileNetV3 losses and close to the SqueezeNet model values. This fluctuation of
the classification loss values of YOLOv8n above 50 epochs is the main reason for its under
accuracy performance concerning the MobileNetV3 model.
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Figure 10. Classification loss scores over epochs for embedded and mobile device object detection
models.

Taking our experimentation one step further, a drone-acquired h.264 video stream
of 3.450 GB size and 3840 × 2160 px frames resolution, transformed during inference to
640 × 640 px and 4128 × 4128 px sized frames, accordingly, was used to compare forward-
pass times among models. Each of the examined models was used to provide bounded
object detection of a confidence level value of 0.2 for each one of the video stream frames,
and the average frames per second (FPS) values were calculated. Table 3 presents these
results. The experimental system used for providing inference times expressed as frames
per second (FPS) was an Intel Xeon E5-1620v3, quad-core, with two threads/core, a total of
nine logical CPUs, and 32 GB of DDR4 memory size.

Table 3. Inference time values, expressed in frames per second (FPS), for inference of h.264 drone
video streams, resized to 640 × 640 px and 4128 × 4128 px sizes of image frames for cloud and
embedded Faster R-CNN and YOLO models, accordingly.

Model Achieved Mean FPS mAPEpochs=100
0.5:0.95

ResNet-152 0.262 0.9476
ResNet-101 0.321 0.9411
ResNet-50 0.511 0.940
FRCNN-VGG16 0.404 0.9106
YOLOv3-Darknet 0.591 0.633
YOLOv5-small (YOLOv5s) 1.28 0.812

SqueezeNet 1.645 0.789
ViTDet-tiny 0.517 0.622
MobileNetV3 3.24 0.876
YOLOv8-nano (YOLOv8n) 2.08 0.84

It is evident from Table 3 that for the cloud models, YOLOv5s has the highest FPS value,
followed by ResNet-50 and then FR-CNN-VGG16, also based on the hierarchical maximum
achieved mAP0.5:0.95 values for 100 training epochs. Examining the speed of ResNet-50,
compared to the other deeper ResNet models, ResNet-101 is 37% slower than ResNet-50,
while ResNet-152 is 48.7% slower than ResNet-50. As the network blocks double, inference
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speeds drop around 24%. YOLOv3 models fail to perform well in speed and accuracy
compared to YOLOv5. Finally, FR-CNN-VGG16 does not perform better than ResNet-50
in terms of speed and accuracy. From the cloud models tested, only the YOLOv5s model
acquired close to real-time inference capabilities above 1 FPS, as highlighted in Table 3.

From the embedded models, MobileNetV3 achieved the best accuracy and speed
results. YOLOv8n achieved 35% less speed and 2.7–3% less accuracy than MobileNetV3,
followed by SqueezeNet’s speed of 49.3% less than MobileNetV3. Nevertheless, the Mo-
bileNetV3, YOLOv8, and SqueezeNet models achieved close to real-time accuracies above
1 FPS in contrast to the ViTDet-tiny model speed results that underperformed, providing
inference speed times close to the ones of the ResNet-50 cloud model. For embedded
models, YOLOv8 models are 30–65% faster than their YOLOv5 predecessors (in our experi-
mentation 38.5%). Nevertheless, YOLOv8 did not manage to exceed the inference speeds
of the MobileNetV3 model. The SqueezeNet model presents two times slower inference
speeds than MobileNetV3 and 6% less accuracy results than the YOLOv8n model. The
authors conclude that Mobilevenv3 is the best embedded model in terms of accuracy and
speed, followed by the YOLOv8 and SqueezeNet models.

5. Conclusions

This paper presents a new framework for detecting downy mildew disease spreads
in viticulture, using RGB image inputs from ground IoT camera devices and drones. The
authors present their proposed framework phases and their corresponding phase outputs.
The authors also present a cloud-based system following their framework implementation.
The system’s capabilities include cloud-distributed data collection and object detection
of vine fungal diseases via training and object detection services. The authors also im-
plemented an automated IoT camera node for vine-field imagery data acquisition and an
automated process of object-detecting video streams acquired from RGB camera-equipped
drones. Furthermore, they also set the necessary guidelines to achieve automated drone
aerial path routing and real-time inferencing.

The proposed system of low-cost and autonomous IoT devices can periodically collect
images and detect downy mildew spreads at the plant level. The system’s application
services can use deep learning model object detection to notify farmers of the extent of the
disease at the vine level, providing targeted field interventions or pesticide use. Similarly, if
IoT device deployment is not feasible, periodic drone flights can be used to acquire imagery
data inputs of GPS metadata and offer the same detection and alerting capabilities.

The authors experimented with their system, using it for the process of training object
detection models using a downy mildew outburst experimental dataset acquired in 2023
at the viticulture area of protected designation of origin Debian grape variety in Zitsa,
Greece, on two distinct detection cases: (a) cloud-enabled low-resolution detection of
big-depth models, where the model training and inferences are performed in the cloud,
and (b) embedded fast inference models of high-resolution image inputs, which are cloud-
trained but executed at the device level.

From the cloud-enabled models’ experimentation and the comparison between Faster
R-CNN and YOLOv5 models, Faster R-CNN ResNet and VGG16 models outperformed
YOLO. In contrast, YOLOv5 outperformed cloud Faster R-CNN models by 35–75% in
terms of speed inferences in video streams. Moreover, deep ResNet-152 outperformed the
ResNet-101 and ResNet-50 models. Nevertheless, regarding video stream inferences, the
ResNet-152 model underachieved by close to 18% in terms of FPS concerning ResNet-101,
provided that the ResNet-152 accuracy results are no more than 0.6% better than the ones
achieved by the ResNet-101 model. Finally, the 60–75% better speed of the YOLOv5s
with respect to the ResNet-101 model is significant, but as a model, it still needs to be
more accurate than the ResNet-101 Faster R-CNN model that achieved at least 13.8%
higher precision results. From the embedded model’s experimentation, Faster R-CNN
MobileNetV3 outperformed YOLOv8n by 2.7–3% in terms of accuracy, and it was 35%
faster in inference speeds.
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The proposed system implements a low-maintenance, low-cost architecture of self-
sustained IoT nodes that utilizes deep learning models to detect downy mildew events.
However, the system’s limitations include the efforts needed to deploy and periodically
check the IoT device nodes’ proper functionality and vine image acquisition, as well as the
functionality of the Wi-Fi gateway node. Similarly, for drone-surveyed image acquisition,
appropriate guidelines mentioned by the authors must be fulfilled to function properly.
The authors set the models’ hyperparameter tuning towards downy mildew and the use of
their proposed system for detecting other fungal diseases of powdery mildew and gray
mold in vine fields as future work.
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Abbreviations
The following abbreviations are used in this manuscript:

AS application server
CNN convolutional neural network
CPU central processing unit
DSS decision support system
EIRP equivalent isotropic radiated power
EXIF exchangeable image file format
GPS Global Positioning System
FVA fundamental vertical accuracy
HDFS Hadoop Distributed File System
HTML hypertext markup language
IoU intersection over union
LTE telecommunication systems’ long-term evolution (4G)
NTP network time protocol
PSRAM pseudostatic memory - RAM
R-CNN Regions with CNN features
RPN Region Proposal Network
RAM random access memory
RTC real-time clock
RTCM Radio Technical Commission for Maritime
PV photovoltaic cell
SSD Single Shot Detector, object detection algorithm
SPI synchronous peripheral interface
UID unique identification
Vitis Vinifera common grape vine varieties in EU
Plasmopara Viticola (P. Viticola) downy mildew
UAV unoccupied aerial vehicle
YOLO You Only Look Once object detection algorithm
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