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Abstract: In the early stages of a disaster caused by a natural hazard (e.g., flood), the amount of
available and useful information is low. To fill this informational gap, emergency responders are
increasingly using data from geo-social media to gain insights from eyewitnesses to build a better
understanding of the situation and design effective responses. However, filtering relevant content for
this purpose poses a challenge. This work thus presents a comparison of different machine learning
models (Naïve Bayes, Random Forest, Support Vector Machine, Convolutional Neural Networks,
BERT) for semantic relevance classification of flood-related, German-language Tweets. For this,
we relied on a four-category training data set created with the help of experts from human aid
organisations. We identified fine-tuned BERT as the most suitable model, averaging a precision of
71% with most of the misclassifications occurring across similar classes. We thus demonstrate that
our methodology helps in identifying relevant information for more efficient disaster management.

Keywords: disaster management; relevance classification; social media; semantic analysis; BERT

1. Introduction

Influenced by increasing urbanisation and the growing impact of human-made climate
change, disasters caused by natural hazards are becoming increasingly frequent. The timely
and reliable assessment of such events is therefore gaining importance. In central Europe,
major flood events are the main cause of large-scale damage and loss of life [1]. Traditionally,
remote sensing data, which can come from satellites or airborne sensors (e.g., mounted
on drones), are used to observe and delimit a flood. However, this use has temporal (e.g.,
satellite repetition rates), technical (e.g., cloud coverage) and financial limitations, which
makes it of interest to aid organisations to also use additional data sources. Since the
amount of posts on social media platforms rises significantly during a disaster [2–5], such
data have been employed for this purpose for years.

Before, during and after disasters, the use of social media is above average [6]. This
concerns not only the pure number of posts, but also applies to specific tools like Facebook
Safety Check or the Google Person Finder, through which people can now request the
safety status of their friends. While these functions might provide important information
for individuals, they do not help emergency responders to obtain a bigger picture of
the situation. This input is crucial, though, since in many emergency situations, no or
insufficient information is available shortly before or until emergency services arrive [7].
By enhancing the situational awareness and accelerating the spread of information, the
spatiotemporal distribution of disaster-related social media posts therefore brings major
benefits to the assessment of disaster damage [8,9] and to situational awareness. A central
question here, however, is which content from social media is actually relevant for use in
the disaster management process, and how it can be filtered and categorised.
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For this, the concept of “relevance” should first be addressed, as no unanimous
definition exists. One definition in [10] describes relevance as a measure of the effectiveness
of the contact between a source and a destination in a communication process. Ref. [11]
considers relevance as a multidimensional, systematic, user-centric, measurable concept
influenced by both cognitive (internal) and situational (external) elements. Ref. [12] calls
relevance the central concept of information retrieval theory, stating that observations are
relevant only if they are members of a minimal stored set from which an answer to the
respective question can be inferred. Ref. [13] describes relevance as the “correspondence
in context between an [information] requirement statement and an article, i.e., the extent
to which the article covers material that is appropriate to the requirement statement”.
Ref. [14] determines that information is only relevant if it can provide necessary input
for a user, which was the definition we followed. Other definitions split relevance into
adequacy and usefulness [15,16]. To clearly clarify which content is relevant to the disaster
management process, we worked closely with first responders, which is a unique feature
of our paper. Based on an iterative process, we created a training data set that assigns a
relevance category to each tweet and it was used to train our models.

The short-message service Twitter (now X) is particularly suitable for collecting data
in crisis situations. Until June 2023, Twitter allowed a free, representative sample of Tweets
to be accessed via various Application Programming Interface (API) endpoints. One
possibility is to extract explicitly georeferenced Tweets, most of which become geocodable
via a “place” tag set by the user for the respective Tweet. Numerous studies have already
shown that significant statements on geo-social phenomena can be derived from this
selection [17–21]. A major difficulty, however, is reducing the large, rather unstructured
amount of data for each use case, i.e., to consider only relevant Tweets. Traditionally, this
was achieved through keyword-based filtering. For this, a list of relevant keywords for an
event had to be created in advance, which were then searched for in the text corpus. Due to
linguistic and grammatical diversity, however, this leads to blurring in the filtering, e.g.,
with regard to semantically ambiguous words.

To overcome this limitation, we investigated various machine learning approaches
for relevance classification of flood-related Tweets. We compared the performance of more
traditional, rather established models—Naïve Bayes (NB), Random Forest (RF) and Support
Vector Machine (SVM)—to two more advanced models: a Convolutional Neural Network
(CNN) and a fine-tuned Bidirectional Encoder Representations from Transformers (BERT)
model. We chose these models because they are particularly frequently used approaches
in the field of Natural Language Processing (NLP) and social media analysis. This work
was motivated primarily by the Ahr Valley flood of 2021, in which the added value of
social media data from relief organisations was confirmed. For this reason, the focus of
the method development was on German language content, for which there was also a
research gap. Consequently, we aimed to address the following research question:

Which machine-learning-based approach is best suited for relevance classification of
flood-related, German-language Tweets?

2. Related Work

Data from social networks have already been used in many studies relating to disasters.
In particular, topic modelling methods have been employed. Ref. [17] use Latent Dirichlet
Allocation (LDA) to extract such topics from Tweets for real-time monitoring of disasters.
Advanced algorithms for semantic classification, such as a CNN [22], BERT [23,24], and a
Graph Neural Network (GNN) [25], have also been proposed. Some approaches go beyond
purely textual analyses and also include the content of images [26]. However, these studies
generally do not consider the relevance of posts for use in disaster management.

To convert the previously mentioned definitions of relevance into concrete criteria
is challenging. For an extensive overview of potential abstract (e.g., necessity, topicality,
impersonality) and factual criteria (e.g., referenced geographic locations, currency), see [7].
In their paper, Ref. [27] classify Tweets into three categories: off-topic, on-topic and relevant
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and on-topic but irrelevant. They first perform keyword filtering and then assign the classes
manually, also considering imagery content. In their study, a post is deemed relevant
if it can enhance situational awareness. A similar distinction is also made in [28], who
differentiates posts that are relevant or irrelevant of situational awareness. Ref. [29] also
consider retweet behaviour as indicative for semantic relevance, reasoning that frequently
reposted information has a stronger connection to an event.

Several machine-learning-based approaches have been proposed for relevance clas-
sification of social media content. For example, Ref. [30] use a CNN as a first step to
classify Tweets as informative or uninformative. In a second step, they sort the infor-
mative messages into eight categories of actionability using a radial basis function SVM.
Ref. [31] compare the performance of several machine learning algorithms on a supervised
multi-class classification problem. They conclude that the linear SVM outperforms the
other algorithms (including NB and RF) in six of the seven classes, using a combination
of unigrams and bigrams. Ref. [32] also propose an SVM-based methodology. Ref. [33]
investigates stacking a CNN and an Artificial Neural Network (ANN) to classify Tweets
on Hurricane Harvey as informative or non-informative. Ref. [34] compare k-nearest
neighbour (kNN), multinomial NB and SVM, amongst others. Ref. [35] uses a BERT
model to classify Tweets as relevant and irrelevant for the 2020 Jakarta flood, adding dense
and dropout layers to the pre-trained model for fine-tuning. A Cross-Attention Multi-
Modal (CAMM) deep neural network is proposed in [36] which combines information
from text and imagery. However, they only distinguish informative and non-informative
classes. Ref. [37] utilise BERT and XLNet to sort Tweets on Hurricane Harvey into relevance
categories, showing that pretrained language models outperform traditional methods such
as SVM. Ref. [38] use a fine-tuned RoBERTa for the classification of disaster-related Tweets,
as well as a vision transformer model for attached imagery, achieving an accuracy of up to
98%. In their paper, Ref. [39] suggest using a GNN to combine textual information, imagery
content and time for flood-related Tweets.

Most of these approaches refer to English-language Tweets. In general, there is a
large bias towards English in NLP applications. This can be problematic if a language is
morphologically more complex, e.g., German [40]. Accordingly, some models developed
based on English training data do not necessarily work well for other languages or require
the translation of such Tweets, which can lead to information loss and is costly. Furthermore,
the suitability of BERT-based models, which represent a big step forward in NLP, has hardly
been considered in relevance classification. Furthermore, a more precise categorisation of
relevance than a binary classification is rare. Our paper addresses these research gaps.

3. Materials and Methods

In our research, we address a multi-class supervised classification problem [41], where
a single class has to be predicted for each input Tweet. This is also referred to as “one-class”
classification [42]. Figure 1 shows a schematic overview of our workflow.

Figure 1. Workflow for comparison of models for relevance classification of flood-related Tweets.
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3.1. Data Collection and Labelling

For the creation of our training data set, we only used geo-referenced Tweets that were
sent within a bounding box around Germany in the year 2021. We extracted Tweets for the
entire year, since otherwise our algorithms might have been biased towards the Ahr Valley
flood in July, one of the most devastating disasters in recent German history. We retrieved
Tweets using both the REST and the streaming API of Twitter, via which georeferenced
data can be accessed. In our data collection approach, we followed [18,43].

To create training data for our machine learning models, we manually annotated
Tweets. For this, we randomly extracted 10,000 Tweets from our data set without any
further specifications. To increase the proportion of potentially relevant Tweets, we addi-
tionally performed keyword-based filtering (cf. Table A1). Accordingly, two thirds of our
training data set contained at least one of these keywords, while the remaining training
data corresponded to a random sample of all posts sent in the study area and within the
specified period. To obtain more congruent results, we decided to use a prescriptive anno-
tation approach, for which a labelling guide was created [44]. Our labelling process was
carried out in collaboration with experts from German and Austrian disaster management
organisations (Bavarian Red Cross, Austrian Red Cross, Federal Agency for Technical
Relief). The annotators received only the text for each Tweet and no further information;
i.e., it was assumed that each Tweet was spatially and temporally relevant. To filter out un-
usable Tweets, two additional categories were introduced for posts in other languages and
without proper text (cf. Table 1). We decided against a continuous rating (e.g., relevance
percentage), as this would be more difficult to label consistently. Instead, we created a more
generalisable four-category scale between “very relevant” and “not relevant”. In order to
delimit the categories, we provided some examples for each category in our labelling guide
(cf. Table A2). Each Tweet was then labelled by three people. The result was only appended
to our training data set if an inter-annotator agreement of at least 2/3 was satisfied. All
Tweets labelled as “not in German language” or “no text contained” were discarded. After
labelling, 4634 Tweets remained. The distribution of classes can be seen in Figure 2.

In the next step, we undersampled our data set, since training a robust model using
imbalanced data is difficult [45]. For this, we randomly selected 178 Tweets from each
class, i.e., the number of Tweets in the smallest category, to achieve identical class sizes.
The resulting data set was then split once into a stratified training (75%) and testing (25%)
subsets. Then, we used the pre-trained GBERTbase model to tokenise the Tweets and create
embeddings, i.e., to convert them into vector representations the machine learning models
can use.

In total, we set up five different machine learning algorithms for comparison purposes,
which will be briefly explained in the following sub-sections.

Figure 2. Distribution of categories for training data.
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Table 1. Labelling categories. See Table A2 for concrete examples.

Category Explanation

1—very relevant
A Tweet that is very helpful in supporting crisis management
in case of a flood (e.g., Tweets referring to destructions, critical
infrastructure).

2—rather relevant
A Tweet that is somewhat helpful in supporting crisis manage-
ment in case of a flood (e.g., Tweets mentioning efforts by first
aid organisations, people that are not affected).

3—barely relevant
A Tweet that is not really relevant but refers to a flood event
(e.g., declarations of solidarity, appeals for donations, political or
religious statements).

4—not relevant A Tweet that has no relation to a flood event.
not German A Tweet that is not written in German language.

no text contained A Tweet that contains no text, e.g., only emojis, links or user han-
dles.

3.2. Naïve Bayes

The NB classifier is a probabilistic machine learning model, which creates a separate
model for each possible category, and thus is a generative model [46]. The core of NB is the
Bayes’ Theorem:

P(A|B) = P(B|A)P(A)

P(B)
(1)

where the probability P of an event A happening is computed under the assumption
that another event B already has occurred independently. This assumption of conditional
independence, however, is rarely matched in real-life cases, which is why NB tends to
compute overconfident probabilities that are often very close to 0 or 1 [46]. Another
common issue is the “zero-frequency problem”; i.e., the model has to classify a parameter
which is not represented by a class-attribute combination. Following the commutative,
distributive and associative properties of multiplication, the output likelihood in this case is
always zero [47]. Nevertheless, NB is widely used in NLP problems like sentiment analysis,
spam filtering or recommendation systems [46]. We employed the ComplementNB classifier
from sklearn.naive_bayes, which uses the statistics from the complement of each class to
compute the model’s weights. Hence, it generates more stable parameters and regularly
outperforms multinomial NB [48].

3.3. Support Vector Machine

An SVM can be used to divide a multi-dimensional space. For this, a hyperplane
is fit to separate an input data set in any given dimension into two clusters [49]. Since
there is theoretically an infinite number of hyperplanes, an SVM tries to identify the
hyperplane that maximises the margin between the classes. This is accomplished by
finding the maximum-margin hyperplane, i.e., selecting the most similar examples which
have different class labels (i.e., support vectors) to draw the hyperplane orthogonal to the
connecting vector [46,50]. For this, an SVM uses kernel functions to project the input data
into a higher-dimensional space where clusters can be linearly separated. This allows the
SVM to identify a feature space with only the necessary dimensions to separate the input
data, thereby avoiding the so-called curse of dimensionality [49,50]. Furthermore, a soft
margin is added to the hyperplane, since noise will make linear separation impossible for
real-world examples [49]. It allows some data points to fall to the “wrong” side of the
margin. However, setting the parameters for this soft margin is complicated, as it requires
a trade-off between avoiding overfitting on the training data and achieving appropriate
generalisation [50].
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3.4. Random Forest

RF uses a combination of different decision trees to solve regression or classification
problems [51]. The cost function of a decision tree tries to maximise the information gain at
each node, thereby minimising the entropy, i.e., the uncertainty of a random variable. As a
result, decision trees often grow very large and may overfit the training data [46,52]. RF
overcomes the limitations of a single decision tree by combining a large number of trees
operating as a committee, leading to a substantial improvement in accuracy and accordingly
outperforming any of the constituent models [53]. Bagging (bootstrap aggregating, i.e.,
sampled training sets) and boosting (i.e., weighted training sets) can be used to ensure that
the constituent decision trees are distinct [46]. We used the RandomForestClassifier from
sklearn. To find the best hyperparameters for the RF classifier, we performed a randomised
search and a subsequent grid search. Our optimal RF had 33 seeds, a maximum depth of
210, a min_samples_split of 21 and a min_samples_leaf of 3.

3.5. Convolutional Neural Networks

The architecture of a CNN is a subcategory of ANNs, where typically only the last
layers are fully connected, while the other hidden layers are only connected to correspond-
ing parts of the preceding layer [54]. As data pass through the depth of a CNN, the input
vectors are reduced until the output vector reaches a specified size, e.g., 1 × 1 × n [55].
At the core of a CNN is the convolutional layer, where learnable kernels are linked to
local regions of the input data. As the kernel slides across the input vector, it performs
scalar product computations, creating an activation map, which is then propagated to the
subsequent layer. Subsequent non-linear computations, often achieved using the rectified
linear unit (ReLU) activation function, help eliminate irrelevant information. In the pooling
layers, the input feature map is downsampled to reduce the computational complexity. By
sliding across the feature map, these layers merge values within defined regions, producing
a single value. One of the most common pooling functions for this is max pooling, which
retains only the maximum value within each region. In fully connected layers, each neuron
in one layer is connected with every neuron of the next layer. We developed a multi-channel
CNN based on [56], using the tensorflow.keras module API. Due to performance reasons, we
pre-defined a feature space and systematically searched it using different train/test splits.

3.6. BERT

BERT’s architecture [57] is based on a multi-layer transformer encoder proposed in [58].
Through extensive pre-training, BERT generates hidden output layers with 768 dimensions
for the BERTbase model, consisting of embeddings on both the sentence level and the word-
level. This model has 12 layers, 12 self-attention heads and 110 million parameters [57]. To
tailor BERT for specific tasks, such as classification, fine-tuning can be performed using
task-specific training data [59]. For this, an additional output layer must be connected
to BERT’s hidden output layer. A version of BERT customised for classifying German
language texts was developed in [60]. We used this model, adapting it to our specific
scenario with four output classes, and fine-tuned it using our Tweets.

3.7. Evaluation Metrics

For the evaluation of our models, we employed the traditional metrics of accuracy,
precision, recall, and F1 score (where T is true, F is false, P is positive, and N is negative):

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
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F1 score =
2 × TP

2 × TP + FP + FN
(5)

Additionally, we decided to use a Gaussian scoring function to mirror the order of
categories as ordinal data. It presents an additional evaluation metric that shows how
far off a misclassification was. A high precision for a class but a relatively low Gaussian
score indicates that the misclassifications are very far away from the ground truth, while a
low class precision but a high Gaussian score indicates that most of the classifications are
grouped in a similar class. Equation (6) shows how the score was calculated:

Gaussian score =
1

σ
√

2π
e−

1
2 (

Ed−µ
σ )2

(6)

where Ed is |P − T| between the true class T and the predicted class P, σ is the standard
deviation of the distribution and µ is the mean of the distribution. In our research, σ was
set to 1.5 and µ to 0 since these parameters best distinguished our classes.

4. Results

In this section, we present the results of the different methods. All algorithms used the
same training and validation data sets as well as the same encoding. Algorithm 1 explains
how data can be classified by the models, using the BERT model as an example. Table 2
compares the average performance metrics for all categories of each model. Table 3 lists the
F1 score and Gaussian score for each model and the respective labelling categories.

Algorithm 1: Inference by relevance classification model
Input: Singular Tweets
if input is Pandas DataFrame then

if length of text > 0 after pre-processing then
embedding creation by GBERTbase;
inference by BERT-based classification model;
Output : four categories:

very relevant
rather relevant
barely relevant
not relevant

end
end

Table 2. Performance comparison of the different algorithms for averaged precision, recall, F1 score
and Gaussian score (GS). The respective highest value is shown in bold.

Model Accuracy Precision Recall F1 Score GS

NB 0.40 0.40 0.40 0.40 0.70
RF 0.44 0.45 0.44 0.45 0.73
SVM 0.28 0.28 0.28 0.28 0.65
CNN 0.51 0.54 0.51 0.52 0.84
BERT 0.71 0.71 0.71 0.71 0.90
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Table 3. Precision (P), recall (R), F1 score and Gaussian score (GS) for each model and relevance
category. The respective highest value is shown in bold.

Relevance Categories

1—Very Relevant 2— Rather Relevant
Model P R F1 GS P R F1 GS

NB 0.39 0.32 0.35 0.58 0.38 0.47 0.42 0.74
RF 0.44 0.40 0.42 0.59 0.44 0.50 0.47 0.79
SVM 0.38 0.41 0.40 0.56 0.26 0.22 0.24 0.68
CNN 0.62 0.45 0.53 0.83 0.38 0.44 0.41 0.80
BERT 0.76 0.64 0.69 0.89 0.63 0.69 0.66 0.89

3—Barely Relevant 4—Not Relevant
Model P R F1 GS P R F1 GS

NB 0.38 0.32 0.35 0.73 0.44 0.49 0.46 0.74
RF 0.35 0.36 0.36 0.74 0.56 0.51 0.53 0.78
SVM 0.17 0.18 0.18 0.69 0.30 0.31 0.31 0.67
CNN 0.50 0.68 0.58 0.84 0.64 0.47 0.54 0.87
BERT 0.72 0.64 0.68 0.90 0.73 0.86 0.79 0.9

Since BERT consistently provided the best results, we will focus on its classification
results. In terms of recall and precision in particular, there were enormous differences,
although all classifiers received the same input data. Figure 3 shows how many Tweets
of the validation data set were assigned to their respective relevance class, and the class
distribution after assigning the classes using BERT. After classification, there were minor
shifts in the balanced, stratified data set. The figure reveals a certain bias of the model
for the categories “2—rather relevant” and “4—not relevant”, into which slightly more
Tweets than desired were placed. Additionally, Figure 4 shows how the output classes
were composed. While the majority of Tweets were classified in the correct category for all
relevance categories, there were some misclassifications. Tweets from every other category
were represented in each class; a few very relevant Tweets, for example, were assessed
as irrelevant. The only exception was the category “1—very relevant”, which did not
receive any irrelevant Tweets. However, the figure also shows that the misclassifications
were usually in semantically similar categories. The same can be said for all classifiers in
Table 3, where the Gaussian scores were also appropriate for models with very low recall
and precision.

Figure 3. Class distribution of relevance classes before and after classification for BERT.
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Figure 4. Classification composition of BERT.

5. Discussion

In the following section, our results are discussed and the applied methods are critically
reviewed.

5.1. Training Data

The requirements for the Tweets to be written in German and related to a flooding
event led to data scarcity. For this reason, the data collection process was carefully de-
veloped to maximise the randomness while keeping the quality of the training data high.
The direct collaboration with first aid organisations in this process should be emphasised
here, which ensured the applicability of the model outputs. Nevertheless, a larger training
data set could have potentially improved our results. By providing an extensive labelling
guide, we tried to turn the labelling of each Tweet from something highly subjective [11]
to something relatively objective and comparable [61]. Using a 2/3 majority for the inter-
annotator agreement ensured that the class objectivity of each Tweet was maximised.
Yet, this approach only ensured the overall coherence, but not the actual quality, of the
labelled data.

In the first step of the training phase, the imbalanced distribution of Tweets in the four
classes was balanced. Even though scaling down three of the four classes inevitably led to
a loss of information, it tackled one of the major problems, i.e., the drop in classification
performance for one class while trying to gain it for another [62], successfully.

5.2. Results

The algorithms used in our research can be split into two categories: older meth-
ods (NB, RF, SVM) and newer, computationally more extensive methods (CNN, BERT).
Comparing those two categories showed that the older algorithms generally scored lower
across all used metrics. Overall, the SVM performed the worst. This is not surprising
since this method is rather feature engineering extensive and our input data were only
tokenised. The results of NB and RF were quite similar. For the newer algorithms, BERT
mostly outperformed the CNN. Only for class “3—barely relevant” did the CNN have a
0.04 higher recall.

We proposed an additional Gaussian scoring function for a more precise model evalu-
ation. For the Gaussian score, BERT outperformed the CNN again by 0.06. Interestingly,
the CNN matched the Gaussian score of BERT for category “1—very relevant” and even
outperformed it by 0.02 for category “3—barely relevant”. Since BERT performed better on
accuracy, precision, recall and F1 score, this indicates that BERT had fewer misclassifications
but they were semantically further away from their assigned label.
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Ref. [30] achieved an overall accuracy between 0.50 and 0.67, F1 scores between 0.47
and 0.63 and a recall between 0.45 and 0.63 for their classes with a CNN. The highest macro-
F1 score achieved by [31] was 0.66 for their linear SVM model. With their stacked method,
Ref. [33] could classify Tweets with a precision, recall and F1 score of 0.76, and [37], who
also used a BERT model, obtained an accuracy, precision and F1 score of 0.78 and a recall of
0.79. Accordingly, the evaluation metrics achieved by our BERT model specification for
German-language Tweets (accuracy, precision, recall and F1 score of 0.71) correspond to the
current state of the art. Additionally, we were also able to show that its misclassifications
were mostly in semantically similar classes.

5.3. Limitations

Due to the low ratio of potentially relevant Tweets in our data set, it was necessary to
increase the likelihood of querying Tweets which are related to a flooding event. However,
this also limited our training data size. Additionally, some of the selected keywords are not
exclusively used in connection to flooding events. For example, “Höchststand” (peak) was
a keyword which was commonly featured in Tweets referring to the COVID-19 pandemic,
while “Gewitter” (thunderstorm) and “Sturm” (storm) are terms commonly utilised in
weather forecasts. Accordingly, our pre-filtered data set also contained numerous Tweets
that fell into category 4.

Furthermore, our methodology merely focused on classifying Tweets based on text
information. Hence, we assumed that each classified Tweet was temporally and spatially
related to a flood event. However, the explicit inclusion of timestamp and geometry in a
relevance classification would be appropriate. We decided against feeding this information
to our complex models in order to avoid a bias of the models towards single events (e.g.,
the Ahr Valley flood). In the future, this information should still be incorporated, e.g., by
integrating it into the labelling process or through additional weighting of the outputs.

In our research, we only considered data from Twitter. However, an application of
our models to other social media platforms (e.g., Facebook) should be possible. Since the
structure of texts across social media platforms differs, the portability of the models still
needs be tested explicitly.

It should be noted that the future of Twitter data as a source for research is unfortu-
nately rather uncertain at the moment. Since the takeover of the social media platform by
Elon Musk in late 2022, there have been profound upheavals, especially for the API access
and the associated data availability for academic purposes. A polarisation of the discourse
in terms of content is also conceivable [43].

6. Conclusions

This paper compares various machine learning approaches with respect to their suit-
ability for a multi-class classification problem. Our aim was to define the semantic relevance
of a Tweet in relation to a flood event for disaster management purposes. This is crucial
because social media data can provide added value in disaster management, but filtering
out significant content remains complex.

For this, we focused on German-language Tweets, which had not been targeted
previously. In creating our training data set, we worked closely with first aid organisations
to define which content is actually relevant for the disaster management process and thus
to obtain results that can be used in a real-life application. Our proposed methodology aims
to provide the responsible people in a crisis team only with posts that are highly relevant
in terms of content and thus to condense the wealth of information.

We found that BERT and the CNN considerably outperformed NB, RF and SVM. Based
on our evaluation criteria, we concluded that BERT was the most suitable approach to solve
the aforementioned multi-class classification problem.
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Abbreviations

ANN Artificial Neural Network
API Application Programming Interface
BERT Bidirectional Encoder Representations from Transformers
CAMM Cross-Attention Multi-Modal
CNN Convolutional Neural Network
GNN Graph Neural Network
KNN k-nearest neighbour
LDA Latent Dirichlet Allocation
NB Naïve Bayes
NLP Natural Language Processing
RF Random Forest
SVM Support Vector Machine

Appendix A

Table A1. Flood-related keywords.

German Keyword Translation

Aufräumarbeiten cleanup work
Bergung salvage
Dammbruch dam breach
Dammschäden damage to dams
Dauerregen continuous rain
Deichbruch levee breach
Deichschäden damages to levees
Einsturz collapse
Erdrutsch landslide
Evakuierung evacuation
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Table A1. Cont.

German Keyword Translation

Extremwetterlage extreme weather situation
Freiwillige Helfer volunteers
Geröll rubble
Gewitter thunderstorm
Großeinsatz major operation
Hangrutschung landslide
Hilfsaktion relief operation
Höchststand peak/peak level
Hochwasser flood
Katastrophe disaster
Krisenstab crisis management team
Luftrettung air rescue
Murgang mudflow
Niederschlag precipitation
Notunterkunft emergency shelter
Orkan hurricane (European windstorm)
Pegel water level/gauge
Platzregen torrential rain
Retentionsfläche retention area
Rettungskräfte rescue forces
Sandsäcke sandbags
Schneeschmelze snow melting
Schlammlawine mudslide
Schutt debris
Starkregen heavy rain
Stromausfall power outage
Sturm storm
Sturzflut flash flood
Tornado tornado
Trümmer ruins
Überflutung flooding
Überschwemmung inundation
Unwetter severe weather
Wasserrettung water rescue
Wiederaufbau reconstruction
Zerstörung destruction

Table A2. Examples from our labelling guide. The original German Tweets have been translated.
Emojis were removed. Usernames were replaced by ‘@user’.

Category Translated Tweet Reasoning

1—very relevant

Within one day, the flood water has risen so high
that the road is no longer passable. The ferry has
stopped operating. #rhine #walsum

flooding/high water
level

Despite rising water levels on the Saale and Weißer
Elster rivers, there is no danger of flooding in Halle.
The Landesbetrieb für Hochwasserschutz (LHW)
has not yet issued a flood warning for Halle.

flood warning

Here in Rheinbach too. Traffic is flowing through
the main street again, while the mud is being
cleared away there at the same time.

affected infrastruc-
ture/damage
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Table A2. Cont.

Category Translated Tweet Reasoning

2—rather relevant

We are lucky that our cellar was not flooded. non-affected people

Watch out #FakeNews Share @user report.
#flood disaster #disasterarea #weareVOST #VOST
#SMEM

reference to emer-
gency forces

3—barely relevant

I feel very sorry for the people in NRW. Keep your
fingers crossed for all of them. The only thing it
can be about now is helping. #Floods

declarations of soli-
darity

@user Seriously? While the rescue measures are
still underway and the #FederalPresident flies from
Berlin to the Rhineland, they stand in the back-
ground and smile? That is disrespectful to the
victims and their families and also politically dis-
respectful...

political or religious
statements

Please all join the campaign stop of the @user and
concentrate all forces on the essentials and who
can, donate! #Flood

fundraising appeals

4—not relevant

I decided to turn up the music excessively loud
today, before the neighbour’s child, who can only
ride a bike if he squeals, starts doing his rounds.

not related to flood
event

@user Good morning at now 16.1 °C, over-
cast/thunderstorm, wind N 2 bft, air pressure 1022
mbar, precipitation risk 26% from 55,599 Siefer-
sheim in Rheinhessen.
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