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Abstract: Severe and fatal crashes involving large trucks result in significant social and economic
losses for human society. Unfortunately, the notably low proportion of severe and fatal injury crashes
involving large trucks creates an imbalance in crash data. Models trained on imbalanced crash
data are likely to produce erroneous results. Therefore, there is a need to explore novel sampling
approaches for imbalanced crash data, and it is crucial to determine the appropriate combination of a
machine learning model, sampling approach, and ratio. This study introduces a novel cluster-based
under-sampling technique, utilizing the k-prototypes clustering algorithm. After initial cluster-based
under-sampling, the consolidated cluster-based under-sampled data set was further resampled
using three different sampling approaches (i.e., adaptive synthetic sampling (ADASYN), NearMiss-2,
and the synthetic minority oversampling technique + Tomek links (SMOTETomek)). Later, four
machine learning models (logistic regression (LR), random forest (RF), gradient-boosted decision
trees (GBDT), and the multi-layer perceptron (MLP) neural network) were trained and evaluated
using the geometric mean (G-Mean) and area under the receiver operating characteristic curve
(AUC) scores. The findings suggest that cluster-based under-sampling coupled with the investigated
sampling approaches improve the performance of the machine learning models developed on crash
data significantly. In addition, the GBDT model combined with ADASYN or SMOTETomek is likely to
yield better predictions than any model combined with NearMiss-2. Regarding changes in sampling
ratios, increasing the sampling ratio with ADASYN and SMOTETomek is likely to improve the
performance of models up to a certain level, whereas with NearMiss-2, performance is likely to drop
significantly beyond a specific point. These findings provide valuable insights for selecting optimal
strategies for treating the class imbalance issue in crash data.

Keywords: imbalanced crash data; cluster-based under-sampling; ADASYN; NearMiss-2; SMOTE-
Tomek; machine learning models

1. Introduction

Large trucks play a crucial role in the freight industry and the global economy. In the
United States (US), these trucks were responsible for transporting 65% of the total shipment
weight in 2017 [1]. Despite constituting only 4% of registered vehicles, they are involved in
11% of all fatal crashes in the US [2]. Furthermore, large truck occupant fatalities increased
by 23% from 2020 to 2021. The statistics on fatal crashes involving large trucks highlight the
need to study the key factors contributing to the severity of these incidents. However, the
disproportionately low proportion of severe and fatal crashes involving large trucks poses
a significant challenge, creating highly imbalanced crash data. In the field of data mining
and information extraction, the uneven distribution of majority and minority classes is
recognized as a class imbalance issue. Models trained on imbalanced datasets often achieve
high accuracy scores by predominantly labeling instances as the majority class. In the
context of road crash data, the majority class pertains to no-injury or property damage-only
crashes, which are not the classes of interest. The class of interest, severe and fatal crashes,
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typically constitutes the minority class. This class imbalance presents a significant obstacle
to accurately estimating the key factors contributing to severe and fatal crashes involving
large trucks.

The currently available approaches for the class imbalance issue can be divided
into four categories; data-level approaches, algorithm-level approaches, cost-sensitive
approaches, and ensemble classifiers. Data-level approaches add a pre-processing step,
where the training data are resampled to create a balance between the majority and minority
class observations [3]. Typical data-level approaches encompass oversampling, under-
sampling, and a combination of over- and under-sampling (hybrid sampling). Many of
studies have reviewed these approaches and made comparisons between them [4–7]. In
recent years, cluster-based under-sampling of observations involving the majority class
coupled with other sampling approaches has become significantly popular [8–11]. Cluster-
based under-sampling removes redundant observations involving the majority class. This
helps the model separate the minority class from the majority class, especially when some
regions of the majority and minority classes overlap in the feature space.

Whereas data-level approaches are more of an external process, algorithm-level ap-
proaches are more of an internal process. In the algorithm-level approach, existing algo-
rithms are modified to account for the minority class [12]. In a cost-sensitive approach, the
objective is to minimize the total cost of errors for the majority and minority classes [13].
Ensemble classifiers try to improve the prediction performance of a single classifier by
combining the predictions of multiple classifiers [14]. Algorithm-level and cost-sensitive
approaches are difficult to apply for crash severity analysis because crash severity is defined
differently across the world.

Several studies on crash severity have employed data-level approaches [15–18] and
ensemble classifiers [19] to address the class imbalance issue. However, there is a lack
of a comparative study to determine the most effective approach for class imbalance in
crash severity analysis. Such a study would contribute to the literature by illustrating the
advantages and limitations of different approaches, serving as a valuable reference for
future road safety researchers and crash data analysts. The current study specifically focuses
on data-level approaches, as they show greater potential in addressing imbalanced learning
by enhancing the distribution of datasets rather than relying solely on improvements based
on supervised learning methods [20]. Moreover, data-level approaches are context-agnostic,
means they can be applied to different fields with the class imbalance issue.

In this study, a novel cluster-based under-sampling (CU) technique was combined with
three different sampling approaches (ADASYN, NearMiss-2, and SMOTETomek). Adaptive
synthetic sampling (ADASYN) is an over-sampling approach, NearMiss-2 is an under-
sampling approach, and SMOTETomek is a hybrid-sampling approach that combines the
synthetic minority over-sampling technique (SMOTE) and Tomek links (an under-sampling
approach). These sampling approaches were also applied to the data set without CU. The
effectiveness of these sampling approaches was evaluated using four machine learning
models. Through this experiment, the study aimed to answer the following questions:
(1) Does incorporating cluster-based under-sampling improve the performance of the
machine learning models? (2) What is the optimal combination of the machine learning
model, sampling approach, and ratio for imbalanced crash data? (3) Which sampling
approach produces the best results? (4) How do changes in the sampling ratios affect the
performance of the machine learning models?

2. Literature Review

Considering the scope of this study, the literature review encompasses road crash-
related studies that addressed the class imbalance issue, machine learning models for crash
severity analysis, and clustering algorithms for heterogeneity in crash data.
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2.1. Road Crash-Related Studies on Imbalanced Data

Though the issue of class imbalance in the crash data has existed for decades, not
all currently available approaches have been explored for treating class imbalance issue
in crash data. Mohammadpour, Khedmati, and Zada [15] have used SMOTE to over-
sample the minority class in imbalanced truck-involved crash data. The study trained
random forests (RF), k-nearest neighbor (KNN), gradient-boosted decision trees (GBDT), a
multi-layer perceptron (MLP) neural network, and support vector machines (SVM) on the
truck-involved crash data resampled by SMOTE. The study indicated that the RF model
resulted the most accurate results for the balanced data set. Jeon et al. [16] employed both
under-sampling and over-sampling approaches to address the class imbalance issue in
crash data collected from Michigan Traffic Crash Facts (MTCF). The study recommended
under-sampling with bagging as an effective approach. Fiorentini and Losa [17] trained
four machine learning models on a training set that was resampled using the random
under-sampling approach. The models were evaluated using metrics such as the accuracy,
true positive rate (recall), false positive rate, true negative rate, precision, and F1 score.
The findings indicated that the models based on random under-sampling could predict
fatal crashes more accurately. Jiang et al. [19] proposed two ensemble methods (AdaBoost
and gradient boosting) to address the class imbalance issue in crash data, with the F1
score as the evaluation metric. The study indicated that gradient boosting outperformed
mixed logit models, AdaBoost, and artificial neural networks. Al-Mamlook et al. [21]
compared several machine learning models for predicting traffic accident severity. In their
study, they incorporated the SMOTE sampling approach before training the models. The
data-level approach included under-sampling, oversampling, or a combination of both,
while the ensemble of classifiers approach included classifiers such as AdaBoost, RF, and
GBDT. Morris and Yang [18] combined cluster-based under-sampling techniques with three
over-sampling approaches (random over-sampling, ADASYN, and SMOTE). The study
explored the effects of these sampling approaches on three ensemble machine learning
models and a statistical model. The findings suggested that cluster-based under-sampling
coupled with ADASYN is likely to yield the best results.

2.2. Machine Learning Models for Crash Severity Analysis

A plethora of studies have used different variants of statistical models for crash
severity prediction [22–25]. However, modeling the nonlinear relationship between the key
factors and crash severity using statistical models is inappropriate. Moreover, statistical
models have model-specific assumptions, and violation of those assumptions is likely
to yield erroneous results [26]. In light of these limitations, researchers have opted for
different types of machine learning models for predicting the severity of various road
crashes. Commonly used machine learning models include decision trees (DT) [27,28],
RF [27,29,30], gradient-boosted decision trees (GBDT) [31], SVM [27,32], KNN [33], artificial
neural networks (ANNs) [34,35], and naïve Bayes classifiers [33,34]. To determine which
machine learning model is superior, several studies have conducted comparative analyses.
Zhang et al. [27] compared two commonly used statistical models (the ordered probit and
multinomial logit models) with four machine learning models (KNN, DT, RF, and SVM).
Their findings indicated that the RF model produced the best prediction results for crash
injury severity. Infante et al. [36] also compared statistical models (logistic regression) with
machine learning models (C5.0, RF, SVM, KNN, and naïve Bayes). The study reported that
the machine learning models did not perform well on small samples of imbalanced data.
For such datasets, logistic regression models were likely to outperform machine learning
models. In addition to [27], another study also indicated that the RF model is superior to
logistic regression, naïve Bayes, and AdaBoost [21]. This study applied SMOTE to handle
the class imbalance issue. Iranitalab and Khattak [37] conducted a comparative study
between the k-means and latent class clustering-based multinomial logit models, KNN,
SVM, and RF. The study incorporated a crash cost-based accuracy measure and reported
that, in general, KNN performed well and was particularly effective in severe crashes.
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2.3. Clustering Algorithm in Road Crash-Related Studies

Several studies have demonstrated the benefits of applying clustering algorithms
before crash severity analysis [37–39]. Song and Fan [38] and De Ona et al. [39] used latent
class clustering, which is a statistical model-based clustering approach, and the final class
solution depends on the user. An alternative clustering method is the similarity-based
approach, aiming to maximize the similarities among observations within clusters while
emphasizing dissimilarity between clusters, typically quantified by some distance measure.
The k-means, k-modes, and hierarchical clustering techniques fall under similarity-based
approaches. Iranitalab and Khattak [37] and Nandurge and Dharwadkar [40] used k-means
clustering for crash data analysis. The k-means clustering algorithm accepts data sets only
in numerical form. For data sets with only categorical variables, the k-modes clustering
algorithm was introduced. This algorithm was jointly applied with Bayesian networks for
road accident analysis [41]. Taamneh et al. [35] combined hierarchical clustering and ANNs
for classification of traffic crashes. The study reported that cluster-based ANNs yielded
better prediction results. However, the hierarchical clustering algorithm was comparatively
time-consuming and required huge space. Due to its inherent ability to handle datasets
with both numerical and categorical variables, the k-prototypes clustering algorithm was
chosen for this study.

3. Materials and Methods
3.1. Data Description

The comparison was conducted on crash data from the Crash Report Sampling System
(CRSS) of the US National Highway Traffic Safety Administration (NHTSA). The CRSS
comprises police-reported crashes involving various vehicles, pedestrians, and cyclists. The
study focused specifically on large truck crashes from 2016 to 2019 in the US, defined by
the NHTSA as trucks with a gross vehicle weight rating (GVWR) exceeding 10,000 pounds.
Data were collected from multiple tables (crash, vehicle, and person) in the CRSS database,
with each observation in the crash data table representing a unique crash event identified
by a case number variable.

The study focused on predicting the severity of large truck crashes, with the target
variable determined by the most severely injured person involved. Severity was classified
using the KABCO scale in the CRSS database [42], where fatal and suspected serious
injuries were grouped as major injuries (K + A), and suspected minor injuries, possible
injuries, and no injuries were combined as minor injuries (B + C + O) to create a binary
classification. While a multi-class approach is also viable, this study opted for a binary
formation [43–45].

After linking the data tables and transforming the severity of injuries, only observa-
tions that referred to the most severely injured person in the crashes were kept, and the
observations with duplicated case numbers were removed. The redundant features and
observations with values such as “reported as unknown” and “unknown” were also re-
moved. The final data set included 8365 observations and 22 input features. The descriptive
statistics for the selected variables are shown in Table 1 From here on, this data set will be
referred to as the original data set (ODS).

Table 1. Descriptive statistics of selected factors.

Factors Frequency (% 1) Factors Frequency (% 1)

Crash Characteristics Vehicle-Related Factors
Collision Type Vehicle Count Mean = 2.01, 2 Std = 0.63

Rear End 2579 (30.83) Occupant Count Mean = 1.27, 2 Std = 0.65
Sideswipe 2288 (27.35) Cargo Body

No Collision 1608 (19.22) Yes 4217 (50.41)
Angle 1431 (17.11) No 4148 (49.59)
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Table 1. Cont.

Factors Frequency (% 1) Factors Frequency (% 1)

Others 275 (3.29) Spatial Attributes
Head-on 184 (2.20) Land Use

Rollover Rural 2619 (31.31)
Yes 492 (5.88) Urban 5746 (68.69)
No 7873 (94.12) Interstate

Hit and Run Yes 2156 (25.77)
Yes 310 (3.71) No 6209 (74.23)
No 8055 (96.29) Intersection

Speeding Related Yes 2933 (35.06)
Yes 610 (8.31) No 5432 (64.94)
No 6731 (91.69) Road and Traffic Attributes

Driver-Related Factors Road Alignment
Sex Straight 7430 (88.82)

Male 6559 (78.41) Curved 935 (11.18)
Female 1806 (21.59) Speed Limit

Age Medium 3476 (41.55)
Middle 3933 (47.02) Low 2811 (33.60)
Young 3260 (38.97) High 2078 (24.85)

Old 1172 (14.01) Environmental Factors
Drinking Lighting

Yes 237 (2.83) Daylight 6521 (77.96)
No 8128 (97.17) Dark 1597 (19.09)

Restrain Use Other 247 (2.95)
Yes 8076 (96.55) Weather
No 289 (3.45) Clear 5874 (70.22)

Temporal Characteristics Cloudy 1437 (17.18)
Time of Day Rain 761 (9.10)

Day 6620 (79.14) Others 293 (3.50)
Night 1745 (20.86) Road Surface Condition

Day of Week Dry 6882 (82.27)
Weekday 7021 (83.93) Wet 1163 (13.90)
Weekend 1344 (16.07) Others 320 (3.83)

1 Percentage of the categories. 2 Std = standard deviation.

3.2. Clustering Method

In this study, we used the k-prototypes clustering algorithm because it is highly
suitable for data sets with both numerical and categorical input features. The k-prototypes
clustering algorithm is a hybrid algorithm that was derived from the popular k-means
clustering algorithm [46]. While the distance between the numerical features was obtained
through the Euclidean distance function, the distance between the categorical features was
obtained through a simple matching coefficient. Equation (1) shows the distance function
between the observations and the cluster’s center:

E =
k

∑
l=1

n

∑
i=1

yild(Xi, Ql) (1)

Here, the objective of the k-prototypes clustering algorithm is to minimize the distance
function (E) and segment the given data set. X denotes the given data set. In Equation (1),
Ql is the center for cluster l, yil is the dummy variable that equals 0 when observation i
is assigned to cluster l, and d(Xi, Ql) is the distance measure for both the numerical and
categorical variables in brief. Equation (2) shows the expansion of Equation (1) into the
components of numerical and categorical features:

d(Xi, Ql) =
p

∑
j=1

(xr
ij − qr

lj)
2 + γl

m

∑
j=p+1

δ(xc
ij, qc

ij) (2)



Information 2024, 15, 145 6 of 18

In Equation (2), the first part refers to the squared Euclidean distance function for the
numerical features, and the second part refers to the simple matching coefficient for the
categorical features. Here, qr

lj and q2
l j represent the center of the numerical and categorical

features for cluster l, respectively. In Equation (2), superscript r represents the numerical
features, and superscript c represents the categorical features. In the second term of
Equation (2), γl is used to balance the influence of categorical and numerical features
during the clustering process. The complete distance function for cluster l is computed
using the equation below:

El =
n

∑
i=1

yil

mr

∑
j=1

(xr
ij − qr

ij)
2 + γl

n

∑
i=1

yil

mr

∑
j=1

δ(xc
ij, qc

ij) = Er
l + Ec

l (3)

The second term Ec
l in Equation (3) is further explained by Equation (4). In Equation (4),

Cj is the set of all the discrete values of the categorical variable j, and p(cj ∈ Cj|l) is the
probability of the discrete value qj from the set Cj being in cluster l:

Ec
l = γl

mc

∑
j=1

nl(1 − p(qc
ij ∈ Cj|l)) (4)

3.3. Sampling Approaches

ADASYN [47], which stands for adaptive synthetic sampling, is an over-sampling
algorithm for imbalanced data sets. When dealing with imbalanced data sets, it focuses on
hard-to-predict observations involving the minority class. First, the ADASYN algorithm
calculates the ratio between the observations involving the minority class and the majority
class. This allows the algorithm to focus on the minority class observations that are hard
to predict. Secondly, it randomly selects an observation involving the minority class and
finds its k-nearest neighbors. Then, it calculates the ratio between these neighbors and
observations involving the majority class. A higher ratio indicates that there is a greater
number of observations involving the majority class in the neighborhood of the initially
selected observation involving the minority class. Later, the ADASYN algorithm creates
more synthetic versions for this observation. The desired ratio of observations involving
minority class and majority class is expressed as Nre-minority/Nmajority, where Nre-minority
refers to the number of observations involving the minority class after resampling and
Nmajority refers to the number of observations involving the majority class.

NearMiss [48] refers to a collection of under-sampling algorithms that tackle imbal-
anced data sets by removing the majority class observations that are closest to the minority
class observations. The NearMiss algorithm initially calculates the distances between all
observations involving the majority and minority classes. Later, it selects n majority class
observations that have the smallest distances to the minority class observations. There are
three versions of the NearMiss algorithm. NearMiss-1 selects the majority class observa-
tions for which the average distances to the k-nearest minority class-involved observations
are the smallest. NearMiss-2 selects the majority class observations for which the average
distances to the k-farthest minority class observations are the smallest. NearMiss-3 works
in two steps. First, it will keep the k-nearest majority class neighbors for each minority
class observation. Later, from those neighbors, it will select those with the smallest average
distances to the minority class observations. The desired ratio of observations involving the
minority class and the majority class after resampling is expressed as Nminority/Nre-majority.
Here, Nre-majority refers to the number of observations involving the majority class after
resampling, and Nminority refers to the number of observations involving the minority class.
In this study, we used only the NearMiss-2 sampling approach, since it outperformed the
other two [48].

SMOTETomek is a hybrid sampling approach. This hybrid-sampling approach is
a combination of SMOTE [49] over-sampling and the Tomek links [50] under -sampling
approach. SMOTE tackles imbalanced data sets by strategically synthesizing new observa-
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tions for the minority class. Initially, the SMOTE algorithm randomly selects a minority
class- observation and finds its k-nearest neighbors. Then, the algorithm calculates the dif-
ferences between the initially selected observation with the minority class and its k-nearest
neighbors. Later, the differences are multiplied by a number between 0 and 1. In this way,
new observations are generated based on all or some of the nearest neighbors. On the other
hand, the Tomek links refer to the pair of minority and majority class-involved observations
that are each other’s nearest neighbors. Between these two observations, the algorithm
removes the observation with the majority class to create balance in the data set. For the
desired ratio of observations involving the minority class and observations involving the
majority class, SMOTETomek follows the same formula as ADASYN.

3.4. Machine Learning Models

To compare different data-sampling algorithms, we used four machine-learning mod-
els from the sci-kit-learn library in Python. The models are described below.

The logistic regression (LR) [51] classifier is a popular supervised machine learning
model particularly used for binary classification. The LR classifier uses the sigmoid function
to predict the probability of an event. In this study, it predicts whether the severity of a
crash involving large trucks will be major or minor injuries. The sigmoid function maps
any real-valued number in the range from 0 to 1. This makes the sigmoid function suitable
for predicting probabilities, which also range from 0 to 1.

Random forest (RF) was first introduced by Breiman [52]. It can be used for both
classification and regression tasks. The RF classifier is an ensemble of individual and
uncorrelated decision trees. The final prediction is determined by majority voting by those
decision trees. The term “random” in RF comes from two aspects. First, each decision
tree is developed on a random subset of the training data and selected with replacement.
Secondly, while building the decision trees, a random subset of features is used at each
split. This technique is known as bagging (bootstrap aggregation).

Gradient-boosted decision trees (GBDT) is another popular ensemble learning method
for classification and regression tasks. It also belongs to the family of boosting algorithms,
where each weak learner (decision trees) is trained sequentially to minimize the loss
function. The term “gradient” indicates the optimization of the gradient of a loss function.
Typically, the log loss is used for classification with probabilistic outputs. Here, the objective
is to correct the errors made by an ensemble of trees at each iteration. Elyassami et al. [53]
compared the decision trees (DT), RF, and GBDT models for the prediction of crash severity
on a data set collected from the Maryland State Police in the US. The results indicated that
the GBDT model was superior to the RF and DT models.

Multilayer perceptron (MLP) [54] is a widely popular artificial neural network model.
It belongs to the class of feedforward neural networks. MLPs learn complex relationships
between the input and output features through several interconnected layers. A typical
neural network architecture has three layer types: one input layer, one output layer, and
hidden layers between the input and output layer. The input layer receives the input
features, and the output layer produces prediction results. Each hidden layer consists of
multiple neurons. The term “multilayer” comes from having multiple hidden layers.

3.5. Performance Metrics

The components of a confusion matrix are widely used metrics for evaluating the
performance of a model for classification tasks. For a binary classification task, the outputs
are typically referred to as positive and negative classes. The components of a confusion
matrix are: TP (True Positives: correctly identified positive cases), TN (True Negatives:
correctly identified negative cases), FP (False Positives: negative cases incorrectly classified
as positive), and FP (False Negatives: positive cases incorrectly classified as negative). Based
on these components, we can obtain the following matrices to evaluate the performances of
a model:
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Accuracy =
TP + TN

TP + FP + FN + TN
(5)

Sensitivity or Recall =
TP

TP + FN
(6)

Speci f icity =
TN

TN + FP
(7)

For a nearly balanced data set, these metrics are sufficient to evaluate the performance
of a model for classification tasks. However, models developed on the untreated imbalanced
data sets tend to favor the majority class [55]. While the sensitivity score indicates how
well the classifier correctly identifies the positive class, the specificity indicates how well
the classifier correctly identifies the negative class. Instead of using these metrics, we
used the geometric mean and receiver operating characteristic area under the curve (ROC
AUC) score. The geometric mean (G-Mean) indicates how well a model performs at the
threshold where the TP rate and TN rate are equal. It is inclined to maximize the TPs and
TNs while keeping them relatively balanced [56]. Equation (8) shows the formula for the
G-Mean. In addition to the G-Mean, we used the receiver operating characteristic area under
the curve (ROC AUC) score. The ROC [57] is a graphical representation of the trade-off
between the TPs and FPs. It shows that any model cannot increase the number of TPs
without incrementing of FPs. The ROC AUC score quantifies the area under the ROC curve
into a single measure to indicate the performance of a model across different probability
thresholds. Equation (9) shows the formula for the AUC score:

G-Mean =
√

Sensitivity × Speci f icity (8)

AUC =
1 + TP − FP

2
(9)

4. Results
4.1. Workflow

To balanced the collected data set, we followed a multi-step process. First, the imbal-
anced data set was clustered using k-prototypes clustering algorithm. Within in cluster,
the major and minor injury observations were separated. Then, the distances between the
cluster centers and minor injury crash observations were calculated, resulting in distance
matrices corresponding to the number of clusters. These matrices were then utilized to
identify the farthest minor injury observation from each cluster’s center. Following this, the
distances between the identified minor injury observations and major injury observations
were computed. Finally, to under-sample each cluster, the nearest major injury observations
were systematically removed, matching the number of minor injury observations in each
cluster. The distances between the observations were calculated using the same distance
function as in the k-prototypes clustering algorithm. The value of γ was set to 0.70 since
there were more categorical features than numerical features.

After under-sampling the major injury observations, the major injury observations
were concatenated with the minor injury observations for each cluster. Subsequently,
the under-sampled clusters were concatenated. Then, the ODS and cluster-based under-
sampled data set (CUDS) were split into train and test sets using a 70/30 ratio. Later, the
train sets were resampled using ADASYN, NearMiss-2, and SMOTETomek. Four machine
learning models were trained on the resampled train sets. Lastly, the models were tested on
the test sets and evaluated using G-Mean and AUC scores. Figure 1 shows the resampling
process and model development workflow.
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Figure 1. Workflow for the application of cluster-based under-sampling coupled with different
sampling approaches.

4.2. Clustering

To cluster the crash data using k-prototypes algorithm, we first needed to determine
the optimal number of clusters. The optimal number of clusters was obtained by visualizing
the within-cluster sum of squares (WCSS) in a line plot. This method is known as the elbow
method. The elbow method involves executing the clustering algorithm on a data set across
a range of k values, typically ranging from two to a predetermined upper limit. Then,
the WCSS is computed for each k value and visualized through a line plot. The graphical
representation often exhibits an arm-like structure. The optimal number of clusters for
clustering is identified at the “elbow” of this arm, where the addition of more clusters ceases
to yield a substantial reduction in the WCSS. Figure 2 indicates that the optimal number of
clusters is three. Table 2 shows the total number of observations and the proportions of
minor and major injury crashes involving large trucks in the original data set (ODS) and
each cluster.

Table 2. Number of observations and proportion of major and minor injury crashes in ODS
and clusters.

ODS CL1 CL2 CL3

Total Number of Observations 8365 4373 2031 1961
Minor Injury Crashes (%) 87.76 87.54 93.3 82.51
Major Injury Crashes (%) 12.24 12.46 6.7 17.49
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Figure 2. Optimal number for clustering.

4.3. Performances of Models Trained on Imbalanced ODS and CUDS

In this study, the machine learning models were developed using the sci-kit-learn
library in Python [58]. The models were used almost in their default settings. For RF
and GBDT, the number of decision trees (estimators) was 100. For RF, we used the “gini”
criterion, and for GBDT, the log loss function was used. For MLP, the activation function
and solver were “logistic” and “adam”, respectively. Models trained on the ODS and CUDS
were compared with the models trained on the resampled data sets. Table 3 shows the
G-Mean and AUC scores of the LR, RF, GBDT, and MLP models tested on the train sets of
imbalanced ODS and CUDS.

Table 3. Performance of models developed on Imbalanced ODS and CUDS.

Imbalanced ODS Imbalanced CUDS

Data Sets LR RF GBDT MLP LR RF GBDT MLP

G-Mean 45.57 44.28 46.92 45.91 54.86 54.3 53.43 53.69
AUC 59.63 58.04 60.22 59.77 64.1 63.46 63.34 63.45

Notes: Scores are expressed as percentages.

The G-Mean and AUC scores in Table 3 clearly indicate that the models developed on
the imbalanced CUDS outperformed those developed on the imbalanced ODS. G-Mean
scores for ODS models ranged from 44 to 47, while CUDS models achieved 53 to 55.
Similarly, AUC scores went from 58 to 60.5 for ODS models and 63 to 64.5 for CUDS models.
While GBDT performed best among models developed on the imbalanced ODS, the LR
model emerged as the leader on the imbalanced CUDS, achieving the highest G-Mean and
AUC scores.

4.4. Performances of Models Trained on Resampled ODS

In the imbalanced train set of the ODS, the number of major and minor injury obser-
vations was 5138 and 717, respectively. To observe how changes in the number of major
and minor injury observations impacted model performance, we resampled the data sets
at ratios of 0.25, 0.50, 0.75, and 1, respectively. Table 4 shows the number observations
in the resampled train sets of the ODS after resampling by ADASYN, NearMiss-2, and
SMOTETomek.
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Table 4. Number of major and minor injury observations in ODS after resampling.

0.25 0.50 0.75 1

Sampling Approaches Major Minor Major Minor Major Minor Major Minor

ADASYN 5138 1313 5138 2342 5138 3967 5138 4996
NearMiss-2 2868 717 1434 717 956 717 717 717

SMOTETomek 5078 1224 5093 2524 5093 3808 5099 5099

Table 5 exhibits the G-Mean and AUC scores of the models trained on the train set of
the ODS after resampling by ADASYN, NearMiss-2, and SMOTETomek. When ADASYN
resampling was implemented at a ratio of 0.25, the G-Mean scores favored the RF model,
while the AUC scores favored the MLP model. At a ratio of 0.50, the G-Mean scores
identified the MLP model as optimal, whereas the AUC scores favored the GBDT model.
At ratios of 0.75 and 1, both the G-Mean and AUC scores consistently favored the GBDT
model as the most promising model. The highest G-Mean and AUC scores were achieved
by the GBDT model at a ratio of 0.75, while the lowest G-Mean score could be ascribed to
the GBDT model at a ratio of 0.25, and the lowest AUC score could be ascribed to the RF
model at a ratio of 0.25.

Table 5. Performance of models developed on resampled ODS.

G-Mean AUC

Data Set Models 0.25 0.50 0.75 1 0.25 0.50 0.75 1

ADASYN

LR 52.25 60.87 66.23 66.16 62.33 65.86 67.85 67.01
RF 53.86 55.33 59.19 58.3 62.03 62.13 63.57 62.63

GBDT 52.24 61.16 67.99 67.88 62.71 66.5 69.6 68.67
MLP 53.31 61.39 65.88 65.78 62.76 66.24 67.6 67.05

NearMiss-2

LR 61.81 66.29 64.16 59.72 66.47 66.5 64.77 61.97
RF 59.98 61.93 50.84 44.05 61.42 62.59 56.89 54.28

GBDT 60.53 65.34 56.28 47.1 62.51 65.41 60.33 55.44
MLP 61.84 65.94 61.42 58.76 66.52 66.1 62.53 60.76

SMOTETomek

LR 51.02 62.13 65.54 66.3 61.66 66.57 67.67 67.38
RF 52.51 54.57 59.25 58.49 61.68 61.71 63.84 62.72

GBDT 51.9 63.03 66.9 67.05 62.48 67.51 69.22 68.14
MLP 52.1 62.88 64.56 66.99 62.06 66.77 67.21 68.29

Notes: Scores are expressed as percentages. Column-wise highest value is underlined. Row-wise highest value is
italicized for G-Mean and AUC separately.

When the ODS was resampled by NearMiss-2 at a ratio of 0.25, both the G-Mean and
AUC scores indicated that it was better to apply the MLP model. At ratios of 0.50, 0.75, and
1, both the G-Mean and AUC scores indicated that it was best to apply the LR model. While
the highest G-Mean score was achieved by the LR model at a ratio of 0.50, the highest AUC
score was achieved by MLP at a ratio of 0.25. The RF model was the worst performing
model when the ODS was resampled by NearMiss-2 at a ratio of one.

The G-Mean and AUC scores revealed varied model performances when the ODS
was resampled by SMOTETomek at different ratios. At a ratio of 0.25, while the G-Mean
scores favored the RF model as the most promising model, the AUC score favored GBDT
as the most promising model. At ratios of 0.50 and 0.75, both the G-Mean and AUC scores
indicated that the GBDT model was the best choice. At a ratio of one, the G-Mean scores
indicated that the GBDT model was the best one, but the AUC scores indicated that the
MLP model was the best one.

Figures 3 and 4 graphically present the results from Table 5. The G-Mean line plots
for ADASYN and SMOTETomek indicate that the G-Mean scores of LR, GBDT, and MLP
were likely to increase sharply when the sampling ratio was increased from 0.25 to 0.75.



Information 2024, 15, 145 12 of 18

Beyond 0.75, further increases in the sampling ratio were less likely to affect their G-Mean
scores. The AUC scores of LR, GBDT, and MLP were also likely to follow a similar pattern.
While increasing the sampling from 0.25 to 0.75, the G-Mean and AUC scores of RF also
increased but not as sharply as for the other models. After reaching 0.75, the G-Mean and
AUC scores of RF decreased slightly.

Figure 3. G-Mean scores of models developed on resampled ODS.

Figure 4. AUC scores of models developed on resampled ODS.

According to the G-Mean line plot for NearMiss-2, increasing the sampling ratio from
0.25 to 0.50 led to an increase in the G-Mean scores for all four models. Beyond 0.50, the
G-Mean scores were likely to decrease significantly. For GBDT and RF, the rate of decrease
was higher than that of LR and MLP. The AUC line plot for NearMiss-2 indicates that GBDT
and RF were also likely to follow a similar pattern. However, the AUC scores of LR and
MLP were likely to decrease gradually as the sampling ratio increased from 0.25 to 1.

4.5. Performances of Models Trained on Resampled CUDS

In the imbalanced train set of the CUDS, the number of major and minor injury obser-
vations was 4421 and 717, respectively. Table 6 shows the number observations in the resam-
pled train sets of the CUDS after resampling by ADASYN, NearMiss-2 and SMOTETomek.

Table 6. Number of major and minor injury observations in CUDS after resampling.

0.25 0.50 0.75 1

Sampling Approaches Major Minor Major Minor Major Minor Major Minor

ADASYN 4421 1207 4421 2116 4421 3515 4421 4421
NearMiss-2 2868 717 1434 717 956 717 717 717

SMOTETomek 4370 1054 4379 2168 4383 3277 4385 4385
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Table 7 presents the G-Mean and AUC scores of the machine learning models trained
on resampled training sets of the CUDS. When ADASYN was applied to the CUDS at a
ratio of 0.25, both the G-Mean and AUC scores suggested that the LR model was likely
to outperform the other models. At a ratio of 0.50, the MLP model exhibited superior
performance. Conversely, at ratios of 0.75 and 1, the G-Mean and AUC scores consistently
favored the GBDT model, with the highest G-Mean score achieved at a ratio of 0.75, while
the MLP model obtained the highest AUC score at a ratio of 0.50.

When NearMiss-2 was applied to the CUDS, the MLP model demonstrated the highest
G-Mean and AUC scores for sampling ratios of 0.25, 0.75, and 1 but not for the ratio of 0.50.
At a ratio of 0.50, the LR model resulted in the highest G-Mean and AUC scores. Notably,
the worst performing model was the RF model at a sampling ratio of one.

When the CUDS underwent resampling using SMOTETomek, the performances of
the models were consistent to some extent. At ratios of 0.25 and 0.50, the G-Mean and
AUC scores clearly favored the MLP model. On the other hand, at ratios of 0.75 and 1, the
G-Mean and AUC scores indicated that the GBDT model was superior to the other models.
While the GBDT model resulted in the highest G-Mean and AUC scores at a ratio of one,
the RF model resulted in the lowest G-Mean and AUC scores at a ratio of 0.25.

Table 7. Performance of models developed on resampled CUDS.

G-Mean AUC

Data Set Models 0.25 0.50 0.75 1 0.25 0.50 0.75 1

ADASYN

LR 61.34 70.11 69.73 70.05 67.44 72.27 70.65 70.46
RF 59.29 63.26 62.52 64.34 65.64 67.14 65.81 67.04

GBDT 59.09 68.73 71.26 71.03 66.36 71.62 72.07 71.24
MLP 57.92 70.66 69.1 69.9 65.55 72.38 70.3 70.57

NearMiss-2

LR 60.81 66.89 66.71 65.21 66.18 67.74 66.72 65.5
RF 59.96 63.6 58.08 52.46 61.77 63.61 59.78 56.87

GBDT 58.45 64.76 62.03 58.06 60.96 64.79 62.68 60.58
MLP 61.11 66.02 66.79 65.38 66.22 67.18 66.79 65.66

SMOTETomek

LR 59.11 69.64 70.76 70.97 66.13 71.99 71.94 71.59
RF 56.25 63.64 63.41 63.58 63.93 67.7 66.74 66.54

GBDT 57.09 68.69 70.95 71.98 65.04 71.57 72.25 72.41
MLP 60.8 69.64 69.28 70.1 67.06 71.99 71.22 71.02

Notes: Scores are expressed as percentages. Column-wise highest value is underlined. Row-wise highest value is
italicized for G-Mean and AUC separately.

Figures 5 and 6 depict the G-Mean and AUC scores outlined in Table 7 through line
plots. The G-Mean line plots for ADASYN and SMOTETomek suggest that increasing the
sampling ratio from 0.25 to 0.50 is likely to result in a sharp increase in the G-Mean scores
for the LR, GBDT, and MLP models. The rise in G-Mean scores for RF was less pronounced
compared with the other models. The AUC line plots for ADASYN and SMOTETomek
exhibit a similar trend. Further increasing the sampling from 0.50 to 1 is less likely to yield
significant changes in the G-Mean and AUC scores of the models.

The impact of variations in sampling ratios on the performance of models developed
on data sets resampled by NearMiss-2 differed from that of ADASYN and SMOTETomek.
Increasing the sampling ratio from 0.25 to 0.50 is likely to lead to a sharp increase in the
G-Mean scores of the models. However, escalating the sampling ratio from 0.50 to 1 is
likely to result in a significant decrease in the G-Mean scores of RF and GBDT, while the
changes in the G-Mean scores of LR and MLP are likely to be more gradual.

Conversely, the AUC scores of RF and GBDT exhibited a sharp increase when the
sampling ratio for NearMiss-2 was raised from 0.25 to 0.50. Within this range, the AUC
scores of LR and MLP remained relatively stable. Increasing the sampling ratio from 0.50 to
1 is likely to cause a marked decrease in both the G-Mean and AUC scores of RF and GBDT.
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In contrast, the LR and MLP models are less likely to experience such a sharp decline in
G-Mean and AUC scores with an increase in the sampling ratio from 0.50 to 1.

Figure 5. G-Mean scores of models developed on resampled CUDS.

Figure 6. AUC scores of models developed on resampled CUDS.

5. Discussion

This study aimed to compare the ADASYN, NearMiss-2, and SMOTETomek sampling
approaches that were coupled a novel cluster-based under-sampling (CU) technique. Before
applying these sampling approaches to ODS and cluster-based under-sampled data set
(CUDS), LR, RF, GBDT and MLP models were employed on the trains sets of ODS and
CUDS. The G-Mean and AUC scores indicated that models developed on CUDS are superior
to models developed on ODS. The effectiveness CU coupled with ADASYN, NearMiss-2,
and SMOTETomek, respectively was also evaluated through the performance of these
machine learning models. The ODS was also resampled using these sampling approaches.
The comparison between results obtained on resampled ODS and CUDS indicated that CU
combined with over-sampling or under-sampling or hybrid-sampling is clearly better than
applying the sampling approaches directly to raw imbalanced crash data.

When comparing the models developed on data sets resampled by ADASYN, the
highest G-Mean and AUC scores obtained on the resampled CUDS were 1.05 and 1.04 times
higher, respectively, than those obtained on the resampled ODS. Similarly, for the models
developed on data sets resampled by NearMiss-2, the highest G-Mean and AUC scores
obtained on the resampled CUDS were 1.01 and 1.02 times higher, respectively, compared
with the resampled ODS. In the case of models developed on data sets resampled by
SMOTETomek, the highest G-Mean and AUC scores obtained on the resampled CUDS
were 1.07 and 1.05 times higher, respectively, than those obtained on the resampled ODS.
These findings consistently underscore the enhanced performance of models trained on
the resampled CUDS compared with their counterparts trained on the resampled ODS. In
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addition, the G-Mean and AUC scores obtained on both the ODS and CUDS suggest that
resampling using ADASYN and SMOTETomek produces almost similar results.

When examining the optimal combination of a machine learning model and a sampling
approach, the results obtained on the resampled ODS indicated that the GBDT model
tends to outperform LR, RF, and MLP when resampling is carried out using ADASYN
and SMOTETomek. The optimal sampling ratio with ADASYN was 0.75, while with
SMOTETomek, the optimal sampling ratios were 0.75 and 1. Conversely, when resampling
was conducted using NearMiss-2, the G-Mean scores suggest that LR is likely to perform
well, with an optimal sampling ratio of 0.50, while the AUC scores indicate that the MLP
model is more likely to excel with an optimal sampling ratio of 0.25.

Addressing the effectiveness of different models on the resampled CUDS, the G-Mean
scores suggested that the GBDT model was the best choice for ADASYN resampling,
with an optimal sampling ratio of 0.75. However, the AUC scores favored the MLP
model, suggesting its superiority with an optimal sampling ratio of 0.50. In the case of
SMOTETomek, both the G-Mean and AUC scores favored the GBDT model as the optimal
choice at a sampling ratio of one. On the other hand, for the CUDS resampled by NearMiss-
2, both the G-Mean and AUC scores indicate that the LR model is likely to perform the
best, especially at a sampling ratio of 0.50. These findings provide valuable insights into
the interplay between the machine learning models, sampling approaches, and optimal
ratios for addressing class imbalance in crash severity analysis.

Resampling the ODS using ADASYN and SMOTETomek revealed that increasing
the sampling ratio from 0.25 to 0.75 significantly enhanced the performance of LR, GBDT,
and MLP, while the increase in performance for RF was comparatively more gradual.
Furthermore, increasing the sampling ratio from 0.75 to 1 did not result in a substantial
change in the models’ performance. In the case of resampling the ODS using NearMiss-
2, raising the sampling ratio from 0.25 to 0.50 is likely to improve model performance.
However, increasing the ratio from 0.50 to 1 led to a pronounced reduction in the models’
effectiveness. In general, the performances of models are expected to decrease as the
number of observations for training decline.

Similar trends were observed when resampling the CUDS using ADASYN and
SMOTETomek. Increasing the sampling ratio from 0.25 to 0.50 significantly improved
the performance of LR, GBDT, and MLP. The impact of changes in the sampling ratios
for resampling the CUDS using NearMiss-2 mirrored that of the ODS. These findings
shed light on the nuanced effects of varying sampling ratios on different machine learning
models, providing valuable insights for optimizing the handling of class imbalance in crash
severity analysis.

6. Conclusions

This study makes a significant contribution by introducing a novel cluster-based under-
sampling technique, incorporating the same distance function as in k-prototypes clustering
for calculating the distances between major and minor injury observations. Furthermore,
the findings highlighted that the combination of cluster-based under-sampling and ex-
plored sampling approaches substantially improves the performance of machine learning
models. In addition, our results indicate that ADASYN and SMOTETomek enhance model
performance to a similar level and are likely to outperform NearMiss-2. Notably, the GBDT
model is likely to perform well on crash data resampled by ADASYN and SMOTETomek,
while the LR model is preferable with NearMiss-2. Lastly, increasing the sampling ratio
while applying ADASYN and SMOTETomek is likely to enhance the performance of models
up to a certain level, while with NearMiss-2, the performance is likely to drop significantly
after a certain point. This comparative study may work as a reference for future road safety
researchers and analysts to choose an appropriate combination of sampling approaches
and machine learning models. Authorities and individuals interested in discovering more
accurate estimations of the key factors of crash severity may also utilize the proposed
cluster-based sampling approaches.
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Like any other study, this study also has some limitations. First of all, this study opted
for a binary formation regarding crash severity, where major injury crashes constituted
both severe and fatal injuries. A multi-class formation is also a viable approach and
may yield different results when the proposed cluster-based under-sampling technique
is applied. Secondly, only three sampling approaches were tested in this study. Future
researchers can use more novel variants of under-sampling and over-sampling approaches.
In addition, they may compare the proposed cluster-based under-sampling technique with
existing cluster-based under-sampling techniques. Also, future researchers can opt for more
advanced machine learning models such as convolutional neural networks and XGBoost.
Lastly, the distribution of major and minor injury crashes in the collected crash data was
not extremely imbalanced. The proposed cluster-based under-sampling technique should
be tested on more imbalanced data set.
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