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Abstract: Keyword extraction from Knowledge Bases underpins the definition of relevancy in
Digital Library search systems. However, it is the pertinent task of Joint Relation Extraction, which
populates the Knowledge Bases from which results are retrieved. Recent work focuses on fine-tuned,
Pre-trained Transformers. Yet, F1 scores for scientific literature achieve just 53.2, versus 69 in the
general domain. The research demonstrates the failure of existing work to evidence the rationale for
optimisations to finetuned classifiers. In contrast, emerging research subjectively adopts the common
belief that Natural Language Processing techniques fail to derive context and shared knowledge.
In fact, global context and shared knowledge account for just 10.4% and 11.2% of total relation
misclassifications, respectively. In this work, the novel employment of semantic text analysis presents
objective challenges for the Transformer-based classification of Joint Relation Extraction. This is the
first known work to quantify that pipelined error propagation accounts for 45.3% of total relation
misclassifications, the most poignant challenge in this domain. More specifically, Part-of-Speech
tagging highlights the misclassification of complex noun phrases, accounting for 25.47% of relation
misclassifications. Furthermore, this study identifies two limitations in the purported bidirectionality
of the Bidirectional Encoder Representations from Transformers (BERT) Pre-trained Language Model.
Firstly, there is a notable imbalance in the misclassification of right-to-left relations, which occurs
at a rate double that of left-to-right relations. Additionally, a failure to recognise local context
through determiners and prepositions contributes to 16.04% of misclassifications. Furthermore, it is
highlighted that the annotation scheme of the singular dataset utilised in existing research, Scientific
Entities, Relations and Coreferences (SciERC), is marred by ambiguity. Notably, two asymmetric
relations within this dataset achieve recall rates of only 10% and 29%.

Keywords: Joint Relation Extraction (JRE); digital libraries; Named Entity Recognition (NER);
Relation Extraction (RE); Pre-trained Language Model; transformer; SCIBERT; Scientific Entity
Relation and Coreferences (SciERC); PL-Marker; semantic text analysis; global context

1. Introduction

Search result relevancy for Digital Libraries is a pertinent challenge due to the grow-
ing number of scholarly publications. Additionally, there exists a distinct disinvestment
compared to the commercial semantic search sector. Software-as-a-service companies and
technology giants are financially incentivised to research the field due to the potential for
advertising gains and contractual agreements. Conversely, the success of Open Access has
led to archaic methods employed for Digital Libraries. Notably, such disparity results in
technological research advancement ironically limited by the algorithmic performance [1].

To improve relevancy in the Digital Library domain, much research into recommender
systems has been undertaken [2]. However, architecturally, semantic search result relevancy
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is highly dependent on sequential information extraction tasks, Named Entity Recognition
(NER)-deriving nouns, and Relation Extraction (RE)-obtaining relationships between nouns.
These tasks populate Knowledge Bases from which search results are ultimately retrieved.
As expected, approaches to such tasks have evolved in line with artificial intelligence
advancements, from rudimentary, rule-based methods to supervised learning, with notable
improvements in F1 scores. However, the widespread challenge for large, annotated input
datasets for supervised approaches limits both performance and efficiency.

Commercial investment from Google and OpenAI has driven emerging research
into performant Transformer-based Pre-trained Language Models, with encoder–decoder
question-answering interfaces gaining great publicity in recent times. Consequently, this
unsupervised pre-training reduces the input dataset requirement to a smaller, task-specific
dataset requirement for fine-tuning.

Furthermore, NER and RE tasks have been combined into one task, formulating
Joint Relation Extraction (JRE), in a bid to improve F1 scores and efficiency. JRE methods
undertake either a joint or sequential learning approach. However, JRE F1 scores for
literature-based datasets underperform versus the general domain, particularly for scientific
literature. Furthermore, the lack of investment in research on Pre-trained Language Models
for Digital Libraries is evidenced by the small number of fine-tuning datasets available.

Established linguistic theory underpins the well-known ambiguity for semantic and
discourse-level classification tasks, such as JRE. It is therefore logical to assume a difficulty
in the derivation of pragmatics. Conversely, lexical and syntactic Part-of-Speech (POS)
tagging [3] and dependency parsing [3,4] evidence near-human accuracy when employing
Transformer-based approaches. Yet, the reliance of fine-tuned classifiers for scientific JRE in
current research on these linguistic theoretical challenges of language ambiguity [5] and
context derivation [6–8] presents an undeniable limitation to existing research.

Subsequently, this paper presents a novel methodology to derive evidence-based
challenges limiting JRE F1 scores in the scientific Digital Library domain. Current research
fails to evidence the rationale for model optimisations, and, subsequently, improvements
in F1 scores are negligible. Indeed, the novelty of this work extends beyond the task and
domain under study. In fact, due to a widespread lack of scientific evidence underpinning
Transformer fine-tuning, this work presents a semantic text analysis framework to evidence
task-specific fine-tuned model optimisations. Employing the state-of-the-art fine-tuned
scientific JRE classifier, PL-Marker [6], this study uses confusion matrices to analyse relation
types with low recall. Semantic text analysis is subsequently undertaken on a relation
sample to draw a correlation between semantic challenges derived from existing work and
model improvements derived objectively from POS tagging due to the high task accuracy.
To conclude, the resulting contributions are as follows:

• Firstly, the proposed framework evidences the subjective limitations of the model opti-
misations proposed in current research. In fact, global context and shared knowledge
account for just 10.4% and 11.2% of the relation sample misclassifications, respectively.

• Secondly, this work is novel in quantifying pipelined error propagation within state-
of-the-art JRE approaches for scientific literature as the largest performance limitation,
accounting for 45.3% of misclassifications.

• In addition, the singular task-specific dataset available is proven to limit F1 score due
to annotation scheme ambiguities, with [Feature-Of] and [Part-Of] achieving just 10%
and 29% recall, respectively. There also exists a failure to appropriately represent
complex noun phrases, accounting for 25.47% of total misclassifications, as the dataset
contains solely paper abstracts. As such, a new test and train dataset is recommended.

• Finally, a weakness in BERT architecture for accurate modelling of localised language
representations is highlighted in 16.04% of misclassifications. Future research into
BERT bidirectional encodings is proposed.

The structure of this paper is outlined as follows. Section 2 presents a critical analy-
sis of relevant work, highlighting the gap in existing research: the evaluation of current
approaches to Transformer Pre-trained Language Models, recent supervised fine-tuning
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approaches to JRE, and their methods for global context representation. Section 3 poses
a novel methodology for semantic text analysis of model predictions, subsequently iden-
tifying the prevailing semantic challenges and model improvements, supported by POS
tagging. Section 4 presents the results and analysis, and Section 5 critically analyses the
findings with regards to the limitations of current research. Section 6 concludes the study
findings, proposing areas for future research.

2. Recent Advancements
2.1. Transformer Pre-Training

BERT Pre-trained Language Model advanced language encoding improving F1 score
by +7pp through bidirectional modelling of both right-to-left and left-to-right representa-
tions [9]. Conversely, previous state-of-the-art ELMo concatenates unidirectional represen-
tations [9,10] and highly publicised OpenAI GPT [11–14] fail to encode right-to-left context
at all. Such comparative architectures inappropriately represent the semantics of natural
language. Furthermore, domain-specific re-pretraining increased target task Relation Ex-
traction (RE) F1 scores. BIOBERT, for the biomedical domain, improved F1 by +12.36pp [15],
and SCIBERT achieved +2.51pp uplift for scientific literature, with a vocabulary overlap of
just 42% with the general domain [16]. Naturally, semantic ambiguity is a core challenge
for language encoding tasks, such as JRE. For example, ‘aim’, ‘estimate’, ‘object’, and ‘use’
could be nouns or verbs. In fact, domain-specific re-pre-training aims to resolve even more
complex scientific ambiguities, such as complex noun phrases, containing prepositions,
determiners, adjectives, and nouns, frequently labelled as entities in their entirety [17],
such as SciERC terms ‘space of candidate regions’ and ‘regular expressions’ [18]. Such
noun phrases are frequently present in scientific language [17], with the potential for enti-
ties nested inside these noun phrases [10]. This highlights a potential challenge in entity
boundary definition for scientific Named Entity Recognition.

Target task RE is further abstracted syntactically, as relational verbs may present ambi-
guity. For example, ‘is related to’ pertains to several possible definitions, with the direction-
ality also impacting the meaning. Indeed, relations may span multiple sentences [6,7] or
only be determined through inference [6]. In such cases, syntactic ambiguity is prevalent,
leading to a requirement to derive situated meaning outside of sentence structure or lo-
calised grammar. As a result, core challenges of context and shared knowledge have been
assumed in recent work [6–8,10].

2.2. Fine-Tuning Approaches

To resolve boundary definition challenges, all recent SCIBERT fine-tuning approaches
redefine entities as spans [1,6–8,10], building on BERT’s BILOU tag representations [9,10].
Such improvements have resulted in structural extensions to the BERT encoder, enabling a
token to pertain to 0 to many entities [6], as opposed to just one. In the example ‘space of
candidate regions’ [18], span-based approaches derive the entire term, as well as the nested
term ‘candidate regions’, as entities, whilst BILOU tags derive only a single entity.

A further fine-tuning approach is the evolution of multitask frameworks. DyGIE++ [8],
SpERT [10], and SpERT.PL [1] jointly learn NER and RE simultaneously, as opposed to the
traditional pipelining of NER classifications into the RE task [6,7]. Surprisingly, pipelining
achieves state of the art [6]. However, lightly researched solutions for error propagation
from NER to RE have been unfruitful, including training with predicted entities and
increasing the relation sample [7].

2.3. Global Context

Despite such well-documented scientific language complexities, recent work assumes
BERT’s limited localised language representations and subsequent failure to encode global
context are key areas of focus. Local context precedes or follows the entity boundaries,
denoting the relation type, and it is frequently defined syntactically through prepositions
and determiners. However, global context is relevant text denoting the relation, which is
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situated further away from the target entity, perhaps in a different sentence entirely. Whilst
multitask models, SpERT [10] and SpERT.PL [1], deem global context irrelevant, state-
of-the-art classifier PL-Marker [6], amongst other top-performing approaches, including
DyGIE++ [8] and PURE [7], incorporates methods for its encoding, such as a three-sentence
context window (see Table 1). The multitask framework, DyGIE++, additionally learns
coreference resolution, advocating a decrease in error propagation and an increase in learn-
ing propagation [8]. Yet, the pipelined model, PURE, has more recently demonstrated the
negligible value of sharing entity representations globally through coreferences, increasing
F1 by just +0.1pp, as local context is unique [7]. Indeed, specifically for scientific literature
classification, DyGIE++ acknowledges that this approach introduces just as many errors
as were resolved [8]. For example, whilst the entity ‘three-dimensional objects’ pertains
to two relations, as shown in Figure 1, the local context token ‘for’ is only relevant for
the [Used-For] relation. As shown in Table 1, it is notable that over time, fine-tuning
optimisations have incorporated an ever-increasing number of global context methods.

Table 1. Comparison of global context methods in fine-tuning.

Algorithm Year Approach Global Context Method

Markers Batch Computation

Context
Window

Coreference
Resolution Solid Levitated Inference Training

DyGIE++ [8] 2019

Multi-task

x x

SpERT [10] 2019

SpERT.PL [1] 2021

Pure (Full) [7] 2020

Pipelined

x x

Pure (Approx.) [7] 2020 x x x x x

PL-Marker [6] 2021 x x x x x
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Figure 1. Example of unique local entity context for different relation types containing the same
entities using SciERC.

PURE obtains global context by modelling interrelated objects of a subject, using
solid markers for labelling [7] (see Table 1). Most recently, state-of-the-art PL-Marker
advances encodings with the packed levitated marker. This approach associates multiple
subject and interrelated object entities, employing novel packing strategies for combined
logical inference [6]. Both approaches are demonstrated in Figure 2. PURE’s solid markers
generate three independent span pairs containing the subject ‘Copenhagen’ and objects
‘David’, ‘workers’, and ‘teammates’. However, the packed levitated marker packs the
objects and subject together to benefit from the semantic interrelation between the entities
within the sentence.

Indeed, emerging research has continued to optimise pipelined models for global
context. Cascade-SRN investigates the decomposition of the RE task into a subject extraction
task and a subject-oriented object extraction task [19]. PREFER further explores the use of
attention mechanisms to derive spans and context [20]. Yet neither approach has achieved
state of the art.
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2.4. Research Gap

Despite the focus of emerging research on encoding global context [6–8], performance
improvements are negligible, with just a +4.8pp increase in F1 score for target task RE
since 2019, as shown in Figure 3. State-of-the-art PL-Marker achieves an F1 score of 53.2.
However, in comparison, F1 scores for the general domain news and digital forum dataset,
ACE-05, achieve up to 69 [6].
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Figure 3. JRE F1 Scores for state-of-the-art, fine-tuned classifiers using SCIBERT Pre-trained Language
Model and SciERC dataset.

Current research fails to evaluate potential performance constraints related to the
singular scientific dataset employed in all research to date, Scientific Entities, Relations
and Coreferences (SciERC). SemEval 2017 and 2018 [17,18] are noted as two alternatives.
However, the former is proven to have a bias towards NER, and the latter only annotates
intra-sentence relations [18], which is unrepresentative of natural language.

Compared to the general domain, F1 scores indicate prevailing challenges for seman-
tic encoding. Yet, existing research fails to evidence the rationale for optimisations to
resolve purported challenges in language ambiguity [5], logical inference [6], and global
context [6–8]. Furthermore, whilst solutions to the pipelined error propagation issue have
been lightly investigated, no known work has quantified the impact of this challenge on
the model F1 score.

Subsequently, this work presents a semantic text analysis framework to scientifically
evidence the prevailing challenges and subsequent semantic model optimisations required
to improve F1 scores for scientific JRE.
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3. Semantic Text Analysis Framework

The framework is outlined in Figure 4. The state-of-the-art, fine-tuned pipelined
classifiers, PL-Marker [6], take as input the test set for the NER task and the test set and
entity predictions for the RE task. Relation types with low recall, which drive low model
F1 score, are identified through confusion matrices, forming the relation sample. POS
tag pre-processing facilitates the objective annotation of syntactic identifiers during text
analysis. Predictions and POS tags form the input for semantic text analysis, from which a
deductive hierarchy of theme annotations is made to ultimately draw a correlation between
prevailing semantic challenges and syntactic improvement proposals for future model
optimisation. Additional analysis of the SciERC dataset distribution supports the findings
on dataset limitation conclusions.
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3.1. Dataset

SciERC contains 500 abstracts from 12 NLP conferences, and the source data have
been retrieved from Semantic Scholar. The dataset includes annotations for named entities,
relations, and coreferences [18]. In line with PL-Marker, the original SciERC test set is
employed to evaluate the pre-trained model, and coreference annotations are excluded.
SciERC Kappa statistics state a named entity annotations score of 76.9%, and relation
annotations score 67.8%. Examples of the seven target relation types are displayed in
Figure 5, highlighting the directionality of each relation type. For example, [Compare] and
[Conjunction] are symmetric relation types denoted by the syntax ‘and’, whilst ‘sufficient
computational resources’ are a [Feature-Of] ‘devices’, with an asymmetric right-to-left
relation type denoted in this example.

3.2. Task Problem Definitions

For the NER task, an entity is correctly predicted when the start and end tokens
and entity type meet the gold label provided. The NER problem definition is detailed in
Equation (1) below.

E =
{

tm, tn, entitytype
}

(1)

For target task RE, boundaries evaluation is employed, defining a relation as correctly
predicted when the relation type and the subject and object entity bounds match the gold
label provided. The RE task definition is detailed in Equation (2) below.

R =
{

E1tm, E1tn, E2tm, E2tn, relationtype
}

(2)
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Equation (2) demonstrates the importance of the token positionings for asymmetric
relation types, where the directionality of the relation is denoted by the order in which the
entities in the formula are defined by the gold label. For instance, in the SCIERC example,
‘A domain independent model is proposed for the automated interpretation of nominal
compounds in English entities ‘domain independent model’ and ‘automated interpretation
of nominal compounds’ are defined’. Equation (3) demonstrates the gold label relation.

R = {1, 3, 8, 12, [Used − For]} (3)

In this case, [Used-For] is an asymmetric left-to-right relation. Whilst it may be argued
that a relation exists between these two entities from right to left, the relation type would
not be [Used-For], as changing the positioning of the entities within the gold label equation
would not have the same semantics as the above sentence.

3.3. Distribution Analysis

SciERC dataset distribution is assessed by comparing entity and relation labels across
the dev, test, and train sets. This analysis quantifies potential dataset performance limi-
tations when analysed in conjunction with the confusion matrices defined in Section 3.8,
such as potential under- or over-fitting. However, generalisations of entity and relation
representation to the scientific field cannot be made due to the lack of comparative datasets
available. Such distribution analysis for JRE datasets is novel, not only in the scientific
but also the general domain. Subsequently, the results may be used in future research as
supplementary insight for model performance to identifying possible dataset bias, which
negatively impacts F1 scores.

3.4. PL-Marker Model Architecture
3.4.1. SCIBERT Encoders

The NER and RE models each contain a SCIBERT encoder within their architecture,
with the predicted entity output from the NER model fed as input to the RE model. SCIBERT
is pre-trained unsupervised on 1.14 million Semantic Scholar journals, aided by scientific
vocabulary, SCIVOCAB [16]. Structural extensions to encoders are commonplace in fine-
tuned model architectures [7,8]. PL-Marker employs extensions to SCIBERT to facilitate
span and span pair representations, a three-sentence context window, and the model-
specific packing strategies defined below. Initially, PL-Marker pre-training parameters are
used to initialise each encoder. The SciERC dev set is then employed for parameter fine-
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tuning [16,18]. Finally, the SciERC training set is fed through the encoder, creating localised
language representations, which incorporate bidirectional language understanding [9]. The
outputs are then classified during fine-tuning. In this work, the pre-trained PL-Marker
model is employed using the evaluation bash scripts provided and the SciERC test set.

3.4.2. Entity Model Packing Strategy

The NER model structural extension categorises spanss into groups using a
neighbourhood-oriented packing strategy; those that share the same start or end token are
defined as nested entities [6]. For example, the entity ‘Bank of China’ is packed together
with nested token ‘China’ [6]. Secondly, levitated markers are applied to the span, which
then forms input to the SCIBERT NER encoder. Finally, span filtering classifies relevant
spans as a specific entity type.

3.4.3. Relation Model Packing Strategy

The relation model structural extension employs a subject-oriented packing strategy
to combine entity objects associated with a subject into a single instance for batch training
and inference. During this process, solid and levitated markers are assigned, respectively.
Figure 6 demonstrates the subject ‘direction-giving task’, which is packed with objects
‘eye gaze’, ‘head nods’, and ‘attentional focus’ to derive common relations [18]. If a
[Conjunction] relation is derived between objects ‘eye gaze’, ‘head nods’, and ‘attentional
focus’ and one of the three [Part-Of] relations to the subject is derived, then the other
object-to-subject relations can be inferred.
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The contextualised span pair representation outputs are then classified as relation
types. Model F1 scores are evaluated against the standard deviations reported in the
original PL-Marker experiment to ensure validity in conclusions.

3.5. Part-Of-Speech Tagging

NLTK’s default Perceptron tagger is employed due to its high accuracy compared to
TNT and CRF taggers [21]. State-of-the-art POS tagging with the Penn Treebank dataset
achieves an F1 Score of 98.3 [3]. Such pre-processing provides insight into syntactic–
semantic relationships. For example, a [Part-Of] relation is indicated by the preposition
‘from’ and the determiner ‘an’, which are directed from the entity ‘word-to-word alignments’
to the entity ‘MT system’ (Figure 7). Furthermore, the semantic text analysis framework
example in Figure 8 shows that POS tagging highlights the entity ‘iterative deformation of
a 3-D surface mesh’ is a complex noun phrase, inclusive of an adjective, determiner, and
preposition [18].
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3.6. Semantic Text Analysis

The semantic text analysis process applied to the relation sample is shown in the
lower left of Figure 8. The method follows a deductive hierarchical approach, where each
theme is informed by the previous coded theme. Two evidence-based themes are initially
coded. Firstly, the SciERC gold relation labels are coded, such as [Feature-Of] and [Part-Of].
Secondly, misclassification reason codes—such as missing entity or misclassified relation
type—are derived using the task problem definitions listed in Section 3.2 and the analysis
steps listed in Section 3.8. The purpose of the misclassification reason theme is to define
objective reasons as to why the prediction does not match the gold label provided. Two con-
tent codes are subsequently derived hierarchically: semantic challenges, followed by model
improvements. Semantic challenges, such as error propagation, global context, or local
context, outlined in Section 2.1, are annotated. Finally, the improvement theme identifies
syntactic improvements, aided by POS tags. For example, these include the positioning of
syntax indicating relations within local context, demonstrated in Figure 7. The codebooks
are presented in the following Appendices: Appendices A–D Table A4. Combinations of
semantic challenges and improvements are assessed for statistical significance using theme
co-occurrence and cluster analysis. Both normalised percentages and raw frequencies are
analysed to determine pertinent themes. In addition, relations are annotated twice due to
the small sample, resulting in Kappa scores for reproducibility.
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3.7. Implementation Details

The framework is built in Python using Google Colaboratory as an IDE, and it is
executed on a T4 GPU. HuggingFace Transformers library facilitates the import of Pre-
trained Language Model scibert-scivocab-uncased, whilst customised Transformer scripts
within the PL-Marker models facilitate the structural extensions detailed in Section 3.4. The
framework employed is PyTorch, in line with PL-Marker. Pandas library enables efficient
data manipulation, whilst scikit-learn and Matplotlib libraries generate and visualise
confusion matrices, respectively. Natural Language Toolkit (NLTK) facilitates POS tagging.
For semantic text analysis, qualitative data analysis software, NVivo, is used due to its
functionality for matrix coding for theme co-occurrence. In addition, NVivo allows for the
generation of Kappa statistics and hierarchical cluster analysis for correlation coefficients,
defined in Section 3.8.

The code and analysis for reproducing the results of this framework are publicly
available on GitHub: https://github.com/mtclevans/semantictextanalysis (accessed on 5
February 2024).

3.8. Evaluation Metrics

Confusion matrices are used to measure model predictions against SciERC gold labels.
Section 3.2 details the industry task formulations, which are broken down further to identify
classification issues. As such, Figure 9 details the specific NER analysis steps used. For
example, pipelined error propagation is quantified by negating the requirement for either
the correct start or end token. Furthermore, the analysis of nested entities evaluates whether
the PL-Marker neighbourhood packing strategy is performant. Figure 10 details the analysis
steps for the RE task, which allow for the identification of error propagation due to missing
entities through the negation of either start or end entity requirements.
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A relation sample for semantic text analysis is defined as those relation types with
the lowest recall to contain the scope of the research. In recent work, and in the general
domain, overall model classification accuracy is measured using F1 score. However, in this
work, recall highlights the proportion of gold labels that were classified correctly through
confusion matrices. This results in the ability to evaluate the labels that have the lowest
proportion of true positives, where true positives pertain to gold labels. Subsequently,
labels for improvements to overall model performance are identified. Recall is defined
through Equation (4) below.

Recall =
TP

TP + FN
(4)

https://github.com/mtclevans/semantictextanalysis
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Theme co-occurrence matrices of semantic annotations are assessed using normalised
percentages to allow for relative comparison. Pearson’s Correlation Coefficient, defined
through Equation (5) below, enables comparison of each combination of challenge and
improvement relative to other combined pairs.

r =
Σ
(
Xi − X

)(
Yi − Y

)√
Σ
(
Xi − X

)2Σ
(
Yi − Y

)2
(5)

4. Results and Analysis
4.1. PL-Marker Performance

Challenges in identifying entity boundaries are prevalent with almost all labels, as
demonstrated by the improvement upon removal of either the start or end token require-
ment (Figure 11). Those with the lowest standard recall, [Metric] and [Other-Scientific-
Term], see the greatest improvements upon removal of the requirement for a correct start
token. In fact, most labels see a greater increase in recall in this scenario. [Metric] accounts
for just 4% of the train and test sets, alongside obtaining the highest proportion of standard
NER Not Predicted values. Indeed, such entity error propagation is notable, as certain
named entities often pertain to certain relation types, such as [Metric] within [Evaluate-For].
Slight underfitting is noted from train to test for [Other-Scientific-Term], which accounts
for 31% of the test set. In the absence of alternative datasets, it is infeasible to determine
whether this high proportion is representative of the scientific domain. Further analysis
demonstrates [Other-Scientific-Term] entities are frequently common and compound nouns,
as well as complex noun phrases with leading adjectives. This suggests entity boundary
error propagation challenges for scientific terminology, which is investigated further in
Section 4.2.1.
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Nested entity samples are small and invalid for analysis, yet PL-Marker fails to predict
the majority. Indeed, SciERC is argued to be more representative than SemEval 2017 and
2018 [18], yet it fails to evaluate nested entity distribution. This low representation of nested
entities results in the inability to quantify the performance of the PL-Marker neighbourhood-
oriented packing strategy, as well as the evaluation of span-based approaches in general.

Moving to relation analysis, [Compare] accounts for just 4% of the test set (Figure 12),
whilst [Conjunction] recall overperforms at 68%. This highlights the ease of symmetric clas-
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sification. Indeed, the annotation scheme guidelines define simple syntactic conjunctions
‘and’ and ‘or’ as denoting the [Conjunction] relation type. Furthermore, it is notable that
symmetric and asymmetric relations are only misclassified as their respective types or not
at all. This suggests BERT architecture distinguishes directionality but classifies symmetric
relations more accurately.
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The lowest recall scores are obtained by asymmetric relations, [Feature-Of] and [Part-
Of], which also have the highest proportion of Not Predicted values (Table 2). Both labels
account for only 6% of the test set, respectively (Figure 12). Misclassifications for [Part-Of]
are often predicted as [Feature-Of] and [Hyponym-Of]. This is notable, as these relations
share semantic similarity and may present ambiguity, even for a human annotator. [Feature-
Of] and [Hyponym-Of] may be defined as component relations to [Part-Of], which suggests
the model may lean towards a more specific, rather than generalised, classification. These
two relation types form the semantic text analysis sample.

Table 2. RE confusion matrix recall—standard task formulation. Key statistics referenced are
highlighted in bold.

Predicted Label
True Label

Compare Conjunction Evaluate-
For Feature-Of Hyponym-Of Part-Of Used-

For
Not

Predicted

Compare 53% 11% 0% 0% 0% 0% 0% 36%
Conjunction 1.6% 68% 0% 0% 0% 0% 0% 30%
Evaluate-For 1.1% 0% 46% 1.1% 0% 0% 6.6% 45%

Feature-Of 0% 0% 3.4% 10% 0% 1.7% 6.8% 78%
Hyponym-Of 0% 0% 0% 0% 54% 3% 3% 40%

Part-Of 0% 0% 0% 4.8% 6.3% 29% 6.3% 54%
Used-For 0% 0.19% 0.38% 0.19% 0% 0.38% 57% 42%

4.2. Semantic Text Analysis

The average weighted Kappa score for semantic text analysis is 88%, as detailed in
Table 3. The gold relation theme is derived from ground truth annotations, and thus
a score of 100% is expected. Misclassification reasons are derived objectively from, for
example, incorrect entity boundaries, missing relations, and incorrect directionality. Thus,
it is expected that the Kappa statistics for each sequential theme decline in line with the
inductive approach.
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Table 3. Semantic text analysis Kappa statistics.

Theme Theme Annotation Hierarchy Kappa Score

Gold Relation 1 100%
Misclassification Reason 2 87%

Semantic Challenge 3 84%
Improvement 4 82%

Average Weighted Kappa Score - 88%

4.2.1. Error Propagation

NER error propagation is quantified as the largest challenge, accounting for 45.3%
of total relation misclassifications. This results in missing entities and entity boundary
misclassifications. The key improvement themes are displayed in Table 4. It is important to
note that not all themes have been listed within the result tables to ensure that a succinct
summary of the key themes is presented. Whilst it is evident that the model frequently
fails to predict common nouns (CN), such as ‘task’, 46.5% of total entity error propagation
pertains to misclassifications of complex noun phrases (Table 4). In a third of cases, missing
entities are due to the failure to predict such a term (CNP (GEN), (CNP (SCI)). The complex
syntactic composition of such missing entities as complex noun phrases is demonstrated
by the adjectival noun ‘productive affixations of derivational and inflectional suffixes’
in Figure 13a. In 66.7% of entity boundary cases, complex noun phrases are predicted
where they do not exist, incorporating adjectives, prepositions, and determiners into the
entity start and end token boundaries (INCORRECT CNP). This further substantiates
the misclassification of leading adjectives in complex noun phrases, initially identified
in Section 4.1. Figure 13b demonstrates misclassified entity boundary cases, where both
entities ‘weighted sum’ and ‘precision’, the conjoining relational local preposition ‘of’, and
the determiner ‘in’ are predicted as one term.

Table 4. NER error propagation semantic challenges and improvement themes. Notable statistics are
highlighted in bold.

Code Label

NER Error Propagation Missing Entities Entity Boundaries Total

Raw Theme Co-
Occurrence

Correlation
Coefficient Raw Theme Co-

Occurrence
Correlation
Coefficient Raw Theme Co-

Occurrence
CNP (GEN) 5 12.5% 0.82 - - - 5 8.6%
CNP (SCI) 8 20.0% 0.90 2 11.1% 0.81 10 17.2%

CN 15 37.5% 0.94 - - - 15 25.9%
CPN (SCI) 4 10.0% 0.72 - - - 4 6.9%

CPN 3 7.5% 0.72 - - - 3 5.2%
INCORRECT CNP - - - 12 66.7% 0.97 12 20.7%

...
...

...
...

...
...

...
...

...
Total Theme Annotations 40 - - 18 - - 58 -
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4.2.2. Relational Ambiguity

Disambiguation of shared knowledge accounts for a large proportion of relational
ambiguity cases (Table 5). However, pertaining to only 11.2% total misclassifications, this
work demonstrates that its significance within current research is unwarranted. In fact,
relational ambiguity is heavily distorted by the misclassification of [Part-Of] as [Feature-Of]
and [Hyponym-Of], previously identified in Section 4.1. In Figure 14, ‘layers’ is classi-
fied as a [Feature-Of] ‘CNN models’, and ‘Kalman filter’ as a [Hyponym-Of] ‘prediction
techniques’, whilst both gold relations are defined as [Part-Of]. However, both examples
demonstrate that [Hyponym-Of] and [Feature-Of] are component relations to [Part-Of].
This demonstrates clear SciERC annotation scheme ambiguities in differentiating between
these relation types. It is unsurprising, therefore, that the SciERC relation Kappa score
drops to 67.8% from the NER score of 76.9% [18].

Table 5. Relational ambiguity semantic challenge and improvement themes.

Improvement Theme
Relational Ambiguity

Raw Theme Co-Occurrence Correlation Coefficient

SHARED KNOWLEDGE INFER 11 42.3% 0.87
PART-OF as FEATURE-OF 3 11.5% 0.75

PART-OF as HYPONYM-OF 4 15.4% 0.72
FEATURE-OF as PART-OF 1 3.8% 0.51

...
...

...
...

Total 26Information 2024, 15, x FOR PEER REVIEW 15 of 23 
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4.2.3. Context Derivation

Local context cases are defined by correct entity classification, with a failure to derive
local context denoting a relation. As such, 40.9% of misclassifications contain prepositions
and an optional determiner, denoting a [Feature-Of] or [Part-Of] relation (In(IN) + a(DT)
POST, (IN) BETWEEN ENTITIES) (Table 6). Indeed, a further 27.3% of cases pertain to a
misclassified relation directionality (In(IN) DIRECTIONAL). Figure 15a,b demonstrates
the relation [Part-Of] misclassified as [Used-For], regardless of local prepositions ‘in’ and
‘from’, whilst in Figure 15c, ‘in’ denotes the directionality of ‘VLSI’ as a [Feature-Of]
‘dynamics’. In addition, further analysis of cases where no relation is classified, or the
wrong directionality is assigned, demonstrates asymmetric left-to-right relations are half as
likely to be misclassified versus right-to-left. Whilst Section 4.1 details BERT’s success in
distinguishing between symmetric and asymmetric relations, this more detailed insight
challenges BERT’s bidirectional architectural approach.

In a small number of overall context cases, 8.11%, the local preposition is insufficient
to derive the relation alone, and context within the wider sentence or paragraph is required
(CONTEXTPRE + (IN)). However, such a low proportion indicates the PL-Marker cross-
sentence mechanism may be performant.

Global context accounts for just 10.4% of total misclassifications, with almost 50% due
to the failure of the subject-oriented packing extension within PL-Marker (PACKINGSUB-
REL). Nevertheless, as multiple relations pertain to one packed instance, the sample size is
too small to derive conclusions.
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Table 6. Local and global context semantic challenges and improvement themes.

Improvement Theme

Context Local Context Global Context Total

Raw Theme Co-
Occurrence

Correlation
Coefficient Raw Theme Co-

Occurrence
Correlation
Coefficient Raw Theme Co-

Occurrence
In(IN) DIRECTIONAL 6 27.3% 0.85 - - - 6 16.2%
In(IN) + a(DT) POST 5 22.7% 0.83 - - - 5 13.5%

(IN) BETWEEN ENTITIES 4 18.2% 0.82 - - - 4 10.8%
CONTEXTPRE + (IN) 1 4.5% 0.64 2 13.3% 0.69 3 8.1%

CONJ(CC) + PRONOUN PRP($) 1 4.5% 0.61 - - - 1 2.7%
PACKINGSUBREL - - - 7 46.7% 0.93 7 18.9%

SHARED KNOWLEDGE INFER - - - 1 6.7% 0.66 1 2.7%
... - - - ...

...
...

...
...

Total 22 - - 15 - - 37 -
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5. Critical Analysis and Discussion
5.1. Strengths

Contrary to the research of state-of-the-art JRE classifiers [6–8], this framework evi-
dences global context and shared knowledge as impertinent challenges. In fact, SciERC is
proven to limit performance, with annotation scheme ambiguities for [Part-Of], [Feature-
Of], and [Hyponym-Of] relations. Furthermore, the small, nested entity sample renders
the performance of the PL-Marker neighbourhood-oriented packing strategy, as well as
overarching span-based approaches over BILOU tags, inconclusive for all emerging classi-
fiers [1,6–8,10].

Most importantly, this research highlights PL-Marker’s failure to represent, and sub-
sequently predict, the presence of complex noun phrases, or the lack thereof, resulting in
pipelined error propagation. Syntax within complex noun phrases is often restructured,
formulating new terms. As such, a larger test and train set of more abstracts will fail to
resolve this issue. However, the repetition of such terms across an entire paper results in
a recommendation for a new dataset encompassing full papers. This is evidenced by the
frequency of the term ‘complex noun phrase’ in this entire paper compared to the frequency
in the abstract. This work is the first known work to scientifically quantify the pipelined
error propagation issue.

The prevalence of NER common noun misclassifications suggests that the DyGIE++
multitask framework should perform better due to the incorporation of coreference resolu-
tion into the fine-tuning approach. Whilst the authors of PURE claim that sharing localised
entity representations for coreferences incurs further error propagation [7], this research
demonstrates that these common noun entities were not classified at all. Subsequently,
they were not provided as input to the relation model. Further evaluation of annotations of
common nouns as entities in SciERC may unearth further weaknesses in the dataset.

For misclassifications where the NER model is performant, local prepositional context
denoting the relation type and directionality is largely present. SCIBERT should encode
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such context within its representations. However, the improved performance of symmetric
over asymmetric relations, and the likelihood of misclassified right-to-left relations, suggest
a weakness in BERT’s purported bidirectional encodings [9]. Further research into the
performance of BERT’s bidirectionality is required, alongside comparisons with other
domain datasets for similar asymmetric relation types.

5.2. Limitations

Acknowledged limitations of this work are the employment of the sole scientific
dataset, and the subsequent absence of conclusions drawn against the wider domain.
Furthermore, as the study scope defines two relation types for semantic text analysis, this
work provides no generalisation to the entire SciERC relation sample, and no qualitative
comparison of symmetric relation types has been undertaken. Finally, this study is limited
to conclusions drawn against misclassifications, and, as such, it provides no comparison of
true positives in its semantic challenge conclusions.

6. Conclusions and Future Work

This study advances previous work by establishing a framework for semantic text
analysis of JRE classification. It has been demonstrated that current research optimisa-
tions of fine-tuned Transformers are based on subjective assumptions that global context
derivation is the key issue. However, this semantic challenge only accounts for 10.4%
of misclassifications. Equally, just 11.2% of misclassifications relate to a lack of shared
knowledge. The key performance limitation for scientific JRE is evidenced as pipelined
error propagation, accounting for 45.3% of misclassifications. Such difficulties result from
complexities in the identification of complex noun phrases, which alone account for 25.47%
of relational misclassifications. The sole dataset employed in research to date is proven to
present annotation scheme ambiguities, which result in difficulty in distinguishing between
[Feature-Of], [Part-Of], and [Hyponym-Of] relation types. This is evidenced by the low
recall of the former two labels, at just 10% and 29%, respectively, and high false positives
for [Part-Of] as [Feature-Of] and [Hyponym-Of]. Furthermore, key encoding issues with
BERT Pre-trained Language Model are identified, with the misclassification of right-to-left
relations versus left-to-right relations increasing twofold.

Subsequently, future work may create a new representative test, and train scientific
journal dataset, and further investigate the ability of BERT-based encoders to appropriately
represent localised entity context and model semantics of right-to-left relation types. Such
improvements in Pre-trained Language Model approaches to JRE for scientific literature
will have profound effects on the research domain. As the core information retrieval task
within a Digital Library architecture, advancements in JRE F1 score will lead to more
efficient and relevant referencing, upon which scientific researchers will base their own
work. Subsequently, algorithmic improvements to such semantic search tools have the
potential to transform the rate of scientific technological advancement.
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Appendix A

Table A1. Theme level 1 codebook—gold label relations.

Code Label Definition Example SCIERC

FEATURE-OF
The gold relation label defined in the SCIERC test set is of
the type FEATURE-OF, which denotes an entity that
describes a feature another entity.

devices [GENERIC] ‘with’ sufficient
computational resources [MATERIAL]

PART-OF
The gold relation label defined in the SCIERC test set is of
the type PART-OF, which denotes a part–whole relation,
where one entity forms a part of another whole entity.

a priori geometric constraints
[OTHER-SCIENTIFIC-TERM] ‘in a’ 3D stereo
reconstruction scheme [METHOD]

Appendix B

Table A2. Theme level 2 codebook—misclassification reasons.

Code Label Name Definition Example SCIERC

ENT1 Missing entity 1 The first entity in the relation is not
predicted.

Gold: [‘English’, ‘nominal compounds’,
‘FEATURE-OF’]
Prediction:
[N/A, ‘nominal compounds’, N/A]

ENT2 Missing entity 2 The second entity in the relation is not
predicted.

Gold:
[‘ambiguity’, ‘determiners’ ‘FEATURE-OF’]
Prediction:
[‘ambiguity’, N/A, N/A]

ENT1BOUND Entity 1
boundaries

The first entity is predicted. However, the
boundaries are not correctly predicted,
resulting in the misclassified start
AND/OR end token.

Gold:
[‘high-density, low-power analog array’,
‘externally digital architecture’, ‘PART-OF’]
Predictions:
[‘low-power analog array’, ‘externally digital
architecture’, ‘PART-OF’]

ENT2BOUND Entity 2
boundaries

The second entity is predicted. However,
the boundaries are not correctly
predicted, resulting in the misclassified
start AND/OR end token.

Gold:
[‘generalization ability’, ‘learned metric’,
‘FEATURE-OF’]
Prediction:
[‘generalization ability’, ‘metric’,
‘FEATURE-OF’]

REL Missing relation The relation is not predicted.

Gold:
[‘outlier removal’, ‘stereo vision’, ‘PART-OF’]
Prediction:
[]

RELDIRECT Incorrect relation
direction

The relation is predicted. However, the
direction of the relation is misclassified,
resulting in the second entity listed first
and the first entity listed second.

Gold:
[‘indirect lighting’, ‘robustness’,
‘FEATURE-OF’]
Prediction:
[‘robustness’, ‘indirect lighting’,
‘FEATURE-OF’]

RELTYPE Incorrect relation
type

The relation is predicted. However, the
type of relation is misclassified.

Gold:
[‘layers’, ‘CNN models’, ‘PART-OF’]
Prediction:
[‘layers’, ‘CNN models’, ‘FEATURE-OF’]
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Appendix C

Table A3. Theme level 3 codebook—semantic challenges.

Code Label Name Definition Example SCIERC Exceptions

CONT Global Context

The relation is semantically
understood from the global
context and situated outside of the
relevant text segment, where the
text segment spans from the start
entity to the end entity.

(‘Recognition’, ‘NN’), (‘of’, ‘IN’),
(‘proper’, ‘JJ’), (‘nouns’, ‘NNS’), (‘in’,
‘IN’), (‘Japanese’, ‘JJ’), (‘text’, ‘NN’),
(‘has’, ‘VBZ’), (‘been’, ‘VBN’),
(‘studied’, ‘VBN’), (‘as’, ‘IN’), (‘a’,
‘DT’), (‘part’, ‘NN’), (‘of’, ‘IN’), (‘the’,
‘DT’), (‘more’, ‘RBR’), (‘general’, ‘JJ’),
(‘problem’, ‘NN’), (‘of’, ‘IN’),
(‘morphological’, ‘JJ’), (‘analysis’,
‘NN’)

Does not
contain local
context.

COREF Coreference One or both entities within the
relation are coreferences.

(‘The’, ‘DT’), (‘objects’, ‘NNS’), (‘can’,
‘MD’), (‘be’, ‘VB’), (‘complex’, ‘JJ’),
(‘in’, ‘IN’), (‘that’, ‘DT’), (‘they’, ‘PRP’),
(‘may’, ‘MD’), (‘be’, ‘VB’), (‘composed’,
‘VBN’), (‘of’, ‘IN’), (‘multiple’, ‘JJ’),
(‘layers’, ‘NNS’)

N/A

EPIBOUND

Error Propagation
Issue—
misclassified
Boundaries

An error in entity boundary
prediction for NER, for one or both
entities in the relation, resulting in
error propagation to RE. Entity
boundaries defined as the start
and end tokens of the entity.

See ENT1BOUND or ENT2BOUND
misclassification reason codebook. N/A

EPIMISSING Error Propagation
Missing Entity

A missing entity in the entity
model, for one or both entities in
the relation, resulting in error
propagation to RE.

See ENT1 or ENT2 misclassification
reason codebook.

Missing
nested
entity.

LOCAL Local Context There is a failure to derive the
semantics of the local context.

(‘a’, ‘DT’), (‘feature’, ‘NN’), (‘in’, ‘IN’),
(‘a’, ‘DT’), (‘higher’, ‘JJR’),
(‘dimensional’, ‘JJ’), (‘space’, ‘NN’)

N/A

EPINESTED
Error Propagation
Missing Nested
Entity

One or both entities in the entity
pair is a nested entity OR contains
a nested entity.

(‘automated’, ‘JJ’), (‘interpretation’,
‘NN’), (‘of’, ‘IN’), (‘nominal’, ‘JJ’),
(‘compounds’, ‘NNS’), (‘in’, ‘IN’),
(‘English’, ‘NNP’)

N/A

RELAMBIG
Semantically
Ambiguous
Relation

Semantics denoting the relation
are ambiguous and could pertain
to more than one relation type.

(‘the’, ‘DT’), (‘predicative’, ‘JJ’),
(‘information’, ‘NN’), (‘associated’,
‘VBN’), (‘with’, ‘IN’), (‘nominals’,
‘NNS’)

N/A

OTHER Other
The relation does not fit any other
code and is therefore deemed out
of the scope of this study.

(‘Branch’, ‘NN’), (‘and’, ‘CC’),
(‘bound’, ‘NN’), (‘strategies’, ‘NNS’),
(‘have’, ‘VBP’), (‘previously’, ‘RB’),
(‘attempted’, ‘VBN’), (‘to’, ‘TO’),
(‘curb’, ‘VB’), (‘this’, ‘DT’),
(‘complexity’, ‘NN’), (‘whilst’, ‘VBZ’),
(‘maintaining’, ‘VBG’), (‘global’, ‘JJ’),
(‘optimality’, ‘NN’)

N/A
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Appendix D

Table A4. Theme level 4 codebook—improvements.

Code Label Definition Example SCIERC Exceptions

CONJ(CC)
+
PRONOUN
(PRP($))

A conjunction (CC) and a possessive
pronoun (PRP$) are present as local
context between entities, indicating a
‘belonging-to’ relation type [PART-OF
or FEATURE-OF]. The syntax should
be the sole indicator of the relation
and it should not rely on further
context.

Example syntax
‘and their’
Example SCIERC
(‘affine-invariant’, ‘JJ’), (‘image’, ‘NN’),
(‘patches’, ‘NNS’), (‘and’, ‘CC’), (‘their’,
‘PRP$’), (‘spatial’, ‘JJ’), (‘relationships’,
‘NNS’)

Personal pronouns I,
you, he, she, it, we, they,
me, him, her, us

((IN) + (DT)) POST

A preposition (IN) and determiner
(DT) are present as local context
between entities, indicating a
‘belonging-to’ relation type [PART-OF
or FEATURE-OF]. The present syntax
should be the sole indicator of the
relation and it should not rely on
further context.

Example syntax
‘like a/the’
‘from a/the’
‘in a/the’
‘of a/the’
‘from a/an’
‘on a/the’
Example SCIERC
(‘a’, ‘DT’), (‘feature’, ‘NN’), (‘in’, ‘IN’),
(‘a’, ‘DT’), (‘higher’, ‘JJR’),
(‘dimensional’, ‘JJ’), (‘space’, ‘NN’)

A misclassified relation
direction.
(IN) = ‘and’, ‘with’, ‘on’,
‘like’
PART-OF or
FEATURE-OF predicted
as each other, or
HYPONYM-OF

(IN) BETWEEN
ENTITIES

A preposition (IN) is present as local
context between entities, indicating a
‘belonging-to’ relation type [PART-OF
or FEATURE-OF]. The present syntax
should be the sole indicator of the
relation and it should not rely on
further context.

Example syntax
‘in’
‘as’
‘from’
Example SCIERC
(‘syntactic’, ‘JJ’), (‘structure’, ‘NN’),
(‘from’, ‘IN’), (‘parse-trees’, ‘NNS’)

A misclassified relation
direction.
(IN) = ‘and’, ‘with’, ‘on’,
‘like’
PART-OF or
FEATURE-OF predicted
as each other, or
HYPONYM-OF

(IN)
DIRECTIONAL

A preposition (IN) and determiner
(DT) are present as local context
between entities, indicating a
‘belonging-to’ relation type [PART-OF
or FEATURE-OF], AND the relation
direction is misclassified. The present
syntax should be the sole indicator of
the relation and it should not rely on
further context.

Example syntax
Of indicates PART OF
Example SCIERC
(‘images’, ‘NNS’), (‘extracted’, ‘VBN’),
(‘from’, ‘IN’), (‘modern’, ‘JJ’),
(‘computer’, ‘NN’), (‘games’, ‘NNS’),
(‘.’, ‘.’)

(IN) = ‘and’, ‘with’, ‘on’,
‘like’

CONTEXTPRE +
(IN)

A preposition (IN) and optional
determiner (DT) are present as local
context between entities, indicating a
‘belonging-to’ relation type [PART-OF
or FEATURE-OF], AND context prior
to the first entity is required to
understand the relation.

Example syntax
With
Example SCIERC
(‘is’, ‘VBZ’), (‘an’, ‘DT’), (‘agglutinative’,
‘JJ’), (‘language’, ‘NN’), (‘with’, ‘IN’),
(‘word’, ‘NN’), (‘structures’, ‘NNS’)

A misclassified relation
direction.
(IN) = ‘and’
PART-OF or
FEATURE-OF predicted
as each other, or
HYPONYM-OF

COLON

The relation spans across a colon,
where one entity is on the left-hand
side of the colon, and the other entity
is on the right-hand side of the colon.

Example SCIERC
(‘Amorph’, ‘NNP’), (‘recognizes’,
‘VBZ’), (‘NE’, ‘NNP’), (‘items’, ‘NNS’),
(‘in’, ‘IN’), (‘two’, ‘CD’), (‘stages’,
‘NNS’), (‘:’, ‘:’), (‘dictionary’, ‘JJ’),
(‘lookup’, ‘NN’), (‘and’, ‘CC’), (‘rule’,
‘NN’), (‘application’, ‘NN’), (‘.’, ‘.’)

N/A
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Table A4. Cont.

Code Label Definition Example SCIERC Exceptions

PARENTHESES One or both entities contained in the
relation are between parentheses.

Example SCIERC
(‘-LRB-’, ‘VBP’), (‘grammars’, ‘NNS’),
(‘with’, ‘IN’), (‘regular’, ‘JJ’),
(‘expressions’, ‘NNS’), (‘at’, ‘IN’), (‘the’,
‘DT’), (‘right’, ‘JJ’), (‘hand’, ‘NN’),
(‘side’, ‘NN’), (‘-RRB-’, ‘NN’)

N/A

COREF

One or both entities within the
relation are coreferences, OR the
relation is not identified due to being
later referred to as a coreference

Example SCIERC
(‘they’, ‘PRP’), (‘may’, ‘MD’), (‘be’,
‘VB’), (‘composed’, ‘VBN’), (‘of’, ‘IN’),
(‘multiple’, ‘JJ’), (‘layers’, ‘NNS’)

N/A

CPN

One or both entities within the
relation are compound nouns, which
are not predicted at all or not
predicted in full, where the definition
of a compound noun contains one or
more nouns (NN).

Example SCIERC
(‘ranking’, ‘VBG’), (‘blog’, ‘NN’),
(‘posts’, ‘NNS’), (‘with’, ‘IN’), (‘respect’,
‘NN’), (‘to’, ‘TO’), (‘their’, ‘PRP$’),
(‘relevance’, ‘NN’),

CPNSCI
CNPSCI
CNPGEN

CPNSCI

One or both entities within the
relation are scientific compound
nouns, which are not predicted at all
or not predicted in full, where the
definition of a compound noun
contains one or more nouns (NN).

Example SCIERC
(‘decompose’, ‘VB’), (‘the’, ‘DT’), (‘data’,
‘NNS’), (‘matrix’, ‘NN’), (‘to’, ‘TO’), (‘a’,
‘DT’), (‘low’, ‘JJ’), (‘rank’, ‘NN’), (‘part’,
‘NN’)

CPN
CNPGEN
CNPGEN

CNPSCI

One or both entities within the
relation are scientific complex noun
phrases, which are not predicted at all
or not predicted in full, where the
definition of a complex noun phrase
contains one or more nouns (NN)
AND any combination of Adjectives
(JJ), prepositions and conjunctions
(IN), conjunctions (CC), and verbs
(VB).

Example SCIERC
(‘At’, ‘IN’), (‘the’, ‘DT’), (‘core’, ‘NN’),
(‘of’, ‘IN’), (‘the’, ‘DT’), (‘externally’,
‘JJ’), (‘digital’, ‘JJ’), (‘architecture’, ‘NN’),
(‘is’, ‘VBZ’), (‘a’, ‘DT’), (‘high-density’,
‘NN’), (‘,’, ‘,’), (‘low-power’, ‘JJR’),
(‘analog’, ‘NN’), (‘array’, ‘IN’)

CNPGEN

CNPGEN

One or both entities within the
relation are scientific complex noun
phrases, which are not predicted at all
or not predicted in full, where the
definition of a complex noun phrase
is as per CNPSCI.

Example SCIERC
(‘they’, ‘PRP’), (‘may’, ‘MD’), (‘be’,
‘VB’), (‘composed’, ‘VBN’), (‘of’, ‘IN’),
(‘multiple’, ‘JJ’), (‘layers’, ‘NNS’)

CNPSCI

INCORRECTCNP

One or both entities within the
relation are misclassified as scientific
OR general complex noun phrases,
where none were present and where
the definition of a complex noun
phrase is as per CNPSCI.

Example SCIERC
(‘NIST’, ‘NNP’), (‘sentence’, ‘NN’),
(‘boundary’, ‘JJ’), (‘detection’, ‘NN’),
(‘task’, ‘NN’), (‘in’, ‘IN’), (‘speech’,
‘NN’)

N/A

CN

One or both entities within the
relation are common nouns, which
are not predicted at all or not
predicted in full, where the definition
of a common noun is a general term
for classes of things, rather than a
specific term, and it can be modified
by determiners or adjectives, OR a
general term, which is not always
classed as a named entity.

Example SCIERC
(‘the’, ‘DT’), (‘data’, ‘NN’), (‘has’,
‘VBZ’), (‘large’, ‘JJ’), (‘intra-class’, ‘JJ’),
(‘variations’, ‘NNS’)

CPN
CPNSCI
CNPSCI
CNPGEN



Information 2024, 15, 91 21 of 22

Table A4. Cont.

Code Label Definition Example SCIERC Exceptions

PACKINGSUBJREL

The sentence contains multiple
interrelated objects of a subject and
one or more of the entities are not
predicted, resulting in a failure of the
subject-oriented packing strategy for
the entity model, OR all entities are
correctly predicted but the
subject-oriented packing strategy fails
to associate the interrelated objects.

Example SCIERC
(‘outlier’, ‘JJR’), (‘removal’, ‘NN’),
(‘and’, ‘CC’), (‘quality’, ‘NN’),
(‘improvement’, ‘NN’), (‘in’, ‘IN’),
(‘stereo’, ‘JJ’), (‘vision’, ‘NN’)

N/A

PACKINGNEIGHENT

One or both entities within the
relation are a nested entity parent or
child, which are not predicted at all or
not predicted in full, where the
definition of a nested entity is an
entity that shares the same start or
end token with the parent entity.

Example SCIERC
(‘automated’, ‘JJ’), (‘interpretation’,
‘NN’), (‘of’, ‘IN’), (‘nominal’, ‘JJ’),
(‘compounds’, ‘NNS’), (‘in’, ‘IN’),
(‘English’, ‘NNP’), (‘.’, ‘.’)

N/A

FEATURE OF AS
PART OF

The gold relation is FEATURE OF, but
the predicted relation is PART OF.

Example SCIERC
(‘syntactic’, ‘JJ’), (‘structure’, ‘NN’),
(‘features’, ‘NNS’), (‘embedded’,
‘VBN’), (‘in’, ‘IN’), (‘a’, ‘DT’), (‘parse’,
‘NN’), (‘tree’, ‘NN’)

N/A

PART OF AS
FEATURE OF

The gold relation is PART OF, but the
predicted relation is FEATURE OF.

Example SCIERC
(‘the’, ‘DT’), (‘layers’, ‘NNS’), (‘of’, ‘IN’),
(‘various’, ‘JJ’), (‘CNN’, ‘NNP’),
(‘models’, ‘NNS’)

N/A

PART OF AS
HYPONYM OF

The gold relation is PART OF, but the
predicted relation is HYPONYM OF.

Example SCIERC
(‘prediction’, ‘NN’), (‘techniques’,
‘NNS’), (‘like’, ‘IN’), (‘the’, ‘DT’),
(‘Kalman’, ‘NNP’), (‘filter’, ‘NN’)

N/A

SHARED
KNOWLEDGE

The relation can only be derived from
shared knowledge outside of any
context within the sentence or the
wider abstract.

Example SCIERC
(‘three-dimensional’, ‘JJ’), (‘objects’,
‘NNS’), (‘in’, ‘IN’), (‘terms’, ‘NNS’),
(‘of’, ‘IN’), (‘affine-invariant’, ‘JJ’),
(‘image’, ‘NN’)

N/A

OTHER
The relation does not fit any other
code and is therefore deemed out of
the scope of this study.

See OTHER Semantic challenge
codebook. N/A
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