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Abstract: We extend network analysis to directed criminal networks in the context of asymmetric
links. We computed selected centralities, centralizations and the assortativity of a drug trafficking
network with 110 nodes and 295 edges. We also monitored the centralizations of eleven temporal
networks corresponding to successive stages of investigation during the period 1994–1996. All indices
reach local extrema at the stage of highest activity, extending previous results to directed networks.
The sharpest changes (90%) are observed for betweenness and in-degree centralization. A notable
difference between entropies is observed: the in-degree entropy reaches a global minimum at month
12, while the out-degree entropy reaches a global maximum. This confirms that at the stage of highest
activity, incoming instructions are precise and focused, while outgoing instructions are diversified.
These findings are expected to be useful for alerting the authorities to increasing criminal activity.
The disruption simulations on the time-averaged network extend previous results on undirected
networks to directed networks.

Keywords: criminal networks; directed graphs; centrality; entropy; assortativity; disruption;
strongly connected components

1. Introduction

The ever-increasing incidents of organized crime force the authorities to constantly
monitor suspicious groups and individuals in order to intervene when needed. Such actions
require meticulous prior planning, as law enforcement operations are time-consuming and
expensive [1]. Social network analysis (SNA) can provide law enforcement agencies with
useful tools for delving into the group dynamics and structure of Mafia syndicates [2,3],
drug trafficking markets [4–7] and terrorist organizations [8–11].

Individuals or groups of individuals are modeled as nodes and linked according to
confirmed affiliations. Depending on the nature of the relationship between two nodes,
analysts may be able to construct criminal or terrorist networks based on trust, kinship,
friendship [8] or financial and operational networks. Communication and proximity
networks are also of great importance, although they are relatively hard to construct [12].

Ongoing research primarily focuses on identifying the most central actors within the
aforementioned type of networks based on their links and positioning in the network. Sev-
eral approaches for identifying such actors have been proposed, including the utilization of
game theoretic measures [13], measures based on information theory [14,15] and elaborated
constructed centralities that capture subtle features of the network’s structure [16].

Due to the lack of complete and accurate data [1,8,17–19] some studies resort to ma-
chine learning and deep learning techniques to predict patterns and missing links that may
unveil previously undisclosed relationships between members [20,21], potentially leading
to more accurate network representations of the illicit organizations under investigation
and consequently alleviating the development of misleading models [9].

The utilization of more accurate network models and datasets is pivotal for a further
understanding of the structural mechanisms of illicit organizations and for bridging some
conflicting opinions and findings. Although the consensus is that criminal and terrorist net-
works are configured to maintain a balance between efficiency and secrecy [8,12,18,22,23],
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there is some contrasting evidence indicating that such networks may operate with small
communication pathways [17,18].

The data gathered from the structural analysis can be used to design effective strate-
gies aiming to fragment and/or disintegrate the network under investigation. Network
fragmentation analysis can provide insight regarding the cost-benefit tradeoff the authori-
ties need to address when crafting a policy strategy for tackling illicit organizations [24].
Researchers have primarily focused on simulating the effect of the removal of nodes with
significant roles in the network [2,6,16]. The resilience of illicit networks under successive
attacks has also been studied [6,17,25,26], and also combined with link prediction [11].
Many studies have confirmed that the elimination of individuals acting as mediators seems
to be the strategy with the most significant impact on a network’s cohesiveness [2,6,26].

1.1. Related Work in Criminal Network Analysis

The available criminal network datasets predominantly focus on drug distribution
markets and Mafia syndicates, with less frequent attention given to gangs or human
trafficking networks [27]. The scarcity of temporal datasets has resulted in a large portion
of relevant research leaning toward static structural analysis and disruption simulations.

1.1.1. Disruption Analysis

Xu and Chen [17] studied the outcome of simultaneous or progressive isolations of
nodes with a large number of links or nodes that acted as mediators. These strategies were
applied to drug trafficking, gang and dark net networks. The simulations revealed that
progressive attacks on either highly linked nodes or mediators were more devastating than
the simultaneous removals of nodes.

Duijn et al. [25] examined the response of a cannabis cultivation network after imple-
menting targeted or random removals of nodes and discovered that there existed a scenario
where targeted attacks would render the network more resilient than before. Targeted
and random node removals were also applied to a contact and an affiliation network of a
Mafia syndicate. In this study, Agreste et al. [28] found that contact networks were more
vulnerable to targeted attacks than affiliation networks.

Catanese et al. [29] investigated the resilience of a Mafia network under internal
and external interventions. The external interventions were simulated as removals of the
intermediaries. They discovered that Mafia networks were able to restore their functionality,
confirming their high adaptability when facing possible threats.

Statistically significant degree disassortativity was observed by Wood [7] when examining
the structure of a drug trafficking network, indicating that such networks are prone to removals
of actors with a large number of direct links. The finding was also confirmed by the quick
disintegration of the network when disconnecting a small number of highly-linked individuals.

Bright et al. [6] implemented different strategies of targeted attacks against a drug
trafficking network, relying on both the positioning of each node in the network and on
their human capital. The simulations were conducted with and without accounting for
the network’s adaptation, following each step of the disruption strategies. The removal
of mediators was identified as the most effective attack strategy, closely followed by the
removal of financially strong actors.

Duxbury and Haynie utilized agent-based modeling to model the response of criminal
networks under different interventions. In the first study [26], they removed mediators
or highly-linked nodes from a drug distribution and a stolen vehicle network. Single
isolations of nodes resulted in the recovery of the networks. In contrast, simultaneous
removals were more efficient for inflicting permanent damage on the networks. The authors
also concluded that mediator-based attacks were more appropriate for the case of drug
trafficking networks. Their second study [30] was focused on using the aforementioned
attack strategies on an online drug market network, along with a third attack strategy
focusing on the modification of the links’ weights. Targeted attacks were deemed effective
for large-scale attacks, whereas the remaining two strategies were more appropriate for local
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attacks. The developed model also revealed that the nodes were acting more cautiously
after the implementation of intentional attacks.

The resilience of another Mafia syndicate was examined by Cavallaro et al. [2]. The
authors represented different law enforcement interventions with centrality-based attacks.
The comparison between simultaneous and sequential node removals yielded no differ-
ences between them. The simulations also reconfirmed that the optimal intervention
strategy for dismantling such networks was the elimination of intermediaries.

Finally, Diviak [31] explored the impact of different attack methods primarily based
on centralities within a street gang network. The study also simulated the recovery of
the network using three distinct mechanisms. Findings indicated that the removal of
individuals with the highest centralities affected the network the most. Moreover, the study
emphasized the significance of assessing the network’s recovery, surpassing the disruption
process’s importance.

1.1.2. Temporal Analysis

Morselli and Petit [32] studied the evolution of a drug trafficking network under police
investigation. The changes of two global network indices, specifically the degree and between-
ness centralization (defined in Sections 2.7 and 2.8) were monitored to understand how the
network responded to imminent law enforcement interventions. Additionally, the temporal
positioning of the three most prominent members within the network was examined.

Bright and Delaney [33] also examined the growth of a drug trafficking network using
local and global indicators from SNA. The authors demonstrated that the network under
investigation maintained a relatively constant density (defined in Section 2.3) while slowly
adopting a more decentralized structure. The calculated local indicators revealed that the
members were constantly changing roles within the network.

In a forthcoming study, Bright et al. [34] used a stochastic model to simulate the
evolutionary dynamics of a drug trafficking network. Their findings suggested that indi-
viduals preferred to maintain indirect connections as a strategy to limit their exposure to
the authorities. The individuals were also observed to establish links with other individuals
whose contribution to the network was different from their own.

The resilience of a network of thieves and a network of ex-inmates was examined
by Ozgul and Erdem [35]. The authors proposed a resilience measure based on some
global indicators of network analysis and simulated the networks’ evolution under the
influence of police prosecutions. The network of thieves demonstrated adaptability to
exogenous interventions, sustaining its functionality. However, the ex-inmate network
exhibited vulnerability, showing susceptibility to continuous police operations.

Berlusconi [36] studied the temporal change in the structure of another drug trafficking
network by calculating network indicators and using selected graph models. The results
indicated that the members of the network prioritized enhancing the overall security of the
network after being targeted by the authorities. Despite the arrest of some key individuals,
the network continued pursuing its objectives.

1.2. Contribution of the Manuscript

While the existing literature on criminal networks is varied and extensive, the analysis
is restricted so far to undirected networks. The goal of this work is to extend network
analysis to directed criminal networks, i.e., networks where we have to take into account
the direction and the weight of the edges linking two nodes. In such networks the com-
munication may be either one way only, or two way with both links between two nodes
being present but with different weights. The weight matrix of directed networks is non-
symmetric [37,38]. The directionality of the links in a criminal network reveals both the
direction of the flow of information and the direction of the orders issued by the leaders
in a criminal organization. The analysis of directed links provides additional options for
disrupting criminal networks, as indicators such as centralities are no longer symmetric
and are divided into in-and-out counterparts.
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The rest of the manuscript is structured as follows. The selected local and global
indicators for conducting structural analysis are presented in Section 2 and the results of
the calculations are in Section 3. The dataset is described in Section 3.1. The disruption
simulation is presented in Section 4 and our conclusions in Section 5.

2. Materials and Methods

We present the local and global indicators to be computed in Section 3.
Centralities are the most common local indicators. Centrality quantifies the importance

and the role of each node resulting from the positioning in the network. High-centrality nodes
are considered as more significant with respect to the property of interest [38,39]. Several
centrality indices have been proposed for the analysis of criminal networks. However, the
utility and the practical significance of centrality often depend on the specific criminal network
examined [16]. For this study, we selected three centralities, specified in Sections 2.4–2.6.

Global indicators characterize the network as a whole. We selected the following
global indicators to assess the criminal networks under investigation, namely: degree cen-
tralization, betweenness centralization, global efficiency, degree entropy, average clustering
coefficient, assortativity, number of strongly connected components and the order of the
largest strongly connected component.

The definitions and the meaning of the selected indicators are described below.
The three main indicators of a network are order, size and density:

2.1. Order

Order is the number of nodes present in the network, usually denoted by N.

2.2. Size

Size is the number of edges present in the network, usually denoted by E.

2.3. Density

Network density is the fraction of the size of the network over the theoretically
maximum size (complete network):

ρ =
E

N(N − 1)
(1)

Networks with low density (close to 0) are called sparse networks, whereas highly
dense networks (density close to 1) are almost complete networks.

The selected three centralities are:

2.4. Degree Centrality

Degree centrality [37–39] captures the role of each node i from the number of direct
links. In the case of criminal networks, self-loops are excluded (αii = wii = 0), αij are the
elements of the adjacency matrix of the directed network and wij are the elements of the
weight matrix of the directed network.

Thus, the in-degree and the out-degree centralities are:

DEGin
i =

1
N − 1

N

∑
j=1
j ̸=i

αji (2)

DEGout
i =

1
N − 1

N

∑
j=1
j ̸=i

αij, (3)

The weighted degree centrality, or strength centrality takes into account the weighted links:
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DEG[w]in
i =

1
N − 1

N

∑
j=1
j ̸=i

wji (4)

DEG[w]out
i =

1
N − 1

N

∑
j=1
j ̸=i

wij, (5)

Nodes with high degree centrality (close to 1) are very popular, as they are linked with
a large number of other nodes.

2.5. Betweenness Centrality

The amount of times a node i lies on shortest paths between pairs of other nodes is
captured by betweenness centrality [37–39] and is defined as:

Bi =
1

(N − 1)(N − 2)

N

∑
j,k=1
j ̸=k ̸=i

σj(i)k

σjk
, (6)

where σj(i)k is the number of directed paths from node j to node k that pass through
node i and σjk is the number of directed paths from node j to node k. Nodes with high
betweenness centrality act as mediators, brokers or liaison officers, maintaining high
indirect connectivity [22] and ensuring control and protection [40].

2.6. Harmonic Closeness Centrality

Harmonic closeness centrality is a variation of closeness centrality [39,41] designed for
application in disconnected networks. In the literature, harmonic centrality has been also
referenced either as index power value [42], sum of reciprocal distances [43] or average
reciprocal distance (ARD) [44]. We use the following definition of harmonic centrality:

HCLin
i =

1
N − 1

N

∑
j=1
j ̸=i

1
dji

(7)

HCLout
i =

1
N − 1

N

∑
j=1
j ̸=i

1
dij

, (8)

where dji is the asymmetric distance from node j to node i corresponding to the shortest
directed path from node j to node i. Nodes with high out-harmonic closeness centrality are
likely to act as influencers and also as spreaders. Nodes with high in-harmonic closeness
centrality are highly accessible from other nodes.

The selected eight global indicators are:

2.7. Degree Centralization

Degree centralization indicates how central the node with maximum degree centrality
is compared to the rest of the nodes with respect to degree centrality [39]. The in and out
degree centralizations are:

DEGin =
1

N − 2

N

∑
j=1

(
max
i∈N

{DEGin
i } − DEGin

j
)

(9)

DEGout =
1

N − 2

N

∑
j=1

(
max
i∈N

{DEGout
i } − DEGout

j
)

(10)

The weighted degree/strength centralizations are:
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DEG[w]in =
1

N − 2

N

∑
j=1

(
max
i∈N

{DEG[w]in
i } − DEG[w]in

j
)

(11)

DEG[w]out =
1

N − 2

N

∑
j=1

(
max
i∈N

{DEG[w]out
i } − DEG[w]out

j
)

(12)

Networks with high degree centralization (close to 1) are centralized on high degree
nodes, while low degree centralization (close to 0) indicates a decentralized network with
respect to degree.

2.8. Betweenness Centralization

Betweenness centralization indicates how central the node with maximum betweenness
centrality is compared to the rest of the nodes with respect to betweenness centrality [39]:

B =
1

N − 1

N

∑
j=1

(
max
i∈N

{Bi} − Bj
)

(13)

Networks with high betweenness centralization (close to 1) are centralized on nodes
that are efficient mediators, while low betweenness centralization (close to 0) indicates that
the network lacks mediators.

2.9. Global Efficiency

Global efficiency estimates the network’s capability of exchanging information [45].
For a directed network, the in and out-global efficiencies are defined as:

Ein(G) =
1

N(N − 1)

N

∑
i=1

N

∑
j=1
j ̸=i

d−1
ji (14)

Eout(G) =
1

N(N − 1)

N

∑
i=1

N

∑
j=1
j ̸=i

d−1
ij , (15)

where dij is the asymmetric distance from node i to node j. The presence of the inverse
distances in Equations (14) and (15) renders global efficiency applicable to networks with
isolated nodes as well. Large values of global efficiency suggest instant communica-
tion between the nodes. To ensure that global efficiency is bounded between 0 and 1
in weighted networks, we multiply the above equations by the harmonic mean of the
weights, M

∑i ̸=j(
1

wij
)

[46]. For trust or communication networks, the weights are reversed

when calculating the global efficiency or other path-related measures.

2.10. Degree Entropy

Entropy is the diversification of the possible outcomes of a variable. We use Shan-
non’s entropy [47] to assess the diversification of the in-degree and out-degree centrality
distributions. The in and out-degree centrality entropies are defined as:

Sin = −
N−1

∑
i=1

pin
i log2 pin

i (16)

Sout = −
N−1

∑
i=1

pout
i log2 pout

i , (17)

where pin
i and pout

i are the probability distributions of the values of the in and out degree
centralities. The values of the entropies, as calculated by Equations (16) and (17), are bits,
taking values within the interval [0, log2(N − 1)]. Dividing by log2(N − 1), we obtain
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values normalized within the interval [0, 1]. Higher entropy indicates that the values of
most degree centralities are equally probable. In contrast, low entropy indicates that most
nodes have equal degree centrality, as in the case of regular networks.

2.11. Average Clustering Coefficient

The average clustering coefficient measures the average tendency of the nodes’ neigh-
bors to link to each other. There are several proposals for calculating the average clustering
coefficient for networks with non-binary weights [48,49]. In this work, we shall use the
definition by Fagiolo [50]:

clu[w]
i =

[
W

1
3 +

(
WT) 1

3
]3

ii

2
[
deg[w]

i
(
deg[w]

i − 1
)
− 2d↔i

] , (18)

where W is the weight matrix, degi is the sum of the in and out degrees of node i and d↔i is
the number of neighbor nodes of node i for which both the links from node i to node j and
from node j to node i exist. No self-loops are considered. The resulting average clustering
coefficient is thus,

clu
[w]

=
1
N

N

∑
i=1

clu[w]
i . (19)

High values of the average clustering coefficient indicate better communication among
the nodes of the network.

2.12. Assortativity

Degree assortativity quantifies the preference of nodes to link with other nodes with
close degree values [38]. In this work, we examine the degree and weighted degree
assortativity for both undirected and directed networks assuming linear relationships by
using the Pearson correlation coefficient. In the case of directed networks, all possible
combinations of directions are examined, namely: in-in, in-out, out-in and out-out.

Positive values of the degree assortativity coefficient imply that high degree nodes
link together, while negative values suggest that high degree nodes link with low degree
nodes. No specific mixing pattern exists when the assortativity equals zero.

2.13. Number of Strongly Connected Components

Real networks may not be strongly connected (for every two points i, j there is a
directed path from i to j and also another directed path from j to i) [38]. The number of
strongly connected components indicates the level of fragmentation of the network. Highly
fragmented networks have poor functionality. In the case of fragmentation, we usually
focus on the largest strongly connected component.

2.14. Order of the Largest Strongly Connected Component

The order (number of connected nodes) of the largest strongly connected component
of a disconnected network is denoted by NLSCC.

3. Network Diagnostics
3.1. Dataset and Software

The dataset used in this study (Project Caviar) stems from publicly released court
data that were coded afterward by Morselli [51], resulting in the creation of eleven tem-
poral networks. The nodes in each network are the individuals who participated in a
drug-trafficking organization that was monitored by the authorities during the period
1994–1996. Each network corresponds to a successive 2-month period reflecting the stages
of the authorities’ investigation. A time-averaged network is also provided for the period
1994–1996 referring to the entire investigation interval.
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All networks are directed and weighted. The direction of the links points from the
caller to the receiver. The weights represent the number of exchanged phone calls between
the members of the network. We normalized the weights by dividing them by the maximum
number of calls registered in each of the twelve networks.

More specific information regarding the investigation and the interventions of the law
enforcement agencies is presented in Table 1. The network operates without any exogenous
interventions for the three initial stages of the investigation. After almost six months, the
authorities begin confiscating trafficked drugs until the end of the 2-year operation [32].

Table 1. Number of police interventions during 1994–1996 for each stage of the investigation along
with amount of confiscated drugs after each intervention. Interventions commence at least six months
after the beginning of the operation.

Months Number of Interventions Seizures

2 - -
4 - -
6 - -
8 1 Hashish: 300 kg
10 - -
12 3 Cocaine: 15 kg, 15 kg, 2 kg
14 1 Hashish: 401 kg
16 1 Cocaine: 9 kg
18 2 Hashish: 500 kg, Cocaine: 2 kg
20 1 Hashish: 2200 kg
22 2 Cocaine: 12 kg, 15 kg

All calculations were performed with the 3.9.16 distribution of Python (Supplementary
Materials). The network analysis was conducted with the NetworkX library (version 2.8.4).
The libraries Matplotlib (version 3.7.1), Seaborn (version 0.12.2) and Pandas (version 1.5.3)
were used for visualization purposes and the data analysis of the results. The used software
is open-source.

The variation in the number of participants and the links they formed within the
criminal organization during the entire investigation is presented in Figure 1.

Figure 1. Normalized values of number of participants and number of formed links within the
organization during 1994–1996. During the first six months of the investigation, the network grows
significantly, while in the subsequent six months, a slight decrease in number of participants is
observed. The number of edges exhibits more rapid changes compared to the number of nodes. In
the final year of the 2-year period, the number of nodes increases again, reaching its peak at months
16 and 20. The number of edges follows a similar pattern, peaking at month 16.
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3.2. Temporal Analysis

The changes in out-degree, in-degree (Section 2.7) and betweenness centralizations
(Section 2.8) along with the changes in the global efficiency (Section 2.9), in and out-degree
entropy (Section 2.10) and the average clustering coefficient (Section 2.11) for the directed
and weighted temporal networks are presented in Figure 2.

Figure 2. Changes in important global indicators across different stages of the investigation in months
over the period 1994–1996. A notable difference is observed between the centralizations, namely:
all centralizations achieve local maximum at month 12 except the out-degree centralization and the
in-degree entropy which have a local minimum. The changes are significant (about 90%) in the case of
in-degree and betweenness centralizations, small (less than 25%) in the case of the average clustering
coefficient and the out-degree entropy and moderate (about 40%) in the case of the global efficiency.
The changes of the in and out communication efficiencies are more or less identical. For this reason,
the label global efficiency is used.

3.3. Analysis of the Time-Averaged Network

The values of global properties for the time-averaged network during 1994–1996
(Section 3.1) are presented in Table 2.

Table 2. Values of properties for the time-averaged network.

Indicator Value

Order (Section 2.1) 110
Size (Section 2.2) 295
Density (Section 2.3) 0.025
In-Degree Centralization (Section 2.7) 0.3206
Out-Degree Centralization (Section 2.7) 0.4795
In-Strength Centralization (Section 2.7) 0.1456
Out-Strength Centralization (Section 2.7) 0.1775
Betweenness Centralization (Section 2.8) 0.5363
Global efficiency (Section 2.9) 0.1688
In-Degree Entropy (Section 2.10) 0.8509
Out-Degree Entropy (Section 2.10) 0.7746
Average clustering coefficient (Section 2.11) 0.03
Number of strongly connected components (Section 2.13) 45
NLSCC (Section 2.14) 66

The assortativity (Section 2.12) for both the undirected and directed time-averaged
networks is presented in Table 3.
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Table 3. Degree assortativity of the time-averaged undirected and directed networks. The standard
deviations of the computed values are estimated by the jackknife method [52,53] to assess the
statistical significance of the results.

Assortativity Standard Deviation

Undirected −0.36 0.03

Undirected Weighted −0.37 0.05

in-in −0.38 0
in-out −0.34 0.04
out-in −0.36 0.03
out-out −0.36 0.61

weighted in-in −0.33 0.07
weighted in-out −0.33 0.24
weighted out-in −0.32 0.35
weighted out-out −0.34 0.14

Assortativity is restricted within the interval [−0.32,−0.38]. Statistically significant
disassortative mixing patterns are observed at a 95% confidence level, except out-out,
weighted in-out and weighted out-in.

3.4. Discussion of the Results

We observe that all centralizations achieve a local extremum at month 12 (Figure 2),
corresponding to the most active stage of law enforcement interventions as shown in Table 1.

The local minimum of the in-degree entropy and decreasing pattern of the out-degree
centralization indicate a significant reduction in the diversification of the nodes provid-
ing instructions.

The reported low values of the average clustering coefficient during this two-year
period reconfirm that covert networks do not favor high clustering [18]. The command and
control strategy is usually adopted in criminal networks to mitigate the risk of exposure in
case a member of the network is arrested.

Considering that the authorities’ interventions follow to some extent the activity of
criminal organizations, month 12 more or less coincides with the period of highest criminal
activity. The betweenness and the in-degree centralization undergo a sharp increase
at month 12. This indicates that the members of the criminal network communicate
mainly through intermediaries at times of increased activity. Communication through
intermediaries is a standard practice in criminal networks during periods of increased
activity [54]. The global efficiency is also increasing at month 12, but not as sharply, given
the precaution that communication is governed by intermediaries. In this sense, previous
findings relating sharp changes in global network indicators with periods of intense activity
of illicit organizations are confirmed [54,55]. A notable difference between the in and out
degree entropies is also observed: the in-degree entropy reaches a global minimum at
month 12, while the out-degree entropy reaches a global maximum. This confirms the
previous remark that at the stage of highest activity incoming instructions are precise and
focused, while outgoing instructions are diversified.

Linear regression analysis revealed that the increase in the order of the network may
negatively affect the changes in in-degree and betweenness centralization and the changes
in global efficiency. In contrast, when the size increases, the aforementioned indicators in-
crease as well. The linear regression coefficients corresponding to the order and the size are
opposite in sign and do not differ significantly in magnitude. The linear regression results
for the rest of the global indicators examined in Figure 2 are not statistically significant.

The time-averaged network (Section 3.1) is sparse, with high betweenness centraliza-
tion (0.5363, Table 2), low global efficiency (0.1688, Table 2), high in and out degree entropies
(0.8509 and 0.7746, Table 2), low clustering (0.03, Table 2), a large number of strongly con-
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nected components (45, Table 2) and a rather large strongly connected component with 66
members (Table 2).

The low efficiency and high betweenness centralization [56] indicate that to mini-
mize the risk of exposure, communication is channeled through intermediaries and direct
communication among members is not encouraged. This is also confirmed by the low
clustering. As a result, diversification is emerging as indicated by the high values of the
average degree entropies.

The large number of small strongly connected components (44) indicates that those
strongly connected components participate in several "minor" criminal activities communi-
cating with certain members of the large strongly connected component. This strategy also
minimizes the risk of exposure.

The time-averaged network also displays a moderate degree of disassortativity (Table 3),
higher than the values observed in similar drug trafficking networks [7,17]. The disassor-
tativity is observed in both the undirected and directed networks, as well as in the corre-
sponding weighted networks. Our findings indicate that members of a drug-trafficking
network are more likely to establish disassortative connections, i.e., members of high degree
are more likely to link with members of low degree, as observed before [7,17].

4. Attacking Criminal Networks
4.1. Methodology

The directed time-averaged network will be fragmented into multiple components
by implementing node removals, a strategy commonly adopted in criminal and terrorist
network analysis [2,5–7,11,17,25,57].

Both random and targeted sequential node removals are performed. In the targeted
attacks, nodes are removed based on their centrality from highest to lowest. The strategy
of centrality-based attacks can be justified by the centralized structure of the network
as indicated by the calculated global indicators (Section 3.3, Table 2). We would not be
able to attack the network effectively by targeting high centrality nodes if the network
was decentralized [25,58,59]. The centralities used are described in Sections 2.4–2.6. The
centralities of each node are recalculated after each removal.

The performance of each attack strategy after each removal is evaluated by the relative
change in the NLSCC (Section 2.14):

|NLSCC,0 − NLSCC,i|
NLSCC,0

,

where NLSCC,0 and NLSCC,i refer to the order of the largest strongly connected component
prior to any removal and after the removal of the i-th node, respectively.

The robustness of the network [16,60,61] aggregates the outcomes for each imple-
mented attack strategy. We use the definition provided in [61]:

R =
1

T + 1

T

∑
i=0

NLSCC(i)
N − i

, (20)

where T is a threshold (T < N) above which the network is considered malfunctioned.
We set the threshold as the number of nodes required to achieve the maximum number of
strongly connected components (Section 2.13).

4.2. Results

The variations in the NLSCC and the number of strongly connected components, re-
spectively, as the attack strategies described in Section 4.1 are implemented, are presented
in Figures 3 and 4. The horizontal axis of each plot demonstrates the time step of the
simulation procedure, corresponding to the removal of a single node after each iteration.
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Figure 3. Reduction in Largest Strongly Connected Component order of the strongly connected
directed and weighted time-averaged network after sequentially removing nodes with respect to
their centrality scores. Nodes with highest centralities are disconnected first.

Figure 4. Change in the number of strongly connected components for the strongly connected
directed and weighted time-averaged network after sequentially removing nodes with respect to
their centrality scores. Nodes with highest centralities are disconnected first.

The robustness of the time-averaged network until the threshold is hit and the selected
threshold for every targeted attack strategy is presented in Table 4.

Table 4. Calculated robustness for every centrality measure along with the threshold that corresponds
to the required number of nodes whose removal results in the highest disintegration of the time-
averaged network into multiple components.

Centrality R Threshold

In-Harmonic 0.2127 14
Out-Harmonic 0.2082 12
Betweenness 0.1936 11

In-Degree 0.2042 10
Out-Degree 0.1530 15
In-Strength 0.1554 19

Out-Strength 0.1739 15
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4.3. Discussion of the Results

Random attacks emerge as the least efficient method for disrupting the network, requiring
a substantial number of removals to significantly damage the network, as indicated by the
slow decrease in the NLSCC (Figure 3). The number of strongly connected components when
implementing random removals also follows a consistently decreasing pattern, compared to
the non-monotonous curves produced by targeted attacks, as illustrated in Figure 4.

In contrast, targeted attacks induce immediate damage to the network. Notably, the
removal of just two nodes reduces the NLSCC by more than 30%.

The superiority of targeted over random attacks is anticipated, as the time-averaged
network is highly centralized (Sections 3.3 and 3.4, Table 2) and disassortative
(Sections 3.3 and 3.4, Table 3) [7].

In terms of individual centrality performance, the isolation of a single node reveals that
attacks based on in-harmonic centrality are significantly less effective in reducing NLSCC,
compared to the other centralities. Betweenness and in-degree-based attack strategies
induce an 80% reduction in NLSCC, requiring only the removal of four nodes, signifying the
importance of mediators for the network’s cohesiveness.

When aiming for the complete minimization of NLSCC, in-strength centrality emerges
as the most effective strategy, requiring the fewest nodes to be removed (22), closely
followed by out-degree centrality (25 nodes required).

Attacks based on out-degree centrality disconnect the network into the largest number
of multiple components, requiring 15 nodes to achieve such an outcome (Figure 4). Although
other centralities require fewer nodes to achieve the maximal disintegration of the network
into multiple parts, they do not produce as many components as out-degree centrality.

The effectiveness of attacks focusing on targeting individuals with increased out-
degree centralities is further highlighted by the lowest robustness score compared to the
other centralities, as shown in Table 4. In general, all robustness scores are relatively small,
reaffirming that the network is vulnerable to targeted attacks, as previously stated.

The selection of the optimal centrality-based attack is not particularly straightforward
and depends on the intentions of the attacker. When opting for the entire disintegration
of the network we showed that in-strength centrality minimizes the NLSCC the fastest,
compared to the other centralities. Out-degree centrality, in contrast, appears as the most
effective for producing the largest number of components. Betweenness centrality, on the
other hand, induces immediate damage, since the removal of the intermediaries can disrupt
the communication between distant parts of the network and emerges as a useful strategy
when law enforcement agencies operate with restricted resources.

5. Concluding Remarks
5.1. Contribution

Monitoring the temporal evolution of the selected network indices in time may provide
law enforcement authorities with data-oriented intelligence that can complement empirical
evidence and expert opinion.

This is demonstrated by the observed sharp increase in certain network indices during
the monitoring period (Section 3.2), a finding that can be proved useful for alerting the
authorities to increasing criminal activity [54,55].

The incorporation of the direction of the links also provides further insight into
the direction of information flow throughout the network, as highlighted by the notable
difference between the entropies: the in-degree entropy reaches a global minimum at month
12, while the out-degree entropy reaches a global maximum. This confirms the remark
that at the stage of highest activity, incoming instructions are precise and focused, while
outgoing instructions are diversified.

The directed criminal network analysis also allows the analyst to design attack strate-
gies based on directed centralities (Section 4.1). We did not find any prior work focusing
on directed criminal network analysis, except for a recommendation on using directed
networks to craft relevant disruption strategies [3].
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When attempting to dismantle the criminal network, the inferiority of random node
removals (Section 4.3) highlighted the need to design well-crafted targeted attacks due to its
highly centralized structure. The use of aggregating measures, like robustness (Section 4.1),
is convenient for assessing the overall attack outcomes.

Finally, we can render the attack simulations more useful when setting a threshold
above which the network becomes non-operational, as stated in Section 4.1, to account
for the large financial costs and resources law enforcement operations require in practice.
Operations can effectively stop when the selected threshold is reached, without achieving
the complete disintegration of the criminal network. In this work, we selected the threshold
solely based on the behavior of the number of strongly connected components curve
(Figure 4); however, in a real-life scenario, the threshold should be decided in collaboration
with law enforcement experts.

5.2. Future Work

Further insight could be gained if we modeled the response of the network after imple-
menting attacks of any kind towards it. This endeavor usually requires dynamic network
analysis [6,25] and agent-based models [26,30], which goes beyond the scope of this work.

Additional attack strategies could also be implemented and tested, mainly based on
community identification analysis to extend the disruption analysis beyond the use of
centralities [62]. Depending on the data available, attacks based on human capital (i.e., the
specific skills each individual offers in the network) can also be implemented [6,25,63]. The
combination of centrality-based attacks with attacks targeting human capital can be useful
for designing more sophisticated disruption strategies. Intervention strategies that do not
exclusively resort to the elimination of nodes may also be studied [64].

Monitoring additional variables, besides the number of strongly connected compo-
nents (Section 2.13) and NLSCC (Section 2.14), may also offer a better assessment of the
outcomes of each strategy on the functionality of the network. The change in global effi-
ciency, for instance, is a meaningful indicator for evaluating the capacity of the network to
continue disseminating information among its members [25].
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