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Abstract: One of the frequently used classes of sparse reconstruction algorithms is based on the
iterative shrinkage/thresholding procedure, in which the thresholding parameter controls a trade-off
between the algorithm’s accuracy and execution time. In order to avoid this trade-off, we propose
using a fast intersection of confidence intervals method in order to adaptively control the threshold
value throughout the iterations of the reconstruction algorithm. We have upgraded the two-step
iterative shrinkage thresholding algorithm with a such procedure, improving its performance. The
proposed algorithm, denoted as the FICI-TwIST, along with a few selected state-of-the-art sparse
reconstruction algorithms, has been tested on the classical problem of image recovery by emphasizing
the image sparsity in the discrete cosine and the discrete wavelet domain. Furthermore, we have
derived a single wavelet transformation matrix which avoids wrapping effects, thereby achieving
significantly faster execution times as compared to a more traditional function-based transformation.
The obtained results indicate the competitive performance of the proposed algorithm, even in cases
where all algorithm parameters have been individually fine-tuned for best performance.

Keywords: compressive sensing; fast intersection of confidence intervals; image reconstruction;
iterative soft thresholding; signal sparsity; sparse reconstruction algorithm

1. Introduction

Signal sparsity is a signal property that has been used for many decades, mostly for
lossy multimedia compression [1]. A signal is considered K-sparse when most of its energy
is located in only K samples and most of the signal samples are close to zero. In most
cases, signals do not exhibit sparsity in the observation domain (e.g., temporal or spatial);
however, they are sparse in some alternative domain, which enables lossy compression
by discarding the low-energy samples. The discrete cosine transform (DCT) and the
discrete wavelet transform (DWT) are examples of sparsity-inducing transformations that
are widely used in popular file formats, such as JPEG, JPEG2000, MP3, etc.

Compressive sensing (CS) is a newly developing paradigm that has gained the interest
of many researchers in the last decade, especially after ground-breaking papers [2,3]. It also
exploits the signal sparsity but in a slightly different way. Instead of recording a full data-set,
only a small subset of the original data is recorded, while the missing samples are calculated
in a way that will produce the sparsest representation in the a priori known sparse domain.
In real-life situations, the partial unavailability of samples can happen due to various
physical constraints or corrupted data, resulting in wide-spread application of the CS-based
methods in multimedia [1,4–7], medicine [8,9], geoscience [10,11], radar [12,13], wireless
communication [14,15], etc.

In this paper, we continue our previous research [6,7], in which we have augmented the
two-step iterative shrinkage thresholding (TwIST) algorithm [4] with the fast intersection
of confidence intervals (FICI) method [16], providing a data-driven threshold value for the
TwIST algorithm. This modification has resulted in the sparse reconstruction algorithm,
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denoted as the FICI-TwIST, in which we have removed the dependency on the user-defined
threshold value that controls a trade-off between the solution accuracy and the convergence
rate of a considered class of the reconstruction algorithms. In this paper, we have derived
a single-wrapped Cohen–Daubechies–Feauveau 9/7 (CDF97) matrix, which enabled us
to test the previously proposed algorithm not only by emphasizing the sparsity in the
DCT domain but also in the DWT domain. Using such a matrix, which to the best of
our knowledge, cannot be found in the literature, significantly decreased the algorithm
execution times, as shown in this paper.

The rest of the paper is organized as follows. Section 2 gives the theoretical back-
ground behind sparse image reconstruction, derives the used transformation matrices, and
introduces the proposed reconstruction algorithm, while Section 3 presents the simulation
results. Section 4 gives the concluding remarks.

2. Sparse Image Reconstruction

This section introduces the theory behind the proposed method and is organized
as follows. Section 2.1 introduces the problem of sparse image reconstruction, while, in
Section 2.2, we discuss a method for solving it that uses ℓ1-norm minimization. Section 2.3
presents the DCT and the DWT transformation matrices used to solve this problem, while
Section 2.4 briefly describes our previous work [6,7] regarding the FICI-TwIST algorithm.

2.1. Problem Formulation

Let x denote a grey-scale image with Nx × Ny pixels, and let Φ denote an invertible
linear transformation, such that:

X = Φ(Nx) · x ·Φ(Ny)T
, (1)

which results in X being K-sparse, where K ≪ Nx Ny. For more convenient mathematical
notation, we will rewrite (1), where both xV = vect(x) and XV = vect(X) are column
vectors, as:

XV = Φ1D · xV , (2)

where Φ1D is the Nx Ny × Nx Ny transformation matrix performing an equivalent trans-
formation to that in (1). Section 2.3 provides a more detailed discussion about the used
transformation matrices Φ, their 1D equivalents Φ1D, and their inverses.

Let yV = ΨxV denote a column vector of M≪ Nx Ny available image pixels randomly
selected from xV , where Ψ is the M× Nx Ny measurement matrix, and each row contains a
single entry with a value of one (the rest being zeroes), connecting a yV mth available pixel
with a xV nth image pixel. By combining yV with (2), we define the sparse reconstruction
problem:

yV = ΨxV = ΨΦ−1
1DXV = ÃXV , (3)

where Ã = ΨΦ−1
1D is the truncated backward transformation matrix with deleted rows

corresponding to the missing samples. In a similar way, matrix A = Φ1DΨT , used in future
expressions, represents the expanded forward transformation, where the missing samples
are set to zero prior to the forward transformation. Since matrix Ã is not invertible, the
following unconstrained optimization problem has to be solved [4,5]:

X̂V = arg min
XV

{
1
2
||XV − AyV ||22 + λc(XV)

}
, (4)

where c(XV) : RNx×Ny → R is the regularization function, while λ is the regularization
parameter. The first term can be interpreted as the error-measuring function weighted by
one-half, while the second term, weighted by λ, measures the signal property that we want
to attain through the optimization procedure. Because of this, λ can be interpreted as a
parameter that controls the solution accuracy: for larger λ values, the second term becomes
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more important in the minimization, that is, the first term (i.e., the reconstruction error)
becomes less important [4,5].

2.2. Problem Solution with the ℓ1-Norm Minimization

The regularization function plays the most significant role in the previously described
optimization problems, as it is a function to be minimized. As already stated, its role
is to emphasize the a priori known solution property, which, in this case, is the signal
sparsity. In other words, minimizing c(XV) should maximize the number of zero-valued
samples in XV . The best function for this task is the ℓ0-norm, as it counts the number of
non-zero samples. However, the downside of the ℓ0-norm minimization is that it is an
NP-hard combinatorial problem, usually solved with greedy algorithms, by searching for
a good local minima instead of the global one [17]. Because of this, this problem is often
relaxed with the easier to solve convex problem of the ℓ1-norm minimization [4,5,17,18],
thereby introducing a new problem: the objective function does not measure the exact
signal property that we want to attain. A more detailed survey of the sparse reconstruction
algorithms is given in [1,19,20].

By using the ℓ1-norm-based regularization function, we can rewrite (4) as:

Xℓ1
V = arg min

XV
||XV ||1, s. t.: ||XV − AyV ||22 ≤ ϵ, (5)

allowing a small difference, ϵ, between the available pixels and their reconstructed counter-
parts in order to account for noise. This expression can be further simplified by using the
Moreau proximity operator [21]:

Xℓ1
V = softλ{XV} = sgn(XV)max{|XV | − λ, 0}. (6)

Note that the soft-thresholding parameter λ is the regularization parameter from (4),
and, in the context of (6), it can be interpreted in a similar fashion: a parameter that controls
a trade-off between the solution accuracy and the convergence rate. With a higher λ value,
the input signal is going to be thresholded more strictly, resulting in a lower accuracy and a
faster convergence rate, and vice versa [4,5].

An example of the sparse reconstruction algorithm that achieves the ℓ1-norm mini-
mization through iterative soft-thresholding is the TwIST algorithm [4]:

[
Xℓ1

V

][n+1]
= (1− α)

[
Xℓ1

V

][n−1]
+ (α− β)

[
Xℓ1

V

][n]
+ β softλ

{[
Xℓ1

V

][n]
+ A

(
yV − Ã

[
Xℓ1

V

][n])}
, (7)

where α and β are the user-defined TwIST relaxation parameters controlling the averaging
weights between the current and the previous two solutions. The final solution is obtained
by iterating (7) until the stopping criterion is satisfied. In this paper, we have used two
stopping criteria: (1) the relative change in the ℓ2-norm between the solution of two
consecutive algorithm iterations drops below ϵℓ2 , or (2) the maximum number of iterations,
Nit, has been reached.

2.3. DCT and DWT Transformation Matrices

The DCT matrix is given by:

Φ
(N)
k,n =


√

1
N , k = 0,√
2
N cos

(
π(2n+1)k

2N

)
, otherwise,

(8)
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for k, n ∈ [0, . . . , N− 1]. The transformation matrix, Φ1D, used in (2), is then simply defined
through the Kronecker product as:

Φ1D = Φ(Nx) ⊗Φ(Ny) =


Φ

(Nx)
1,1 Φ(Ny) Φ

(Nx)
1,2 Φ(Ny) · · · Φ

(Nx)
1,Nx

Φ(Ny)

Φ
(Nx)
2,1 Φ(Ny) Φ

(Nx)
2,2 Φ(Ny) · · · Φ

(Nx)
2,Nx

Φ(Ny)

...
...

. . .
...

Φ
(Nx)
Nx ,1 Φ(Ny) Φ

(Nx)
Nx ,2 Φ(Ny) · · · Φ

(Nx)
Nx ,Nx

Φ(Ny)

. (9)

Note that Φ is real and orthonormal for the DCT; thus, inverse calculation is not
needed since Φ−1 = ΦT . Φ1D follows the same property; thus, Φ−1

1D = ΦT
1D, and, most

importantly, Ã = AT .
Unlike the DCT, the DWT matrix is more complex to construct; hence, it is usually

represented with the filter banks. The analysis bank performs forward transformation,
while the synthesis bank performs backward transformation. In the analysis bank, the
approximation vector at the 1st scale is created by filtering the input vector with a low-pass
filter, while the detail vector is obtained by filtering with a high-pass filter, followed by
down-sampling with a factor of two. In this fashion, all subsequent scales perform filter-
ing and down-sampling of the approximation vector from the previous scale, ultimately
resulting in the l-th scale approximation vector and the 1st–l-th scale detail vectors. In the
synthesis bank, the approximation and detail vector of the l-th scale are up-sampled by
a factor of two, respectively filtered with a low-pass and a high-pass filter, and summed,
creating the approximation vector of the (l − 1)-th scale. When the input signal is 2D, both
filters are applied both row- and column-wise, decomposing it into the approximation and
three detail matrices (vertical, horizontal, and diagonal) with every subsequential scale
further decomposing only the approximation matrix.

In order to construct the CDF97 matrix of the l-th scale, let us start with the pair of
biorthogonal low-pass filters of lengths Lh̃ = 9 and Lh = 7, with the following coefficients,
already pre-scaled by a factor of

√
2 and 1/

√
2, respectively [22]:

h̃(0) = 0.852699, h(0) = 0.788486,
h̃(−1) = h̃(1) = 0.377403, h(−1) = h(1) = 0.418092,
h̃(−2) = h̃(2) = −0.110624, h(−2) = h(2) = −0.040689,
h̃(−3) = h̃(3) = 0.023850, h(−3) = h(3) = −0.064539,
h̃(−4) = h̃(4) = 0.037829.

(10)

By using the h̃(k) filter coefficients, we can construct a low-pass portion of the trans-
formation matrix on the l-th scale:

H̃(N,l)
k,n =




h̃(m1) + h̃(m2), c2 = true,
h̃(m1) + h̃(m3), c3 = true,
h̃(m1), c2 = c3 = false,

c1 = true,

0, c1 = false,

(11)

for k ∈
[
0, . . . , N

2l − 1
]
, n ∈

[
0, . . . , N

2l−1 − 1
]
, and where m1 = n − 2k, m2 = −n − 2k,

m3 = N
2l−2 + m2 − 2, while the conditions c1–c3 are listed in the first row of Table 1. Such

definition of the wavelet matrix negates the wrapping effects, caused by the filter coefficients
wrapping around the matrix edges, avoiding the need for input signal periodization. The
first condition sums the coefficients in the last columns of the first ⌈(Lh̃ − 1)/4⌉ rows with
the appropriate coefficients in the first columns. In the similar way, the second condition
sums the coefficients in the first columns of the last ⌊Lh̃/4⌋ rows with the appropriate
coefficients in the last columns. These two conditions, involving indices m2 and m3, are
only valid for a handful of elements, mainly in the top left and bottom right corners, while
most of the coefficients are calculated just as h̃(m1).
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Table 1. Index restrictions for DWT matrices.

c1 c2 c3

H̃(N,l) m1≤
Lh̃−1

2 m2≤
Lh̃−1

2 && n ̸= 0 m3≤
Lh̃−1

2 && n ̸= N
2l−1 − 1

G̃(N,l) m1 − 1≤ Lh−1
2 m2 − 1≤ Lh−1

2 && n ̸= 0 m3 − 1≤ Lh−1
2 && n ̸= N

2l−1 − 1
H(N,l) m1≤ Lh−1

2 m2≤ Lh−1
2 && k ̸= 0 m3≤ Lh−1

2
G(N,l) m1 − 1≤ Lh̃−1

2 m2 − 1≤ Lh̃−1
2 m3 − 1≤ Lh̃−1

2 && k ̸= N
2l − 1

Note, however, such matrix definition restricts the DWT scale in two ways: (1) Nx and
Ny have to be divisible by 2l , and (2) min{Nx, Ny}/2l−1 ≥ max{Lh̃, Lh}. The first condition
is easily avoided by zero-padding; however, the second one seriously limits the DWT scale.
Since the DWT domain becomes sparses as the DWT scale increases, it is imperative to
avoid this restriction. To better understand (11), the coefficient placement in the k-th matrix
row is depicted by Figure 1. The second limiting factor ensures that the depicted coefficient
wrapping happens no more than once per row, that is, that no more than two coefficients
are summed, since (11) requires such a condition. However, using the same logic of turning
back when the first or last column is reached, with multiple turns, we can place all of the
filter coefficients regardless the number of columns, resulting in the matrix entries, which
are sums of more than two filter coefficients.
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Figure 1. Placement of the filter coefficients in the k-th matrix row. The first column is skipped based
on the conditions listed in Table 1. Only the placement of negative indices is depicted, however, the
same logic applies for positive indices, which are summed with the existing entries.

In a similar fashion, we can design a high-pass portion of the transformation matrix on
the l-th scale. Filter coefficients are calculated as g̃(k) = (−1)kh(1− k), and matrix G̃(N,l)

is generated analogous to (11), with the conditions c1–c3 listed in the second row of Table 1.
The only difference is caused by the indexing difference between h̃k and g̃k, since the g̃k
coefficients are shifted by one.

Matrix
[

H̃(N,l)T | G̃(N,l)T
]T

performs a single scale transformation from the (l − 1)-th
scale to the l-th scale. In order to create a complete transformation matrix from the 0th
to the l-th scale we need to consecutively multiply corresponding matrices, defining the
complete matrix representation of the analysis filter bank [23]:

Φ(N) =



H̃(N,l)H̃(N,l−1) · · · H̃(N,1)

G̃(N,l)H̃(N,l−1) · · · H̃(N,1)

G̃(N,l−1)H̃(N,l−2) · · · H̃(N,1)

...
G̃(N,2)H̃(N,1)

G̃(N,1)


. (12)
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However, due to the image’s 2D nature, if we apply such matrix to (1), or use the
Kronecker product (9) for (2), the result will differ from the traditional DWT definition.
Not only is the approximation sub-matrix going to be decomposed in all subsequent DWT
scales, but the horizontal and vertical detail sub-matrices will be as well. Although not
’wrong’, we wanted to maintain the traditional DWT definition, thus Φ1D is calculated by
applying the Kronecker product for each sub-matrix block separately [23]:

Φ1D =



(
H̃(Ny ,l)H̃(Ny ,l−1) · · · H̃(Ny ,1)

)
⊗

(
H̃(Nx ,l)H̃(Nx ,l−1) · · · H̃(Nx ,1)

)(
H̃(Ny ,l)H̃(Ny ,l−1) · · · H̃(Ny ,1)

)
⊗

(
G̃(Nx ,l)H̃(Nx ,l−1) · · · H̃(Nx ,1)

)(
G̃(Ny ,l)H̃(Ny ,l−1) · · · H̃(Ny ,1)

)
⊗

(
H̃(Nx ,l)H̃(Nx ,l−1) · · · H̃(Nx ,1)

)(
G̃(Ny ,l)H̃(Ny ,l−1) · · · H̃(Ny ,1)

)
⊗

(
G̃(Nx ,l)H̃(Nx ,l−1) · · · H̃(Nx ,1)

)(
H̃(Ny ,l−1)H̃(Ny ,l−2) · · · H̃(Ny ,1)

)
⊗

(
G̃(Nx ,l−1)H̃(Nx ,l−2) · · · H̃(Nx ,1)

)(
G̃(Ny ,l−1)H̃(Ny ,l−2) · · · H̃(Ny ,1)

)
⊗

(
H̃(Nx ,l−1)H̃(Nx ,l−2) · · · H̃(Nx ,1)

)
...

G̃(Ny ,1) ⊗ H̃(Nx ,1)

G̃(Ny ,1) ⊗ G̃(Nx ,1)



. (13)

As in the DCT case, we again want to avoid the inverse calculation of the rela-
tively large matrix Φ1D. However, the DWT matrix is not orthonormal, thus Φ−1 ̸= ΦT ,
Φ−1

1D ̸= ΦT
1D, and, most importantly, Ã ̸= AT . This is where the biorthogonal property

helps. Although quite possible, we will not calculate the inverse in a traditional way, but
rather we will construct a matrix Φ−1

1D, using the same coefficients (10), with a similar proce-
dure. The low-pass filter matrix, H(N,l), is constructed from the coefficients h(k), while the
high-pass filter matrix, G(N,l), is constructed from the coefficients g(k) = (−1)k h̃(1− k).
Both matrices are generated analogous to (11), while the conditions c1 - c3 are listed in the
last two rows of Table 1. While most of the coefficients are calculated in the same way (as
h(m1)), the wrapping effects in the synthesis filter bank are dealt column-wise, resulting in
slight condition differences. The matrix Φ−1

1D, representing the entire synthesis filter bank,
is then constructed analogous to (13).

It is also worth mentioning that (11) is only valid for all four matrices if the filter
coefficients are symmetric; in the backward mode, we did not take into account mirroring
in the wrapping effects. Such compromise has been taken in order to provide the elegancy
of a single expression that is valid for all four matrices. In more general terms, both m2 and
m3 should be multiplied with (−1) in the backward mode, while, in G(N,l), both indices
have an additional (+2) shift after the multiplication.

2.4. FICI-Based Adaptive Thresholding

As already stated, the performance of the sparse reconstruction algorithms that
achieves ℓ1 minimization through soft-thresholding is highly dependent on the regulariza-
tion parameter λ in (4), that is, the threshold value in (6), controlling a trade-off between
the solution accuracy and the convergence rate. In order to achieve both benefits, λ can
be variable through the algorithm iterations: starting relatively high and decreasing as
the algorithm converges towards the optimal solution. In our previous research [6,7], we
proposed the FICI-TwIST algorithm, providing an adaptive threshold value calculation in
every TwIST iteration. The FICI method searches the vicinity of the specific signal sample
for a region with statistically similar amplitude values, which we have used in order to
find a region with the statistically lowest amplitudes to be thresholded. The complete
FICI-TwIST pseudo-code is given in Algorithm 1, while a more detailed discussion can be
found in [6,7].
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Algorithm 1 The FICI-TwIST algorithm.
Input: yV , Ψ, α, β, Γ, Rc, Nreg, λF, ϵℓ2 , Nit
Output: xV

calculate A and Ã as described in Section 2.3;[
Xℓ1

V

][−1]
,
[

Xℓ1
V

][0]
← AyV

for nit = 0 to Nit do

ẌV ← sort
{[

Xℓ1
V

][n]
+ A

(
yV − Ã

[
Xℓ1

V

][n])}
ẊV ← softλF max{ẌV}{ẌV}
i0 ← index of the first non-zero entry in ẊV ;
for nreg = 1 to Nreg do

∆i← 1
R← −1
while R < Rc do

mean← update the mean value of samples ẊV(i0), . . . , ẊV(i0 + ∆i);
std← recalculate the standard deviation of samples ẊV(i0), . . . , ẊV(i0 + ∆i);
Du,l ← mean±Γ std;
Dumin ← min{Du, Dumin};
Dlmax ← max{Dl , Dlmax};
R← Dumin−Dlmax

2Γ std ;
∆i← ∆i + 1

end while
i0 ← i0 + ∆i

end for
λ← ẊV(i0)[

Xℓ1
V

][nit+1]
← (7)

if

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣[X

ℓ1
V

][nit ]
∣∣∣∣∣∣∣∣2

2
−
∣∣∣∣∣∣∣∣[X

ℓ1
V

][nit+1]
∣∣∣∣∣∣∣∣2

2∣∣∣∣∣∣∣∣[X
ℓ1
V

][nit+1]
∣∣∣∣∣∣∣∣2

2

∣∣∣∣∣∣∣ ≤ ϵℓ2 then break

end for

return xV = Φ−1
1D

[
Xℓ1

V

][nit+1]

3. Results and Discussion

The reconstruction performance of the proposed algorithm was tested on a standard
grey-scale test image Lenna, pre-scaled to 256× 256 pixels for both the DCT and the DWT
as the sparsity-inducing transformations in two scenarios: (1) the image was divided into
8× 8 blocks with each block processed individually and (2) without the block division. The
DWT scale was set to its maximum: (1) L = 3 and (2) L = 8 in order to produce the sparsest
domain. In the first scenario, the transformations were implemented exactly as described
in Section 2.3, while the second scenario implemented the DWT with a lifting scheme, and
the DCT using the MATLAB build-in function, since the 2562 × 2562 transformation matrix
would require 16GB of memory space using a single precision float.

The reconstruction performance was evaluated in terms of the mean square error (MSE)
and the algorithm’s execution time, while the FICI-TwIST algorithm was compared with
the following state-of-the-art reconstruction algorithms: the TwIST [4], the Split-augmented
Lagrangian shrinkage algorithm (SALSA) [5], the Nesterov algorithm (NESTA) [18], and
the your-augmented Lagrangian algorithm for ℓ1 (YALL1) [17]. The simulations were
performed for a range of CS ratios, M/Nx Ny ∈ [0.1, . . . , 0.9], while the stopping criteria
were set to ϵℓ2 = 10−5 and Nit = 1000. For each CS ratio, the results were averaged over
NCS = 50 runs with the randomly generated measuring matrices. All algorithm parameters
were fine-tuned for best performance with the CS ratio of 0.4, which, in hindsight, did
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not highlight the main advantage of the proposed algorithm: its adaptivity; however,
’sabotaging’ other algorithms would be, lightly said, dishonest.

The obtained MSE values are presented in Figure 2, while the algorithm execution
times are presented in Figure 3. When the image is divided into blocks, SALSA (for the
DCT) and TwIST (for the DWT) run significantly worse than the other algorithms for
lower CS ratios. However, in general, all algorithms have very similar reconstruction
performances, likely due to the mentioned parameter fine-tuning. In the block scenarios,
the FICI-TwIST runs very similarly to the NESTA, almost completely overlapping over the
entire CS range. These algorithms emerge as the most successful algorithms. In the DCT
case, the FICI-TwIST is slightly inferior, while, in the DWT case, it is slightly better. When
the image is not divided into blocks, the FICI-TwIST, in general, is the second best for lower
CS ratios and the worst for higher CS ratios. In both scenarios, our simulations have shown
that the DCT outperforms the DWT in MSE terms. This is especially noticeable in the block
scenario, for which a possible explanation is that the selected block size results in a less
sparse transformation due to the DWT scale limit.

The algorithm execution times are, in general, constant over the entire CS range, having
relatively similar ratios between the algorithms in all four scenarios. The FICI-TwIST runs
the slowest, while the TwiST algorithm runs the fastest. This was to be expected, since
FICI-TwIST requires constant re-calculation of the mean value and the standard deviation
over the increasing window length, while TwIST is a relatively simple algorithm. This
fact can be alleviated by skipping the threshold calculation in some of the FICI-TwIST
iterations. In the block scenarios, there is very little difference in the algorithm execution
times between the DCT and DWT, which was expected, since both transformations involve
matrix multiplication. In addition, the block scenario is, in general, two times faster,
regardless of the algorithm and the sparsity-inducing domain. Due to our simulation setup,
it is hard to distinguish between the impacts of different implementations vs. the block size
on this fact; however, using function-based transformation in the block scenario increased
the execution times by a factor of {5, 25, 50, 15, 4} and {20, 20, 15, 12, 12}, respectively, for
the algorithm and domain. It is also noteworthy that the FICI-TwIST exhibits a strange
behavior: in the DCT case, there is very little difference in the execution times between the
block and non-block scenario, resulting in the second-best execution time for the non-block
scenario. On the other hand, in the non-block DWT scenario, the execution time started to
increase in the middle CS ratios.

In our simulations, the CS ratio of 0.4 was shown to be borderline, with the lower
ratio resulting in a visibly significantly worse reconstruction performance, while, on the
other hand, a higher CS ratio resulted in visually indistinguishable images. This fact
guided us to fine-tune parameters for this specific ratio, and this is why we have shown
the algorithm convergence rate (in terms of the MSE) and cumulative execution times over
algorithm iterations in Figures 4 and 5, respectively. Figure 5 reveals that all iterations
within a specific algorithm take relatively similar amounts of time, with the exception of the
proposed algorithm in the DWT block scenario. In all cases, the MSE value settles between
the 150th and 200th iteration; however, only TwIST and NESTA did not exit due to the
iteration limit, with all other algorithms running full Nit = 1000 iterations. This reveals a
shortcoming of the selected exit criterion (the relative ℓ2-norm change) and a possibility for
decreasing the execution times by selecting some other, more appropriate criteria. However,
in real-life implementation, not having access to the original image limits the design space
for such a criterion. Moreover, the proposed algorithm in the block scenarios experiences
the second-best convergence rate in the starting iterations, with only YALL1 having a better
MSE improvement per iteration.

A single, randomly selected run with the CS ratio of 0.4 is shown in Figures 6–9 for all
four cases. By visual inspection, we can confirm that all scenarios run very competitively,
with the blocked DWT being an outlier due to the aforementioned DWT scale limit. In
this scenario, the TwIST algorithm did not converge for some of the blocks. If we compare
Figures 6 and 9, in our opinion, of the two best visually performing cases, Figure 6 (blocked
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DCT) seems to be a little more sharper, revealing more of the reconstruction defects, while
Figure 9 (whole DWT) is much smoother and (perhaps) visually better looking. However,
we leave the task of subjective image quality assessment to the reader, since such task is
hard, if not impossible, to numerically evaluate.
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Figure 2. Average reconstructed MSE values for TwIST (red), SALSA (green), NESTA (blue), YALL1
(magenta), and FICI-TwIST (black) over M/Nx Ny range; and scenario: (a) DCT blocked, (b) DCT
whole, (c) DWT blocked, and (d) DWT whole. Range of the zoom inset is M/Nx Ny ∈ [0.6, 0.9].

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

E
x
e
. 

ti
m

e
 [

s
]

(a)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

E
x
e
. 

ti
m

e
 [

s
]

(b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

E
x
e
. 

ti
m

e
 [

s
]

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

E
x
e
. 

ti
m

e
 [

s
]

(d)

Figure 3. Average algorithm execution time for TwIST (red), SALSA (green), NESTA (blue), YALL1
(magenta), and FICI-TwIST (black) over M/Nx Ny range; and scenario: (a) DCT blocked, (b) DCT
whole, (c) DWT blocked, and (d) DWT whole.
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Figure 4. Average reconstructed MSE values (M/Nx Ny = 0.4) for TwIST (red), SALSA (green),
NESTA (blue), YALL1 (magenta), and FICI-TwIST (black) over algorithm iterations; and scenario:
(a) DCT blocked, (b) DCT whole, (c) DWT blocked, and (d) DWT whole.
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Figure 5. Average cumulative algorithm execution times (M/Nx Ny = 0.4) for TwIST (red), SALSA
(green), NESTA (blue), YALL1 (magenta), and FICI-TwIST (black) over algorithm iterations; and
scenario: (a) DCT blocked, (b) DCT whole, (c) DWT blocked, and (d) DWT whole.

(a) (b) (c) (d) (e) (f)

Figure 6. Sparse reconstruction results for blocked DCT scenario: (a) CSed image (M = 0.4);
(b) reconstructed by the TwIST (MSE = 191.46); (c) reconstructed by the SALSA (MSE = 273.30);
(d) reconstructed by the NESTA (MSE = 181.81); (e) reconstructed by the YALL1 (MSE = 189.69);
and (f) reconstructed by the FICI-TwIST (MSE = 176.99).

(a) (b) (c) (d) (e) (f)

Figure 7. Sparse reconstruction results for whole DCT scenario: (a) CSed image (M = 0.4); (b) re-
constructed by the TwIST (MSE = 145.45); (c) reconstructed by the SALSA (MSE = 150.94); (d) re-
constructed by the NESTA (MSE = 135.88); (e) reconstructed by the YALL1 (MSE = 151.24); and
(f) reconstructed by the FICI-TwIST (MSE = 143.91).
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(a) (b) (c) (d) (e) (f)

Figure 8. Sparse reconstruction results for blocked DWT scenario: (a) CSed image (M = 0.4);
(b) reconstructed by the TwIST (MSE = 1093.89); (c) reconstructed by the SALSA (MSE = 527.58);
(d) reconstructed by the NESTA (MSE = 447.90); (e) reconstructed by the YALL1 (MSE = 481.04);
and (f) reconstructed by the FICI-TwIST (MSE = 432.41).

(a) (b) (c) (d) (e) (f)

Figure 9. Sparse reconstruction results for whole DWT scenario: (a) CSed image (M = 0.4); (b) re-
constructed by the TwIST (MSE = 190.04); (c) reconstructed by the SALSA (MSE = 210.38); (d) re-
constructed by the NESTA (MSE = 182.59); (e) reconstructed by the YALL1 (MSE = 198.14); and
(f) reconstructed by the FICI-TwIST (MSE = 186.17).

We have also performed simulations on two more standard test images: Barbara
and Cameraman with a same simulation setup. The obtained results are not significantly
different to the previously discussed results for Lenna, as can be seen in Figures 10–13.
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Figure 10. Average reconstructed MSE values for Barbara and TwIST (red), SALSA (green), NESTA
(blue), YALL1 (magenta), and FICI-TwIST (black) over M/Nx Ny range; and scenario: (a) DCT blocked,
(b) DCT whole, (c) DWT blocked, and (d) DWT whole. Range of the zoom inset is M/Nx Ny ∈
[0.6, 0.9].
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Figure 11. Average algorithm execution time for Barbara and TwIST (red), SALSA (green), NESTA
(blue), YALL1 (magenta), and FICI-TwIST (black) over M/Nx Ny range; and scenario: (a) DCT blocked,
(b) DCT whole, (c) DWT blocked, and (d) DWT whole.
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Figure 12. Average reconstructed MSE values for Cameraman and TwIST (red), SALSA (green),
NESTA (blue), YALL1 (magenta), and FICI-TwIST (black) over M/Nx Ny range; and scenario: (a) DCT
blocked, (b) DCT whole, (c) DWT blocked, and (d) DWT whole. Range of the zoom inset is M/Nx Ny ∈
[0.6, 0.9].
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Figure 13. Average algorithm execution time for Cameraman and TwIST (red), SALSA (green),
NESTA (blue), YALL1 (magenta), and FICI-TwIST (black) over M/Nx Ny range; and scenario: (a) DCT
blocked, (b) DCT whole, (c) DWT blocked, and (d) DWT whole.
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4. Conclusions

In this paper, we have demonstrated the effectiveness of the sparsity-based image
recovery. In our test scenarios, images with up to 60% of missing pixels have been success-
fully recovered (which corresponds to the CS ratio of M/Nx Ny = 0.4). More importantly,
we have derived the matrix form of the wavelet transform, which is based on the CDF97
wavelet, achieving a significant reduction (by a factor of 10) in the considered sparse recon-
struction algorithm’s execution times as compared to the function-based transformation.
This improvement is achieved by precalculating the transformation coefficients, keeping
them in the memory, and using them multiple times through the reconstruction process.
The function-based transformation, on the other hand, recalculates the coefficients each time
it is called. Due to this fact, the matrix-based transformation requires additional memory
space, which inherently limits its applicability when dealing with larger block sizes.

Such a matrix has allowed us to extend our previous research findings, in which we
had proposed a sparse reconstruction algorithm, denoted as the FICI-TwIST, with its main
advantage being its adaptivity, achieved by taking variable iterative thresholding steps.
Our simulations have shown that even in the scenario in which all individual parameters
of the considered state-of-the-art algorithms were fine-tuned, the FICI-TwIST algorithm
runs very competitively, even outperforming the others in specific cases. The FICI-TwiST
method’s downside lies in the fact that it requires constant recalculation of the mean value
and the standard deviation, which is relatively time-consuming. This is why the FICI-TwIST
algorithm performs better with larger block sizes, a fact that is, interestingly, opposite to
the applicability of the previously discussed matrix-based transformation.

In order to find the optimal block size, more detailed simulations with variable block
sizes would have to be performed, taking into account both the reconstruction accuracy
and the execution time. Such simulations could also be useful for additional comparison of
the DCT vs. the DWT domains’ performances. In addition, the relative ℓ2-norm change has
proven to be an inadequate algorithm-exit criterion; thus, designing a more image-specific
criterion would further decrease the reconstruction execution times of all the considered
algorithms. All of the above outlined issues are the focus of our ongoing and future research
and will be thoroughly addressed in our future publications.
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