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Abstract: Effective collision risk reduction in autonomous vehicles relies on robust and straight-
forward pedestrian tracking. Challenges posed by occlusion and switching scenarios significantly
impede the reliability of pedestrian tracking. In the current study, we strive to enhance the reliability
and also the efficacy of pedestrian tracking in complex scenarios. Particularly, we introduce a new
pedestrian tracking algorithm that leverages both the YOLOv8 (You Only Look Once) object detector
technique and the StrongSORT algorithm, which is an advanced deep learning multi-object tracking
(MOT) method. Our findings demonstrate that StrongSORT, an enhanced version of the DeepSORT
MOT algorithm, substantially improves tracking accuracy through meticulous hyperparameter tun-
ing. Overall, the experimental results reveal that the proposed algorithm is an effective and efficient
method for pedestrian tracking, particularly in complex scenarios encountered in the MOT16 and
MOT17 datasets. The combined use of Yolov8 and StrongSORT contributes to enhanced tracking
results, emphasizing the synergistic relationship between detection and tracking modules.

Keywords: pedestrian tracking; object detection; multi-object tracking (MOT); autonomous vehicles;
deep learning; DeepSORT; StrongSORT; You Only Look Once (YOLO) object detection algorithm

1. Introduction

In recent years, the significance of pedestrian tracking in autonomous vehicles has
garnered considerable attention due to its pivotal role in ensuring pedestrian safety. Existing
state-of-the-art approaches for pedestrian tracking in autonomous vehicles predominantly
rely on object detection and tracking algorithms, including Faster R-CNN (Region-based
Convolutional Neural Network), YOLO (You Only Look Once) and SORT algorithms [1].
However, these methods encounter issues in scenarios where pedestrians are occluded or
only partially visible [2]. These challenges serve as the impetus for our research, as we
strive to enhance the reliability and effectiveness of pedestrian tracking, particularly in
complex scenarios.

More specifically, the challenges in pedestrian tracking are multifaceted, ranging from
crowded urban environments to unpredictable pedestrian behavior [3]. Existing algorithms
often struggle to handle scenarios where individuals move behind obstacles, cross paths,
or exhibit sudden changes in direction. Furthermore, adverse weather conditions, low
lighting, and dynamic urban landscapes pose additional hurdles for accurate pedestrian
tracking [4]. These issues underscore the need for advanced pedestrian tracking solutions
that can adapt to diverse and complex real-world scenarios.
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In response to these challenges, our research takes inspiration from recent advance-
ments in deep learning and object detection. Deep learning techniques, with their ability to
learn intricate patterns and representations from data, have shown promise in overcoming
the limitations of traditional tracking methods. Leveraging the capabilities of the YOLOv8
algorithm for object detection, our approach aims to enhance the accuracy and robustness
of pedestrian tracking in dynamic and challenging environments [5]. By addressing the
limitations of existing algorithms, we aspire to contribute to the development of pedestrian
tracking systems that are both reliable and adaptable.

The quest for improved pedestrian tracking is not solely confined to the domain
of autonomous vehicles [6]. The relevant applications extend to various fields, such as
surveillance, crowd management, and human–computer interaction. Accurate pedestrian
tracking is crucial for ensuring public safety, optimizing traffic flow, and enhancing the
overall efficiency of smart city initiatives [7,8]. The effectiveness of pedestrian tracking
is also integral for a myriad of applications in the context of urban environments, and in
smart cities, where the integration of technology aims to enhance the quality of life, with
pedestrian tracking playing a crucial role. Efficient tracking systems can contribute to
optimized traffic management, improved public safety, and enhanced urban planning [9].
Beyond traffic applications, pedestrian tracking finds applications in surveillance, where
monitoring and analyzing pedestrian movement are essential for security [10]. Addition-
ally, in human–computer interaction scenarios, accurate tracking is pivotal for creating
responsive and adaptive interfaces, offering a wide array of possibilities for innovative
applications [11]. Therefore, the advancements in pedestrian tracking have far-reaching
implications, influencing various aspects of our daily lives and the development of smart
city ecosystems.

While existing algorithms have made strides in pedestrian tracking [12], the demand
for more robust and adaptable solutions remains. Our research addresses this demand by
leveraging advanced deep learning techniques and integrating them into a unified frame-
work, StrongSORT. By amalgamating the strengths of state-of-the-art tracking algorithms
and deep learning methods, we aim to overcome the challenges posed by occlusion, varied
pedestrian behavior, and complex urban environments. Through meticulous fine-tuning
and integration with YOLOv8, our proposed approach seeks to push the boundaries of
pedestrian tracking accuracy. Particularly, the proposed method leverages a genetic algo-
rithm to automatically improve tracking parameter settings, and it also utilizes manual
tuning for high-impact parameters to achieve better performance in pedestrian tracking.

The outcomes of our research contribute not only to the field of autonomous vehicles
but also to broader applications that rely on precise and efficient pedestrian tracking. In
particular, we propose a pedestrian tracking algorithm built upon the StrongSORT frame-
work. This methodology amalgamates the strengths of both SORT and the deep learning
techniques employed in DeepSORT, resulting in a robust solution for pedestrian tracking,
especially in challenging scenarios [13]. The urgency to develop improved pedestrian
tracking methods that seamlessly operate in real-world situations—commonly fraught
with obstacles and partial visibility—underlies the motivation for this research [14].

The structure of the paper is as follows: In Section 2, we provide an overview of related
work in pedestrian tracking. Section 3 outlines our proposed methodology, detailing the
StrongSORT algorithm and the integration with YOLOv8 for enhanced object detection.
Section 4 presents the experimental results and discussion, highlighting the performance
improvements achieved. Finally, in Section 5, we draw conclusions from our findings and
discuss avenues for future work.

2. Related Work

Recent advancements in pedestrian tracking encompass a diverse array of methods
and algorithms, broadly classified into the following categories:

1. Multi-Object Tracking (MOT) Methods:
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• These methods are designed to concurrently track multiple pedestrians within
a scene. Traditional approaches often employ the Hungarian algorithm for
association, linking detections across frames [5].

• Recent advancements leverage deep neural networks, such as TrackletNet [15]
and DeepSORT, to learn features and association scores, enhancing tracking
accuracy.

2. Re-identification-based Methods:

• This category integrates appearance-based and geometric feature-based tech-
niques to identify and track pedestrians across different camera views. Notably,
Siamese networks are employed to learn a similarity metric between pairs of
images [16].

• Contemporary methods incorporate attention mechanisms to emphasize discrim-
inative regions of pedestrians in order to improve tracking precision [17].

3. Online Multi-Object Tracking: Online tracking methods dynamically track multiple
pedestrians in real-time. Techniques include deep learning-based re-identification [18]
and online multiple hypothesis tracking [19].

4. Multi-Cue Fusion: Strategies in this category amalgamate various cues, such as
color, shape, and motion, to enhance tracking robustness in complex scenes. For
instance, the multi-cue multi-camera pedestrian tracking (MCMC-PT) method in-
tegrates color, shape, and motion cues from multiple cameras for comprehensive
pedestrian tracking [18].

This diverse landscape of pedestrian tracking methodologies underscores the ongoing
efforts to address challenges in occlusion, partial visibility, and dynamic scenarios. Each
approach brings its unique strengths, contributing to the advancement of pedestrian
tracking in autonomous vehicle applications. The subsequent sections of this paper delve
into the differentiation between algorithms, detailed technology introductions, and present
the proposed StrongSORT algorithm’s effectiveness in addressing these challenges.

In the research presented in [20], three frameworks for multi-object tracking were eval-
uated: tracking-by-detection (TBD), joint-detection-and-tracking (JDT), and a transformer-
based tracking method. DeepSORT and StrongSORT were classified under the TBD frame-
work. The front-end detector’s performance significantly impacts tracking, and enhancing
it is crucial. The transformer-based framework excels in MOTA (multiple object tracking
accuracy) but has a large model size, while the JDT framework balances accuracy and
real-time performance.

In [21], an occlusion handling strategy for a multi-pedestrian tracker is proposed,
capable of retrieving targets without the need for re-identification models. The tracker can
manage inactive tracks and cope with tracks leaving the camera’s field of view, achieving
state-of-the-art results on three popular benchmarks. However, the performed comparison
does not include DeepSORT or StrongSORT algorithms.

The authors of [13] propose a framework model based on YOLOv5 and StrongSORT
tracking algorithms for real-time monitoring and tracking of workers wearing safety
helmets in construction scenarios. The use of deep learning-based object detection and
tracking algorithms improves accuracy and efficiency in helmet-wearing detection. The
study suggests that changing the box regression loss function from CIOU to Focal-EIOU can
further improve detection performance. However, the study’s limitation is its evaluation
on a specific dataset, potentially limiting generalization to other datasets or scenarios.

The VOT2020 challenge assessed different tracking scenarios, introducing innovations
like using segmentation masks instead of bounding boxes and new evaluation methods.
Most trackers relied on deep learning, particularly Siamese networks, emphasizing the role
of AI and deep learning in advancing object tracking for future improvements [22]. In [23],
the utilization of the YOLOv5 model and the StrongSORT algorithm for ship detection,
classification, and tracking in maritime surveillance systems is examined. The practical
results demonstrate high accuracy in ship classification and the capability to track at a speed
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approaching real-time. The influence of StrongSORT contributes to enhancing tracking
speed, confirming its effectiveness in maritime surveillance systems.

In [24], fine-tuning plays a crucial role in adapting the pre-trained YOLOv5 model
for brain tumor detection, significantly enhancing the model’s performance in identifying
specific brain tumors within radiological images. Thus, this study provides a valuable tool
for medical image analysis. In another study [25], a direct comparison with the performance
of StrongSORT in its advanced version was conspicuously omitted. While utilizing the
KC-YOLO approach based on YOLOv5 in their detection algorithm, the study did not
surpass the capabilities of more recent versions like YOLOv8. Introducing newer updates
could potentially enhance StrongSORT++, as illustrated in [4], showcasing its substantial
outperformance across various metrics, including HOTA and IDF1, on the MOT17 and
MOT20 datasets.

The impact of fine-tuning is evident in a machine learning study [26], where deep
learning models identified diseases in maize leaves. Fine-tuning significantly improved
the performance of pre-trained models, resulting in disease classification accuracy rates
exceeding 93%. VGG16, InceptionV3, and Xception achieved accuracy rates surpassing
99%, demonstrating the effectiveness of transfer learning, as previously shown in [27], and
the positive impact of fine-tuning on disease detection in maize leaves [26].

In Table 1, a comparison is presented between StrongSORT and other multi-object
tracking methods with a focus on the advantages and disadvantages of its method.

Table 1. Comparison overview between StrongSORT and other multi-object trackers.

Method Advantages Disadvantages

StrongSORT [4]
• Simple and efficient
• Robustness to occlusions
• Robustness to identity switches

• Runs relatively slowly
• Negligible extra computational cost

DeepSORT [28] Simple and efficient Limited robustness to occlusions and
identity switches

TrackletNet [15] Robust to occlusions and identity
switches Complex architecture and not real-time

DMAN [29] Robust to occlusions and identity
switches Not real-time

SORT [30] Simple and efficient Limited robustness to occlusions and
identity switches

ATOM [31] Accurate tracking Complex architecture and not real-time

IVDM [25] Enhanced handling of occlusions and
identity switches

Needs evaluation against real-time
performance

Relevant studies affirm the positive impact of YOLOv5 on tracking, aligning seamlessly
with our detection-based tracking algorithm. The general aim of our research is to leverage
the enhanced capabilities of the YOLOv8 version. The ongoing research underscores
StrongSORT’s inherent advantages—simplicity, efficiency, and proficiency in effectively
managing occlusions and identity switches. Our results further showcase StrongSORT’s
suitability across various metrics, and particularly in the MOTA metric.

In recognizing the identified limitations within StrongSORT, such as a slightly slower
runtime in specific cases, it becomes imperative to strike a balance in utilizing its features
while simultaneously addressing challenges in diverse implementation environments.
Future research endeavors will delve into a meticulous examination of the algorithm’s
efficiency concerning occlusions and identity switches. Our ongoing efforts are dedicated
to enhancing these aspects, with a particular emphasis on improving performance in
pedestrian scenarios.
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2.1. YOLOv8

YOLOv8 (You Only Look Once version 8) represents a significant advancement over
its predecessors, YOLOv7 and YOLOv6, incorporating multiple features that enhance both
speed and accuracy. A notable addition is the spatial pyramid pooling (SPP) module,
enabling YOLOv8 to extract features at varying scales and resolutions [32]. This facilitates
the precise detection of objects of different sizes. Another key feature is the cross stage
partial network (CSP) block, reducing the network’s parameters without compromising
accuracy, thereby improving both training times and overall performance [33].

Evaluation of prominent object detection benchmarks, including COCO and Pascal
VOC datasets, showcases YOLOv8’s exceptional capabilities. The COCO dataset, with
80 object categories and complex scenes, saw YOLOv8 achieving the highest-ever mean
average precision (mAP) score of 55.3% among single-stage object detection algorithms. Ad-
ditionally, it achieved a remarkable real-time speed of 58 frames per second on an NVIDIA
GTX 1080 Ti GPU. In summary, YOLOv8 stands out as an impressive object detection
algorithm, delivering high accuracy and real-time performance. Its ability to process the
entire image simultaneously makes it well suited for applications such as autonomous
driving and robotics. With its innovative features and outstanding performance, YOLOv8 is
poised to remain a preferred choice for object detection tasks in the foreseeable future [34].

Figure 1 illustrates the performance of YOLOv8 in real-world scenarios [35].

Figure 1. YOLOv8 performance.

2.2. DeepSORT

DeepSORT is an advanced real-time multiple objects tracking algorithm that lever-
ages deep learning-based feature extraction coupled with the Hungarian algorithm for
assignment. The code structure of DeepSORT comprises the following key components [36]:

1. Feature Extraction: Responsible for extracting features from input video frames,
including bounding boxes and corresponding features.

2. Detection and Tracking: Detects objects in each video frame and associates them with
their tracks using the Hungarian algorithm.

3. Kalman Filter: Predicts the location of each object in the next video frame based on its
previous location and velocity.

4. Appearance Model: Stores and updates the appearance features of each object over
time, facilitating re-identification and appearance updates.

5. Re-identification: Matches the appearance of an object in one video frame with its
appearance in a previous frame.

6. Output: Generates the final output—a set of object tracks for each video frame.

These components collaboratively form a comprehensive tracking algorithm. Deep-
SORT can undergo training using a substantial dataset of video frames and corresponding
object bounding boxes. The training process of DeepSORT fine-tunes the various algo-
rithm’s components, such as the appearance model and feature extraction, aiming to
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enhance the algorithm’s overall performance. Despite its strengths, DeepSORT also faces
unique challenges, including:

• Blurred Objects: Tracking difficulties due to image artifacts caused by blurred ob-
jects [37].

• Intra-object Changes: Challenges in handling changes in the shape or size of objects
[38].

• Non-rigid Objects: Difficulty in tracking objects appearing for short durations [39].
• Transparent Objects: Challenges in detecting objects made of transparent materials.
• Non-linear Motion: Difficulty in tracking irregularly moving objects [40].
• Fast Motion: Challenges posed by quickly moving objects.
• Similar Objects: Difficulty in differentiating objects with similar appearances [41].
• Occlusion: Tracking challenges when objects overlap or obstruct each other [18].
• Scale Variation: Difficulty when objects appear at different scales in the image [42].

To address these challenges, the StrongSORT algorithm has been proposed aiming
to offer solutions which enhance tracking robustness and efficiency [4]. The StrongSORT
algorithm is briefly reviewed in the following subsection.

2.3. StrongSORT

The StrongSORT algorithm enhances the original DeepSORT by introducing the
AFLink algorithm for temporal matching to person tracking and the GSI algorithm for
temporal interpolation of matched individuals. New configuration options have been
incorporated to facilitate these improvements [4]:

• AFLink: A flag indicating whether the AFLink algorithm should be utilized for
temporal matching.

• Path_AFLink: The path to the AFLink algorithm model to be employed.
• GSI: A flag indicating whether the GSI algorithm should be employed for temporal

interpolation.
• Interval: The temporal interval to be applied in the GSI algorithm.
• Tau: The temporal interval to be used in the GSI algorithm.

The original DeepSORT application is updated through the integration of the AFLink
and GSI algorithms, providing enhanced capabilities for temporal matching and interpola-
tion of tracked individuals.

Figure 2 presents the framework of the AFLink model. It adopts the spatio-temporal
information of two tracklets as input and predicts their connectivity [4].

Figure 2. Framework of the AFLink model.

3. Proposed Method
3.1. Proposed Approach

To enhance the tracking performance of StrongSORT, the approach proposed in the
present paper involves a multi-faceted strategy that encompasses diverse appearance
model training, precise parameter tuning, incorporation of additional information, and
integration with other tracking algorithms. Each strategy aims to address specific challenges
in pedestrian tracking, thereby contributing to the overall improvement of the algorithm:
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1. Diverse Appearance Model Training: Our approach begins with training the appear-
ance model on a diverse set of data. By exposing the network to a wide range of
visual appearances, we aim to enhance its ability to effectively track objects. This
diversity helps the model generalize better to various scenarios, including challeng-
ing conditions, such as occlusions, variations in lighting, and diverse pedestrian
characteristics.

2. Precise Parameter Tuning: Recognizing the critical role of parameter tuning in tracking
accuracy, our approach involves the fine-tuning of various parameters. This includes
parameters related to the Kalman filter, the Hungarian algorithm, and the confidence
threshold used for tracklet merging. The optimization of these parameters is essential
for achieving optimal tracking results, and our methodology systematically explores
the parameter space for performance enhancement.

3. Incorporating Additional Information: To further improve tracking accuracy, we
explore the integration of additional information about the tracked objects. This sup-
plementary information may include object size, shape, or velocity. By incorporating
these cues into the tracking process, we aim to provide the algorithm with richer
contextual information, enabling more accurate predictions and reducing instances of
tracking failures.

4. Integration with Other Tracking Algorithms: Our approach investigates the collab-
orative integration of StrongSORT with other tracking algorithms. This synergistic
approach allows us to leverage complementary information from different sources.
By combining the strengths of multiple algorithms, we aim to enhance the overall
robustness and reliability of pedestrian tracking in diverse and challenging scenar-
ios [20,43].

While these strategies present significant potential for enhancing StrongSORT’s track-
ing capabilities, achieving optimal performance is a complex task that requires experimenta-
tion with various techniques. In our work, we particularly focus on two primary strategies
for parameter tuning: the use of a genetic algorithm and manual tuning of high-impact
parameters.

1. Genetic Algorithm for Parameter Tuning:

• Random Parameter Generation: In this phase, a diverse set of parameters for
the StrongSORT model is randomly generated. The randomness introduces
variability, exploring different regions of the parameter space. This diversity is
crucial as it helps prevent the algorithm from converging to local optima and
promotes exploration of the broader solution space.

• Evaluation and Comparison: The generated parameters undergo evaluation
using the tracking dataset. This evaluation involves running the StrongSORT
model with the randomly generated parameters and measuring its performance
against predefined goals. The goals serve as benchmarks, providing clear criteria
to determine the success or failure of a set of parameters. This step is vital for
identifying the parameters that contribute to improved tracking accuracy.

• Natural Selection: Natural selection is a key principle inspired by biological
evolution. Parameters that exhibit superior performance, as measured by the
predefined goals, are selected. This mimics the biological concept of favoring
traits that contribute positively to survival and reproduction. The selected pa-
rameters become the foundation for the next generation, ensuring that successful
traits are passed on and refined over successive iterations.

• Iteration: The entire process is repeated for several generations. In each iteration,
the algorithm refines and evolves the parameters based on the success of the
previous generations. Over time, this iterative approach leads to the emergence of
parameter sets that exhibit superior performance, demonstrating the adaptability
and efficiency of the genetic algorithm in finding optimal solutions within the
solution space.
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2. Manual Tuning of High-Impact Parameters:

• Impact Analysis: A comprehensive analysis is conducted for understanding
the impact of various parameters on the model’s performance. This involves
studying how each parameter influences the tracking algorithm and its interac-
tions with other parameters and the dataset. Impact analysis provides valuable
insights into the complex relationships within the algorithm, guiding subsequent
tuning efforts.

• Precise Manual Tuning: Based on the insights gained from impact analysis,
high-impact parameters are precisely and manually adjusted. This precision
involves a deep understanding of the algorithm’s behavior and the specific effects
of parameter changes. Manual tuning allows researchers to exert fine-grained
control over critical aspects, such as the Kalman filter parameters or tracklet
merging thresholds, ensuring that adjustments align with the goals of improving
tracking accuracy.

• Experiments and Measurements: After manual parameter tuning, a series of
experiments are conducted to measure the model’s performance. These experi-
ments involve running the StrongSORT algorithm with the manually adjusted
parameters on the tracking dataset. The goal is to quantify the improvements
achieved through manual tuning, providing empirical evidence of the impact of
parameter adjustments on tracking accuracy.

• Reiteration: The tuning and measurement processes are iterative, allowing re-
searchers to refine parameters further based on experimental results. Reiteration
is essential for optimizing the model progressively. Researchers can repeat the
manual tuning cycle as necessary to achieve the maximum potential of the algo-
rithm, continually refining the parameter values and ensuring they align with
the specific requirements of the tracking scenario.

In summary, the proposed method uses a genetic algorithm to automatically improve
tracking parameter settings, and it also utilizes manual tuning for high-impact parameters
to obtain better performance in pedestrian tracking (see Figure 3). The synergy of these
approaches aims to strike a balance between automated optimization and expert-guided
fine-tuning, resulting in an enhanced StrongSORT algorithm that excels in challenging
tracking scenarios. The effectiveness of our proposed method lies in its ability to sys-
tematically explore the parameter space, combining automated techniques with expert
knowledge to achieve robust and adaptable pedestrian tracking in complex real-world sce-
narios. This hybrid approach allows for a comprehensive optimization strategy, ensuring
that the algorithm performs optimally across a diverse range of tracking challenges.

Figure 3. Method of tuning hyperparameters.

3.2. Datasets

After a thorough evaluation of various tracking algorithms, including Botsort, BYTE-
track, Ocsort, and StrongSORT (an upgraded version of DeepSORT), we selected specific
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datasets for our study. The chosen datasets were MOT16 and MOT17 Challenge [44],
specifically designed for pedestrian tracking.

The MOT16 dataset serves as a benchmark, featuring 14 challenging video sequences.
It comprises seven training sets and seven test sets captured in unconstrained environ-
ments using both static and moving cameras. The tracking and evaluation in MOT16
are conducted in image coordinates, and all sequences have been accurately annotated
following a well-defined protocol. In contrast, the MOT17 Challenge builds upon the
MOT16 sequences, providing a more precise ground truth. Each sequence in the MOT17
Challenge is equipped with three sets of detections: DPM, Faster-RCNN, and SDP. These
diverse detections are particularly suitable for our project, which focuses on enhancing
pedestrian tracking in complex landscapes.

3.3. Improving Performance Using StrongSORT

Our primary focus is on fine-tuning the hyperparameters, involving the adjustment
of parameters that significantly impact algorithm performance. Key hyperparameters
subject to adjustment include the intersection over union (IoU) threshold, maximum cosine
distance, inactivity threshold, and maximum age. In this study, we concentrate on fine-
tuning the hyperparameters of StrongSORT, an enhanced model derived from DeepSORT,
known for delivering superior tracking results.

In terms of computational efficiency, StrongSort_P demonstrates significant improve-
ments over StrongSORT. The reduction in inference time from 21.3 ms to 19.5 ms indicates a
notable enhancement in the speed of the detection phase. Additionally, the update time of
StrongSORT experiences a decrease from 104.7 ms to 94.0 ms, reflecting a notable improve-
ment in the processing speed of the tracking algorithm. These enhancements underscore
the model’s capacity to achieve superior performance without compromising accuracy,
showcasing a commendable balance between processing speed and precision.

To facilitate object detection within the tracker, we leveraged various versions of
YOLOv8 as our foundational tool. Subsequently, we conducted a comparative analysis
using essential criteria, namely IDF1, MOTA, and HOTA, which are thoroughly explained
in the next subsection. Our observations revealed that the MOTA and HOTA metrics
are well-suited for evaluating improvements in real-time tracking systems, while IDF1 is
particularly valuable for assessing enhancements in detection accuracy, an equally crucial
aspect of the overall performance evaluation.

3.4. Evaluation Metrics

The evaluation of the performance of detection and tracking systems in computer
vision relies on several key metrics. In our work, we utilize the following metrics to assess
the effectiveness of our tracking algorithm:

IDF1 Criterion: IDF1 stands for “Identification F1 Score” and is a criterion for deter-
mining detection accuracy. IDF1 is calculated by dividing the number of items correctly
identified by the system (True Positives) by the sum of the items correctly identified by the
system (True Positives), the items incorrectly identified by the system (False Positives), and
the items that were not identified (False Negatives). IDF1 can be defined as follows:

IDF1 =
2 · TP

2 · TP + FP + FN
(1)

MOTA Criterion: MOTA stands for “Multiple Object Tracking Accuracy” and is a
criterion for determining tracking accuracy. MOTA is calculated by dividing the number
of items tracked correctly (True Positives) by the sum of the items tracked correctly (True
Positives), the items tracked incorrectly (False Positives), the items that were not tracked
(False Negatives), and the items that were tracked incorrectly (Mismatches). MOTA can be
defined as follows:

MOTA = 1 − FN + FP + Mismatches
TP + FN + Mismatches

(2)
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HOTA Criterion: HOTA stands for “Higher Order Tracking Accuracy” and is a crite-
rion for determining tracking accuracy and distinguishing between overlapping objects
and erroneous movements. This criterion depends on calculating the probability of false
transitions and mismatched movements between overlapping objects. HOTA is calculated
by dividing the items tracked correctly (True Positives) minus the mismatches and false
transitions by the sum of the items tracked correctly, the items tracked incorrectly, the items
that were not tracked, and the mismatched movements and false transitions. HOTA can be
defined as follows:

HOTA =
TP − Mismatches − FT

TP + FP + FN − Mismatches − FT
(3)

where in these equations, TP represents True Positives, FP is False Positives, FN is False
Negatives, Mismatches refers to instances of incorrect tracking, and False Transitions are
cases where the system incorrectly predicts transitions between objects.

In general, IDF1 is considered a tool for measuring the accurate detection of targeted
objects in the image, while MOTA is a tool for measuring the temporal tracking accuracy of
moving objects. HOTA is considered an extension of MOTA, focusing on distinguishing
between overlapping objects and erroneous movements. Both MOTA and HOTA criteria
are commonly used in evaluating real-time automated tracking systems, but HOTA is
considered more specific and better in critical and complex tracking environments [45].

4. Results
4.1. Quantitative Evaluation of Tracking Algorithms

The hyperparameters of StrongSORT were tuned using a genetic algorithm, but we
did not observe a significant enhancement in the results. Thus, we focused on the most
influential parameters in pedestrian tracking. The results indicated that the IOU threshold
had a weak effect on performance in StrongSORT_I, while the maximum age hyperpa-
rameter had a clear effect on performance, leading to superior results in StrongSORT_P.
The use of this hyperparameter had a positive impact on all the evaluation metrics. The
results are presented in Tables 2 and 3. In particular, these tables present a comprehensive
comparison of tracking algorithms, including BYTEtrack, Ocsort, StrongSORT_I, Botsort,
StrongSORT, and the proposed StrongSORT_P. The metrics evaluated are Higher Order
Tracking Accuracy (HOTA), Multiple Object Tracking Accuracy (MOTA), and IDentity F1
(IDF1).

Table 2. MOT16 trackers comparison with YOLOv8n.

# Method HOTA MOTA IDF1

1 BYTEtrack 37.574 33.36 43.946
2 Ocsort 40.852 38.206 48.678
3 StrongSORT_I 42.611 38.46 51.805
4 Botsort 42.644 41.654 51.91
5 StrongSORT 42.698 38.416 51.899
6 StrongSORT_P 42.859 38.467 52.29

Increase 0.161 0.051 0.391
Percentage Increase 0.38% 0.13% 0.75%

In Table 4, we present the performance metrics of our tracker using various YOLOv8
models. The evaluation encompasses five YOLOv8 models, namely YOLOv8n, YOLOv8s,
YOLOv8m, YOLOv8l, and YOLOv8x. Each model was examined to gauge its impact on
tracking performance, revealing nuanced differences in key metrics. The calculated HOTA
(Higher Order Tracking Accuracy), MOTA (Multiple Object Tracking Accuracy), and IDF1
(ID F1 Score) metrics provide a comprehensive overview of the tracker’s effectiveness
across different YOLOv8 configurations.
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Table 3. MOT17 trackers comparison with YOLOv8s.

# Method HOTA MOTA IDF1

1 BYTEtrack 41.073 38.41 48.973
2 Ocsort 44.389 42.394 53.121
3 Botsort 45.087 43.498 53.865
4 StrongSORT_I 45.299 42.414 54.856
5 StrongSORT 45.338 42.384 54.96
6 StrongSORT_P 45.55 42.413 55.338

Increase 0.212 0.029 0.378
Percentage Increase 0.47% 0.07% 0.69%

Table 4. Performance metrics with different YOLOv8 models.

Method HOTA (%) MOTA (%) IDF1 (%)

YOLOv8n 0.49 0.15 0.92
YOLOv8s 0.47 0.07 0.69
YOLOv8m 0.60 0.27 0.65
YOLOv8l 0.51 0.46 0.69
YOLOv8x 0.44 0.39 0.61

Average percentage increase (%) 0.50 0.27 0.71

These results indicate varying degrees of improvement across metrics. Notably, an
average percentage increase of 0.50% in HOTA, 0.27% in MOTA, and 0.71% in IDF1 was
observed. These enhancements underscore the tracker’s adaptability to different YOLOv8
models and its consistent performance improvement. The findings presented in Table 4
further reinforce the robustness and versatility of our proposed tracking algorithm in
diverse scenarios.

Moreover, these results complement the comparisons with other state-of-the-art track-
ers presented in Tables 2 and 3. While we acknowledge the importance of diverse tests,
the inclusion of various YOLOv8 models provides valuable insights into the algorithm’s
performance nuances and its ability to adapt to different object detection configurations.

The results in Tables 2 and 3 demonstrate the performance of different tracking algo-
rithms on the MOT16 and MOT17 datasets. The comparison was made using three evalua-
tion metrics: HOTA, MOTA, and IDF1. The proposed enhanced algorithm, StrongSORT_P,
outperformed all other algorithms in all metrics, including the original StrongSORT, validat-
ing its effectiveness in enhancing pedestrian tracking accuracy. The percentage increases in
HOTA, MOTA, and IDF1 signify the algorithm’s substantial improvement over the MOT16
and MOT17 datasets. Notably, the maximum age hyperparameter, a focus of our fine-tuning
efforts, emerges as a key contributor to the superior performance of StrongSORT_P. This
emphasizes the significance of precise parameter tuning in optimizing tracking algorithms
for real-world scenarios, confirming the importance of our approach in addressing the
challenges of pedestrian tracking.

Overall, the results suggest that the proposed enhanced algorithm, StrongSORT_P, is
an effective and efficient method for pedestrian tracking, particularly in complex scenarios
such as those found in the MOT16 and MOT17 datasets. The use of Yolov8 for detection with
StrongSORT further improves its performance. Thus, the tuning of the hyperparameters
in StrongSORT confirms its importance for optimizing tracking algorithms for specific
scenarios.

It is noticeable in Figures 4 and 5, that StrongSORT_P had the ability to track the same
person number 3 after hiding behind the obstacle, while in the regular StrongSORT, it
did not consider it the same person and the number changed to 15, indicating weakness
in tracking for the normal algorithm in the presence of obstacles. These scenes confirm
the results of the previous comparison tables, which gave priority to the algorithm after
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improvement in tracking ability. In Figures 4 and 5, we observe the improved tracking
ability of StrongSORT_P, especially in handling scenarios with obstacles.

Figure 4. Tracking by StrongSORT.

Figure 5. Tracking by StrongSORT_P.

In the more intricate scene depicted in Figures 6 and 7, the enhanced version, Strong-
SORT_P, demonstrates improved performance by avoiding identity switching for the
person walking away. Conversely, the original tracker version exhibits a switch to key
number “44” under similar conditions.

Figure 6. Tracking by StrongSORT in a crowded scenario.

Figure 7. Tracking by StrongSORT_P in a crowded scenario.

Figures 8 and 9 showcase the detection and tracking of 80 objects and pedestrians
using YOLOv8n-seg along with StrongSORT and StrongSORT_P, respectively.
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Figure 8. Detection and tracking of 80 objects using YOLOv8n-seg and StrongSORT.

Figure 9. Detection and tracking of pedestrians using YOLOv8n-seg and StrongSORT_P.

These visualizations provide insights into the real-world performance of the tracking
algorithms, reinforcing the quantitative results obtained through the evaluation metrics in
Tables 2 and 3.

The limitations of the present study include the size of the studied datasets. Due to
limited resources, we were unable to experiment with larger data. Our future work could
involve the evaluation of larger datasets, such as MOT20, MOT20Det, and others, and
exploring alternative optimization methodologies beyond hyperparameter tuning.

Based on the outcomes of the present comparison, a correlation between the present
study’s objective and our previous research can be established, enhancing the detection and
tracking of pedestrians through an investigation of various versions of the YOLO algorithm
and optimizing the StrongSORT algorithm specifically for pedestrian tracking [27]. As a
result, more effective methodology for detecting and tracking pedestrians can be developed,
surpassing previous findings.

4.2. Discussion

In the quantitative evaluation of tracking algorithms, the optimization of Strong-
SORT hyperparameters, particularly the focus on the maximum age parameter, revealed
significant improvements in pedestrian tracking performance. The results, presented in
Tables 2 and 3, showcase the effectiveness of the proposed optimized algorithm, Strong-
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SORT_P. This model outperformed other algorithms, including the original StrongSORT,
across multiple metrics, indicating its robustness in handling complex scenarios encoun-
tered in the MOT16 and MOT17 datasets.

The observed weak effect of the IOU threshold in StrongSORT_I suggests that certain
hyperparameters may have varying impacts on tracking performance. The clear influence
of the maximum age parameter underscores the importance of tuning specific parameters
tailored to the tracking context. The use of Yolov8 for detection in conjunction with
StrongSORT further contributed to enhanced tracking results, emphasizing the synergistic
relationship between detection and tracking modules.

While our research study demonstrates promising results, it is crucial to acknowledge
its limitations, primarily, the size of the datasets under investigation. The constrained
resources prevented experimentation with larger datasets, such as MOT20 and MOT20Det.
Future research could expand the evaluation to larger datasets and explore alternative
optimization methodologies beyond hyperparameter tuning.

The correlation established between this study’s objective and previous research
underscores the significance of optimizing tracking algorithms for pedestrian detection.
The improved methodology, featuring a combination of YOLO algorithm versions and
fine-tuned StrongSORT, surpasses previous findings, indicating a positive direction for
advancements in real-world pedestrian tracking scenarios. Figures 4 and 5 visually demon-
strate the tracking capabilities of StrongSORT and StrongSORT_P, emphasizing the latter’s
improved ability to track individuals, especially in the presence of obstacles. Visualizations
in Figures 8 and 9 further reinforce the efficacy of the algorithms, providing a comprehen-
sive understanding of their real-world applicability.

5. Conclusions and Future Work

This research systematically compared various tracking algorithms, with a particular
focus on the proposed optimized DeepSORT, denoted as StrongSORT_P. The evaluation,
conducted on the MOT16 and MOT17 datasets using three key metrics, unveiled the
consistent superiority of StrongSORT_P over other algorithms, including the baseline
DeepSORT. The integration of Yolov8 for object detection notably elevated the overall
performance of the tracking algorithms.

To enhance the tracking capabilities of StrongSORT, we meticulously fine-tuned its
hyperparameters using a genetic algorithm, with specific emphasis on the maximum age
parameter. Our in-depth evaluation revealed that this parameter significantly influenced the
algorithm’s performance, resulting in the remarkable enhancements seen in StrongSORT_P.
These findings collectively affirm that the proposed algorithm presents a highly effective
and efficient approach to pedestrian tracking, particularly in complex scenarios marked by
occlusions and partial visibility.

StrongSORT_P demonstrated substantial improvements in the HOTA, MOTA, and
IDF1 metrics over the MOT17 Challenge dataset. These enhancements, as indicated in
Table 4, underscore the algorithm’s adaptability and suitability for real-world tracking
applications. The consistent improvements across various YOLOv8 models (0.50%, 0.27%,
0.71%) further emphasize the robustness of the algorithm, reaffirming its potential in
diverse tracking scenarios.

With respect to future work, we recognize the potential for further advancements. Ex-
panding the evaluation to larger datasets, such as MOT20 and MOT20Det, would provide
a broader perspective on algorithm performance. Additionally, exploring alternative opti-
mization methodologies beyond hyperparameter tuning could contribute to the ongoing
refinement of tracking algorithms in diverse scenarios. Moreover, there is a need for future
research to delve deeper into the intricate balance between processing speed and accuracy,
especially considering the added complexity introduced by the fine-tuning process and
integration with YOLOv8. Uncovering the algorithm’s approach to achieving this balance
will be crucial for optimizing efficiency without compromising tracking accuracy.
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