
Citation: Alkhateeb, E.; Ghorbani, A.;

Habibi Lashkari, A. Identifying

Malware Packers through Multilayer

Feature Engineering in Static Analysis.

Information 2024, 15, 102. https://

doi.org/10.3390/info15020102

Academic Editor: Libing Wu

Received: 10 January 2024

Revised: 30 January 2024

Accepted: 7 February 2024

Published: 9 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Identifying Malware Packers through Multilayer Feature
Engineering in Static Analysis
Ehab Alkhateeb 1,* , Ali Ghorbani 1 and Arash Habibi Lashkari 2

1 Canadian Institute for Cybersecurity (CIC), Faculty of Computer Science, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada; ghorbani@unb.ca

2 Behaviour-Centric Cybersecurity Center (BCCC), School of Information Technology, York University,
Toronto, ON M3J 1P3, Canada; ahabibil@yorku.ca

* Correspondence: ehab.alkhateeb@unb.ca

Abstract: This research addresses a critical need in the ongoing battle against malware, particularly in
the form of obfuscated malware, which presents a formidable challenge in the realm of cybersecurity.
Developing effective antivirus (AV) solutions capable of combating packed malware remains a
crucial endeavor. Packed malicious programs employ encryption and advanced techniques to
obfuscate their payloads, rendering them elusive to AV scanners and security analysts. The introduced
research presents an innovative malware packer classifier specifically designed to adeptly identify
packer families and detect unknown packers in real-world scenarios. To fortify packer identification
performance, we have curated a meticulously crafted dataset comprising precisely packed samples,
enabling comprehensive training and validation. Our approach employs a sophisticated feature
engineering methodology, encompassing multiple layers of analysis to extract salient features used
as input to the classifier. The proposed packer identifier demonstrates remarkable accuracy in
distinguishing between known and unknown packers, while also ensuring operational efficiency.
The results reveal an impressive accuracy rate of 99.60% in identifying known packers and 91%
accuracy in detecting unknown packers. This novel research not only significantly advances the field
of malware detection but also equips both cybersecurity practitioners and AV engines with a robust
tool to effectively counter the persistent threat of packed malware.

Keywords: obfuscated malware; antivirus; packed malware; payloads; malware packer classifier;
feature engineering

1. Introduction

The introduction of new technologies like smartphones, tablets, and wearable devices
has revolutionized the way we engage with digital information, allowing us to access
it instantly from anywhere in the world. Additionally, communication and information
sharing have become more accessible than ever with the help of social networks, email,
instant messaging, and IP telephony. Unfortunately, the growth in technology has also
resulted in the emergence and spread of various types of computer malware, such as
viruses, worms, and trojans. Cybercriminals and hackers often use these malicious software
programs for harmful purposes, making protection against them more challenging than
ever. In fact, malware deployment has become a common strategy in digital warfare, which
can include cyberespionage or cybersabotage [1,2].

Currently, the majority of executable files being analyzed, including malicious ones,
are known as PE files (Portable Executable) and have the PE format, primarily used for the
Windows family of operating systems—under which most malware applications are written.
To bypass AV engines and hinder code analysis, malware writers often use specialized
applications such as packers to obfuscate their files, demonstrating a keen interest in
investing significant funds to leverage this technology [3]. McAfee’s report [4] states that
over 80% of malware programs are packed.

Information 2024, 15, 102. https://doi.org/10.3390/info15020102 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15020102
https://doi.org/10.3390/info15020102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-5840-6164
https://orcid.org/0000-0001-9189-6268
https://orcid.org/0000-0002-1240-6433
https://doi.org/10.3390/info15020102
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15020102?type=check_update&version=1

Information 2024, 15, 102 2 of 26

The main objective of packers is to perform packing, a form of code obfuscation
that can involve encrypting or compressing a file. Packer identification is the process of
determining the packer application used to pack an original code. As such, the first stage
and priority in the AV engine are to identify the packer used to unpack the packed malware,
to determine the attacker’s intention or simply quarantine the file if it is a malicious packer.

The current gap in packer identification involves various aspects, including dataset
composition, packer family classification, the recognition of unknown packers, and the
landscape of packer attack vectors is expansive, with numerous emerging antianalysis
techniques. Antivirus engines strive for practical and low-overhead approaches to address
these challenges, often favoring static analysis methods for their minimal overhead. This
research is dedicated to tackling the current packer identification problem by detecting
both known and unknown packers, utilizing static analysis for feature engineering. Our
proposed approach places significant emphasis on feature engineering to identify the most
prevalent features in static analysis, with the ultimate goal of bridging the existing gap in
packer identification.

The research contribution in this paper can be summarized as follows:

• We meticulously constructed datasets for benign and malware packers through a
multistage process, ensuring well-organized samples for training our classifier.

• Our proposed packer classifier incorporates a multilayer feature engineering approach,
selecting engineered features based on their prevalence and performance.

• The classifier achieves a high level of accuracy while maintaining exceptional efficiency,
surpassing classical signature-based methods.

• Notably, our classifier excels in detecting both family-based packers and unknown
packers in real-world scenarios.

The rest of this article is organized as follows: Section 3 provides a brief background
on packed malware, including an overview of packers and their specifications, as well as
details about the handling life cycle of malware packers. Section 4 describes the proposed
approach using multilayer feature engineering. Section 5 discusses the construction of the
dataset, encompassing benign and malware-packed samples, along with the experiments
conducted and their corresponding results. Section 6 presents a comprehensive discussion
regarding the significance and analysis of the obtained results. Section 7 concludes the
study. Finally, Section 8 discusses the limitations of the present study and outlines potential
areas for future work.

2. Related Works
2.1. Packers Identification Approaches

In recent years, numerous research papers have been published concerning the detec-
tion of malware packers. These studies vary in terms of the attributes (or qualities) utilized
to distinguish between packed malware and reputable applications. These attributes can
be acquired using either static or dynamic analysis methods.

2.1.1. Dynamic Analysis

Dynamic analysis encompasses the execution of the packed executable within a con-
trolled environment to monitor its actions in real time. The authors in [5] presented a
thought-provoking insight into the realm of generic unpackers, highlighting their vul-
nerability due to reliance on specific packer families. This reliance inadvertently exposes
these unpackers to faulty assumptions, which are skillfully exploited by malware authors
who craft intricate handmade packers. This realization underscores the need for more
adaptable and sophisticated approaches in countering the ever-evolving landscape of
malware protection.

Hai et al. [6] proposed a technique utilizing metadata signatures and control flow
graph (CFG) analysis for identifying packed code. The method included disassembling and
generating CFGs using BE-PUM through concolic testing. Within the CFG, obfuscation tech-
niques were pinpointed using formal criteria, and the packer was determined by applying

Information 2024, 15, 102 3 of 26

the chi-square test to the metadata signature. Assessment with 12 packers and 12,814 mal-
ware samples unveiled 608 disparities compared to tools like PEiD, CFF Explorer, and
VirusTotal. Nonetheless, the intricacies of the approach contributed to slower processing.

Alkhateeb et al. [7] introduced a dynamic API analysis for packed malware detection,
leveraging Naive Bayes and Levenshtein distance for robust differentiation. The primary
data, based on API frequency, underwent training using a heuristic approach. Results from
experiments on 1000 benign and 4000 malware samples demonstrated superior detection
rates for packers such as PECompact and UPX, achieving over 90% accuracy, albeit with a
minor computational cost in dynamic analysis.

Men’endez et al. [8] combined entropy analysis and classification algorithms. Their
approach imitated behavior and achieved accuracy rates of nearly 98% in the best case
and 75% in the worst across 57 antivirus engines, particularly targeting Windows’ disk-
resident malware.

Munkhbayar et al. [9] proposed dynamic entropy analysis for packer detection, catego-
rizing samples as increasing, decreasing, or static. The method utilized SAX representations
of entropy values and several similarity algorithms for classification. However, the limited
sample size affected technique efficiency and performance. Graphically visualized patterns,
instead of substantial features, were used for classification. The time complexity of the
dynamic analysis was a major concern.

Munkhbayar et al. [10] introduced a multilayer executable packer detection approach
using entropy values in symbolic representations (SAX). The method aimed to detect
repacked and multipacked benign executables. However, the process’s time complexity,
involving memory extraction, debugger usage, and unpacking process verification, posed
challenges. Additionally, relying solely on entropy for detection proved inadequate for the
wide array of packers.

Lim et al. [11] introduced a memory analysis technique called Mal-Flux, designed to
extract hidden code from packed samples by focusing on the end of unpacking routines.
Operating within dynamic analysis, Mal-Flux was computationally intensive, resembling
earlier efforts in dynamic and emulation analysis.

Examining the dynamic techniques for detecting malware discussed earlier, we can
deduce that dynamic analysis is both time-intensive and resource-demanding, leading to
escalated scalability concerns.

2.1.2. Static Analysis

Static analysis examines packed files’ attributes and structures without execution.
In [12], the authors proposed Learning with Local and Global Consistency (LLGC) for
semi-supervised classification of packed binaries. With 10% of the malware dataset from
Perdisci et al. [13], LLGC achieved a 9.5% lower accuracy than reported by Perdisci. The
highest accuracy, 99.3%, was observed using random forest (supervised) features. One
example of how supervised ML algorithms can be applied was discussed in [14], where
the authors explored the potential of utilizing supervised machine learning for intrusion
detection systems (IDS), achieving a high level of classification performance. Another
study [15] adopted an ensemble approach, using 209 features, including structural and raw
data from the PE32 file header. Ugarte et al. [16] proposed an anomaly detection method
for identifying variations in packed executables. In packing detection [17], XOR-based
algorithms with lower entropy values were suggested. Two approaches, ESCAPE [18] and
PEAL [19], were employed. Feature vectors, normalized with WEKA, achieved a 97.4%
detection accuracy using five machine learning algorithms. Mimura et al. [20] proposed
the exploration of large-scale datasets as a potential avenue for research. However, their
approach relied solely on a simple signature-based packer detector with an approximate
30 percent false-negative rate. This reliance posed limitations on their ability to comprehen-
sively identify the packer names associated with the samples. As a result, the applicability
of their experimental results may be constrained, particularly when dealing with highly
sophisticated packers that can effectively evade signature-based packer detectors.

Information 2024, 15, 102 4 of 26

Jin et al. [21] proposed a PE header-based method for packer classification, achieving
around 0.99% precision and recall. Similar to [22], the approach used PE file header
analysis with nine features and the Euclidean distance for classification. Despite fast header
checking, the simplicity of the classification may lead to less accurate packer detection.

Various graph-based methods have been proposed for packer identification. In the
work by Saleh et al. [23], a static analysis approach is employed to construct a control flow
graph, utilizing a disassembler for extracting instruction flow. However, its susceptibility
to evasion by new packers arises from its reliance on large data signatures and the need
for frequent updates. Similarly, Li et al. [24] utilize graph representation and IDA Pro to
extract assembly instructions, addressing obfuscation through various filtration methods.
Despite its efficacy, this approach faces challenges in processing extensive datasets, leading
to the abandonment of packer classification for certain types. In a related work, Liu et al.
introduce a two-stage packer identification method (2-SPIFF) in [25], based on function
call graphs and file attributes. A limitation of this method is that it primarily focuses on
distinguishing between packed and nonpacked executable files.

Kancherla et al. [26] suggested static analysis for efficient packer identification. They
used digital image processing with byte and Markov plots to visualize packers, extract-
ing texture features for support vector machine training. Markov plots performed better,
achieving high accuracy for UPX and Themida. However, they obtained limited effective-
ness against unknown packers and multipacking, with accuracies ranging from 83.94%
(Armadillo) to 99.05% (Themida).

Jung et al. [27] introduced a technique for packer identification using byte sequences,
incorporating two main components: detecting encrypted sections within PE files and
analyzing byte frequencies. The method demonstrated an average accuracy of 91.6% in
identifying various packing algorithms. Moreover, Dam et al. [28] proposed an association
rule mining method for multiclass packer detection based on YARA rules. Despite achieving
high accuracy for malicious programs, the study did not address unknown packer detection.
Biondi et al. introduced a static analysis packer classifier with 6 features, yielding a
total of 119 features [29]. In another approach, Bergenhotlz et al. employed recurrent
neural networks for packer identification based on x86 instruction mnemonics [30]. A
similar strategy utilizing PE raw features was adopted for malware classification and
packers, as demonstrated in [31]. Noureddine et al. proposed a self-evolving packer
classifier that leveraged packer clustering in both offline and online phases. However, they
faced challenges related to the fragility of the Levenshtein distance on ASM sequences,
particularly when dealing with diverse new packer families [32].

Upon analyzing the discussed static packer identification methods, it becomes ap-
parent that static analysis takes precedence over dynamic analysis, primarily due to its
efficiency in rapidly assessing code or binaries without execution. The emphasis on static
analysis stems from its practicality in scenarios with resource constraints, as it eliminates
the need for complex execution environments. Nevertheless, recent research on packer
identification faces challenges, particularly in proper family classification and identifying
unknown packers.

To address these challenges, we implemented a classifier featuring a multilayer feature
engineering approach. This involved systematically generating and refining a diverse
set of features from various layers of the data or code being analyzed. By doing so, we
aimed to capture a more comprehensive representation of the underlying characteristics
and patterns inherent in the data. This strategy enables a more nuanced understanding of
the intricacies of unknown packers and enhances the effectiveness of our identification and
classification methods.

3. Background
3.1. Packers

Packers are described as computer software or a tool. The original purpose of packers
is to protect applications from reverse engineering. While this may be accomplished for

Information 2024, 15, 102 5 of 26

legitimate causes—to save disk space or lower data transmission time—packers are also
utilized by hackers as a form of code obfuscation. The packing creates an extra layer of
code that envelopes a piece of malware to conceal it. Malware creators can either design
their own packer (malicious packer) or use a legitimate one for this purpose.

3.2. The Functioning of Packing

Packing involves employing packers to obfuscate, and encrypt executable files, such as
malware. The objective is to avoid detection by security software and analysts. This action
introduces complexities that hinder antivirus and similar security tools from recognizing
and scrutinizing malicious content effectively. A packer program transforms a designated
file into a new form; during runtime execution, the unpacked code is generated and written
in memory. Figure 1 illustrates the conversion process and the subsequent unpacking and
writing of code in memory.

A stub, often a compact fragment of code, is embedded within a packed executable.
This specific code snippet acts as the initial loader when the packed file is executed. Its
principal objective is to activate the process of unpacking and decrypting the compressed
and obscured contents of the packed file. This, in turn, grants permission for the original
executable code to operate within the system.

The duties of the stub code encompass the following functionalities:

• Initialization: as the packed executable is launched, the stub code is loaded into memory.
• Decryption and extraction: containing directives for decrypting and extracting the

authentic payload of the packed file, the stub code addresses the typical encryption
and obfuscation employed to elude detection.

• Execution: upon successful decryption and unpacking of the content, control is seam-
lessly handed over from the stub code to the unpacked code, allowing its execution.

• Countermeasures against analysis: certain stubs might incorporate countermeasures
designed to complicate the efforts of security researchers attempting to comprehend
and scrutinize the concealed content.

Figure 1. The procedural steps involved in both packing and unpacking processes for a malware
sample, illustrating the transformation and manipulation undergone by the code during these
essential phases.

The presence of the stub is pivotal, enabling the packed executable to function ac-
curately and carry out its intended malicious operations. All the while, it upholds the
vital obfuscation and evasion characteristics intrinsic to packing techniques. Acting as the
point of entry, the stub initiates the unfolding and execution of the covert content harbored
within the packed file.

3.3. Packer Identification and Unpacking

The recognition of packers assumes a pivotal role in advancing malware analysis by
simplifying the unpacking procedure of compacted malicious software. Through precise

Information 2024, 15, 102 6 of 26

identification of the employed packer, antivirus engines or analysts can employ targeted
unpacking methods (profile or generic) to undo the alterations introduced during the
packing process. One common tool used in profile unpacking is an executed script designed
to unpack using a debugger [33], and the Intel PIN tool is an example tool that can be
utilized for generic unpacking [34]. As a result, the malware’s authentic code is unveiled,
enabling the revelation of its genuine intent, encompassing activities like data theft, system
manipulation, or other forms of malevolent behavior.

4. Approach

First, we present the overview of our proposed methodology, illustrated in Figure 2,
featuring an advanced packer classifier, followed by in-depth details. The classifier is
structured through three pivotal stages: dataset construction, feature engineering layers,
and feature set selection and packer classification.

Figure 2. The integrated systemic framework: the proposed approach encompasses key components,
including the dataset, feature engineering, feature set, and classification stages.

In the initial phase, we meticulously curate a comprehensive dataset, prioritizing both
the precision of collection and the intricacy of processing. This meticulous approach lays a
solid foundation for subsequent analyses, ensuring the inclusion of diverse samples and
eliminating potential biases. Further details about the data construction mechanism can be
found in Section 5, where the dataset construction intricately influences the subsequent
feature engineering stage. The quality and nature of the data, along with their domain of
origin, are pivotal factors. Maintaining a delicate balance and ensuring integrity during
data preprocessing, especially in machine learning and statistical analyses, are paramount,
providing a well-balanced dataset that offers a more faithful representation of real-world
distributions. This, coupled with data integrity, ensures that insights derived from the data
are not only credible but also meaningful.

The essence of our methodology lies in the feature engineering stage, where we
strategically choose features that capture both the low-level and high-level characteristics
of executable files. This intentional fusion of features provides nuanced insights into the
intrinsic attributes of the code, fostering a more holistic understanding.

The apex of our methodology is realized in the feature set selection and classifica-
tion stage. Here, we empirically choose the best-performing features and integrate them
into cutting-edge machine learning techniques. This final step enables us to effectively
differentiate between files with specific family names, those employing unknown packers,
and benign files. Our meticulous feature selection, combined with robust classification
algorithms, significantly enhances the overall proficiency of our approach.

Information 2024, 15, 102 7 of 26

4.1. Feature Engineering

In the preparation phase of applying machine learning algorithms, the transformation
of raw data sources into meaningful features holds paramount importance. These features,
often manifesting as columns within the data matrix supplied to the machine learning
algorithm, encapsulate distinct attributes of the observations. This conversion process
is instrumental in enhancing the algorithm’s ability to discern patterns, make accurate
predictions, and uncover insights from the data. This critical step, commonly called feature
engineering, is of the utmost importance in the machine learning process. The purpose of
feature engineering can be summarized as follows:

• Engineering or preparing the input data into features that can be comprehended by
the machine learning algorithm, thereby meeting its requirements.

• Engineering or transforming variables into features that enhance the performance of
machine learning algorithms in terms of predictive accuracy, interoperability, or both.

Feature engineering plays a vital role in machine learning as it can enhance model
performance, extracting datasets compatible with algorithms, and extract additional infor-
mation and insights from the data. The primary objective is to identify and select features
that accurately classify packer families and detect unknown packers while minimizing
costs. The system design encompasses multiple layers and specific features, leveraging
three key components: PE, image plot, and entropy. Each defensive element is designed
to safeguard a particular area that is susceptible to being targeted by hackers. By incorpo-
rating these components, the approach strives to elevate its overall security stance. Also,
including diverse features extracted from these components enables the system to identify
complex and unknown packers. This diverse set of features empowers the system to detect
and classify different types of packers, including those that utilize advanced or previously
unidentified techniques. The flexibility in feature selection contributes to the system’s
effectiveness in identifying and mitigating potential threats.

4.1.1. The PE File Format

This section provides a concise overview of the feature engineering techniques we
utilized for the PE file format, encompassing PE section names, section numbers, and more.
For extracting raw features, the use of the open-source tool pefile [35] was instrumental.

The PE headers contain information about the file format, which allows the identifica-
tion of a packed program from a benign program using details kept in the PE file header
and the file’s structural features [36]. To identify packed samples, a total of 51 carefully
selected features were used as shown in Table 1. We extracted numerous features from the
PE headers, such as the DOS executable header features, which contain relocation infor-
mation. The optional header includes features such as the optional header magic number
that determines whether an image is a PE32 or PE32+ executable and many others. Addi-
tionally, we extracted section details such as section numbers and section names. Section
names are important since most packers, especially those of the protectors’ packer family
(nonmalicious packers), have a fixed section name. Some may not even be compressed or
encrypted in most cases. We propose a packer section dictionary, a repository that contains
packer algorithms and their unique PE section names. For instance, UPX sometimes uses
UPX1, UPX0, or UPX2 to refer to different section names. Thus, we utilized the Levenshtein
distance (LD) to categorize all section names from a specific packer under one label. Table 2
below gives details on the different sections of UPX.

Information 2024, 15, 102 8 of 26

Table 1. PE layer features.

AddressOfEP BaseOfCode BaseOfData CheckSum DllCharacteristics e_cblp e_cp e_cparhdr e_crlc e_cs e_csum e_ip e_lfanew
e_lfarlc e_minalloc e_oemid e_oeminfo e_sp e_ss ImageBase LoaderFlags Magic MajorLinkerVersion MajorSubsystemVersion
MinorLinkerVersion MinorSubsystemVersion Reserved1 sec_Num secaddress SectionAlignment SizeOfCode SizeOfHeapCommit
SizeOfHeapReserve SizeOfImageSizeOfIniData SizeOfStackReserve Subsystem entSize e_magic e_maxalloc e_ovno FileAlignment
MajorImageVersion MajorOperatingSystemVersion MinorImageVersion MinorOperatingSystemVersion NumberOfRvaAndSizes
SizeOfHeaders SizeOfStackCommit SizeOfUninitData Tag

Table 2. A sample of UPX dictionary sections.

UPX0→ Packed.UPX
UPX1→ Packed.UPX
UPX2→ Packed.UPX
UPX!→ Packed.UPX
.UPX0→ Packed.UPX
.UPX1→ Packed.UPX

In [37], Vladimir Levenshtein proposed the well-known distance measure that bears
his name. The Levenshtein (or edit) distance is based on the minimum number of insertions,
deletions, and substitutions required to transform one string into another.

Let LD be the Levenshtein distance function. Then, for example, we have

LD(sea, set) = 1,

since we can simply substitute t for a to transform sea to set. As another example,

LD(trail, fails) = 3,

since we could delete the t, substitute f for r and insert s to transform trail into fails, and no
fewer operations will succeed.

The Levenshtein distance can be computed efficiently as follows. Let S and T be two
strings, and let LD(i, j) be the Levenshtein distance between the first i characters of S and
the first j characters of T. Also, let |S| and |T| be the length of sequences S and T, respec-
tively. Then, the Levenshtein distance between S and T is given by LD(|S|, |T|), where

LD(i, j) =

max(i, j) if min(i, j) = 0

min

LD(i− 1, j) + 1
LD(i, j− 1) + 1
LD(i− 1, j− 1) + I(i, j)

otherwise.
(1)

The work in [38] gives more details about the Levenshtein distance. In this research,
we can identify UPX packer under one label, “UPX”, using the Levenshtein distance. Thus,
using the LD provides a simple way for dictionary reduction and helps us identify new
UPX packers in the wild; this includes new UPX versions and customized packers from
malware creators that utilize UPX.

4.1.2. Image Plot

The process of identifying packers using image features involves analyzing the visual
representation of a binary file to recognize patterns commonly associated with packing
techniques. This requires employing machine learning algorithms or pattern recognition
techniques to train a model on a dataset comprising both known packed files per family and
nonpacked files. Subsequently, the trained model can be applied to identify the presence
of a packer in new, previously unseen files based on their extracted image features. This
method, among various techniques in malware analysis and cybersecurity, enhances the
detection of potentially malicious software. An effective strategy for gleaning essential
insights from PE files involves converting raw PE byte data into a grayscale image with

Information 2024, 15, 102 9 of 26

specific dimensions. Initially, the binary executable undergoes transformation into an 8-bit
1D vector, with each 8-bit value being mapped to an intensity value, forming a pixel. In
the plot generation phase, this one-dimensional vector is further converted into a two-
dimensional vector and resized to a fixed size, as illustrated in Figure 3. This process
navigates through successive phases within the image plot layer, encompassing the initial
transformation of packed binary images, pixel transformation, and resizing, culminating in
the strategic selection of image bases. This visual journey unravels the nuanced progression
within each phase.

Figure 3. Stages within the image plot layer: preprocessing, family image selection, and testing
and training.

The image base serves as a reference image; for instance, in the case of a packed UPX,
we select one image from the collected packed samples. This chosen image becomes a base
for calculating comparative features, including the Manhattan distance and Gabor jets filter
distances. To derive values for these comparative features, each sample is compared with
the list of family images.

Image difference is a method used to analyze and measure the variances or alterations
between two images. It is widely applied in diverse fields like computer vision, image
processing, and computer graphics.

Two images are compared by subtracting the corresponding pixel values during the
image difference process. The outcome reveals the variations between the images at each
pixel location. The magnitude or absolute difference of the pixel values can serve as a
metric for quantifying the dissimilarity between the images.

Manhattan distance:
The Manhattan distance is always a non-negative value, representing the total distance
traveled along the grid lines to move from one point to another. It is commonly used in
various fields, including image processing, computer vision, clustering, and pathfinding
algorithms. In image processing, it can be used to measure the dissimilarity between two
images based on pixel intensities or other image features.

The Manhattan distance, also called the taxicab distance or the city block distance,
calculates the distance between two real-valued vectors.

Information 2024, 15, 102 10 of 26

The distance between a point P and a line L is defined as the smallest distance between
any point M ∈ L on the line and P:

d(P, L) ≡ min
M∈L

d(M, P) (2)

The Manhattan distance between two points is defined as:

d(M, P) ≡ |Mx − Px|+ |My − Py| (3)

We calculated a Manhattan normalized distance by calculating the Manhattan distance
of each pixel, then summing the total distances, and calculating the sum of the Manhattan
distance over the image base size. Also, we added two more features, such as the zero
difference (the number of segments not equal to zero) and the normalized zero difference
over the image size. For each packer family, we assigned an image base to represent the
packer when comparing other images. In the experiments we conducted in Section 5, we
used each packer’s image base and calculated the normalized Manhattan distance and
other features we mentioned. For instance, when testing new data, the model compares the
tested file with each packer’s family image base. The one with the minimum distance is
selected, and its values are stored.

Gabor filters and jets:
The Gabor filter (assumed to be centered at zero) is the product of a sinusoid and a Gaussian:

g(x, y; λ, θ, ϕ, γ) =

exp
(
− x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ϕ

) (4)

where
x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ. (5)

The filter has the following characteristics:
Wavelength: the number of cycles/pixel is λ. Orientation: the angle of the normal to

the sinusoid is θ. Phase: the offset of the sinusoid is ϕ. Aspect ratio: ellipticity is produced
with gamma < 1. The spatial envelope of the Gaussian, σ, is managed by the bandwidth,
which at unity gives σ = 0.56λ. Gabor filters are a good model of simple cells in the visual
cortex. The half-response spatial frequency bandwidth b (in octaves) of a Gabor filter is
related to the ratio σ/λ:

b = log2
(σ/λ)π +

√
log 2/2

(σ/λ)π −
√

log 2/2
σ

λ
= (1/π)

√
log 2/2

2b + 1
2b − 1

. (6)

The value of σ cannot be specified instantly. It can only be changed via the bandwidth b.
The bandwidth value must be specified as a real positive digit. The default is 1, in which
case σ and λ are linked as follows: σ = 0.56λ. The smaller the bandwidth, the larger σ, the
support of the Gabor function, and the number of visible parallel excitatory and inhibitory
stripe zones.

Gabor jets are a set of filters that are used to extract the local frequency details from
the images. These filters are normally linear filters with impulse responses described by
a harmonic function and a Gaussian function. Gabor jets are widely employed in face
images to detect eyes or other regions of the face, as well as in ATR systems as in [39] for
target decision. We utilized disparity similarity measures; for instance, one might locate
the position of the particular location in the PE file as shown in Figure 4 by scanning over
the whole image. At each position in the image, the similarity between the reference Gabor
jet and the Gabor jet at that location is computed using the similarity function. For this
calculation, both traditional Wiskott et al. [40] and innovative Gunther et al. [41] similarity
functions can be used.

Information 2024, 15, 102 11 of 26

Figure 4. Generation of Gabor jets from an image derived from a packed original sample.

Another benefit of the disparity similarity function is providing a reference Gabor
jet extracted at a reference location. The disparity function can compute the spatial offset
of another given Gabor jet. It can evaluate the disparity (difference in spatial position)
between two Gabor jets as long as they arise from a similar region. Thus, for such cases, we
used the disparity distance to find the difference in spatial position between two Gabor jets.

Algorithm 1 illustrates the extraction of feature sets for Gabor jets and Manhattan
distance, including other features to compare distances and differences between input
images In and images of each packer family, represented as Gn.

Algorithm 1 Image plot feature set

Input: (Ii) ▷ Images.
Output: (Mi, Gi) ▷ Feature sets

1: c← len(Fi) ▷ Fi images for packer families; c is # of families
2: l ← len(Ii) ▷ l number of the input images
3: function CALCULA_MANH_DIST(Ii)
4: for k← 1 to c do
5: for j← 1 to l do
6: Mi = Find(Fk,Ij) ▷ Find difference of Fk and Ij
7: end for
8: end for
9: return Mi ▷ Features

10: end function
11: function CALCULA_GABORJET_DIST(In)
12: for v← 1 to c do
13: for n← 1 to l do
14: Gi = Find(Fv,In) ▷ Gabor jets between Fv and In
15: end for
16: end for
17: return Gi ▷ Features
18: end function

4.1.3. Entropy Analysis

Entropy analysis, a widely utilized scientific concept, evaluates the disorder, random-
ness, or uncertainty in measurable entities. Its applications span fields such as cryptanaly-
sis [42] and malware detection [43], proving crucial in identifying packers [44]. Derived
from scanning byte sequences or the entire file, the rolling entropy sequence helps grasp the
nature of the packed executable during unpacking and early packer identification. Diverse
measures, including Shannon’s entropy [45], quantify pattern change, as outlined in the
subsequent equation:

H(x) = −
n

∑
i=1

Pi log2 Pi (7)

where H(x) is the measured entropy value and p(i) is the probability of the ith unit of
information in the series of n symbols of event x. The base number of the logarithm (b) can

Information 2024, 15, 102 12 of 26

be any real number greater than 1. However, a value of 2, 10, or e is generally used. In this
section, we propose an accurate entropy analysis of the packed files. The entropy for all PE
file sections can cause false positive rates for packer identification. Thus, to use entropy, we
propose a PE section analysis, where we analyze the appropriate PE sections and truncate
the unwanted ones that cause worse entropy results. PE files could have different sections;
each one could have several pieces of data.

In this layer, we provide entropy analyses for PE sections. The .text section in exe-
cutable files is typically read-only and executable, ensuring that its instructions cannot be
modified during runtime and are directly executed by the processor. Other sections like
.data or .text store data or uninitialized variables. Located at a specific memory address,
the .text section contains a consecutive series of binary instructions executed sequentially.
These instructions encompass various operations, such as arithmetic calculations, control
flow instructions (e.g., branches and jumps), and function calls. In essence, the .text section
plays a vital role as it holds the executable instructions of a program, enabling the computer
to execute the code and carry out the intended operations. Based on several statistical anal-
yses conducted on the .text section of various packed and benign files, we have observed
that most benign applications have entropy values below 7, as shown in Figure 5.

0 50 100 150 200 250 300 350 400 450 500 550 600 650

0

1

2

3

4

5

6

7

8

u file number

.te
xt

en
tr

op
y

Benign
UPX

PECompact

Figure 5. Comparison of the entropy score in the .text section between normal files and packed files.

The inclusion of an authorized list of entropy values can be a critical feature in appro-
priately assigning values to other features. In a previous update to the PE section features,
we introduced a novel attribute referred to as a “tag”, corresponding to the name of the
packer used. Each string value was associated with a specific numerical value denoted as n.
For example, the packer “UPX” was assigned a value 1. The value of n is influenced by the
entropy score of the .text section only if the results indicate a high entropy value exceeding
7 and the original tag value is 0, indicating the absence of a detected packer name. In such
instances, the n value is set to 10, signifying an unidentified packer.

Furthermore, as part of our implementation, we incorporated the calculation of the
average entropy across all sections of a PE file. The average entropy of PE sections repre-
sents the average level of randomness or uncertainty within each section. By computing
the average entropy, we gain insight into the extent to which data are evenly distributed or
compressed across the sections of the PE file. A higher average entropy indicates a greater
degree of randomness or compression, while a lower average entropy suggests a more
structured and predictable arrangement of data.

Information 2024, 15, 102 13 of 26

4.2. Feature Set

Expanding the set of features does not constantly improve the effectiveness of al-
gorithms, as some features might be misleading or inadequately connected to the class
labels. Therefore, in the field of machine learning, it is a prevalent approach to empirically
determine which features should be maintained and which should be excluded. This
process is known as feature selection. In each relevant scenario for sets of ground truths,
we evaluate every algorithm by exploring all viable combinations of feature engineering
layers and parameters. Subsequently, we pinpoint the algorithms that exhibit the highest
average accuracy. The computation of the average accuracy in multiclass classification
involves calculating the mean of accuracy values obtained for each class. This approach
offers a more comprehensive assessment of the classifier’s overall performance across all
classes, considering possible disparities in class sizes.

4.3. Packers Classification

Our approach to packing classification represents a robust and well-rounded method-
ology, rooted in the careful evaluation and selection of supervised machine learning algo-
rithms. In the intricate landscape of classification, we have embraced a multiclass strategy
that empowers us to not only distinguish between different packer names but also identify
unpacked benign files. What sets our proposed technique apart is its innovative approach to
addressing the classification of unknown packers. Figure 6 demonstrates the classification.

Figure 6. Packer classification process.

Unlike traditional methods, our technique leverages the inherent failures in the pro-
filed unpacking procedure as a foundation for classification. By ingeniously layering our
engineering approach, our classifier excels at classifying unknown packers. It operates
on the premise that if a classification aligns with any of the known packer families and
the profiled unpacking procedure fails to yield results, the file is intelligently flagged as
an instance of an unknown packer. This unique approach not only enhances the accuracy
of our classification system but also positions it as a compelling solution for tackling the
complexities of modern malware packing techniques.

5. Experiments

We begin with an overview of the experiments conducted within our innovative
packer identification approach, followed by in-depth details. Our exploration starts at the
crucial stage of dataset construction, where we meticulously curate samples, encompassing
both benign and malware instances subjected to manual packing. Recognizing the diverse
landscape of packers, spanning both known and unknown variants, our initial experiments
focus on family classification, extensively discussed in Section 5.3. To establish the robust-
ness of our approach, we conduct a thorough comparative analysis, aligning our family

Information 2024, 15, 102 14 of 26

classification results with those obtained using the PEid application. This comparative
examination not only affirms the efficacy of our methodology but also provides valuable
insights into its performance compared to an established tool. Building on this foundation,
we transition into a subsequent phase of experimentation dedicated to the identification
of unknown packers. Through a series of rigorous tests, we showcase the resilience of
our approach in effectively discerning and classifying these enigmatic entities. Lastly, our
evaluation extends to a broader context, systematically juxtaposing our approach with
other pertinent works in the field.

5.1. Dataset Preparation

In Figure 7, we utilized the dataset as described in [46], sourced from two distinct
origins. The first source consisted of online/benign samples, totaling 2162 samples, repre-
senting applications downloaded from the Softpedia website and then manually packed.
Softpedia ensures the safety of these applications through rigorous checks with genuine
application authors and multiple antivirus scanners before making them available online.
Our second data source was VirusTotal, from which we obtained malware samples and
then manually packed them, totaling 5116 samples used in our experiments. These mal-
ware samples were categorized based on packer names or families. To ensure accurate
classification, we developed Python code for multisignature detection of each packer.

Our dataset included 2000+ signature records of various wild packers and their ver-
sions, unified under a single name for malware sample identification. The collection used
a Windows 10 system for data download and a MacBook Pro with an M1 processor for
image generation and feature results. Incorporating diverse sources aimed to enhance our
classifier’s robustness, considering variability in PE file structures crucial for an effective
identification.

Figure 7. Dataset construction [46]. This intricate process involves meticulous steps such as data
gathering, cleaning, and augmentation, ensuring a diverse and representative collection of samples.

Using a multisignature process, we initially selected UPX-packed samples, easily
unpacked due to UPX’s widespread recognition. After unpacking, we extracted the payload.
Some samples, identified with another packer during the scan, were termed repacked

Information 2024, 15, 102 15 of 26

samples. Malicious actors often employ repacking and multilayer packing to resist analysis.
Through various processes, we ensured our malware dataset contained only nonpacked
payloads, which were then packed with five different packers.

5.1.1. Benign Samples

We systematically categorized the benign samples into 13 specific categories, ensuring
a comprehensive representation of various program types. The categorization process
aimed to establish a well-organized dataset that spanned a diverse range of benign samples,
covering a wide array of software functionalities. This meticulously curated dataset is
instrumental in training and evaluating machine learning models tailored to packer iden-
tification. Its diversity, capturing various software functionalities and packing strategies,
provides a robust foundation for developing models capable of recognizing patterns across
a broad spectrum of scenarios. Refer to Table 3 for a detailed breakdown of each benign
category and the corresponding sample counts. Additionally, Table 4 showcases the packed
samples, focusing on the most popular packers used by malware authors, as reported
in [46].

Table 3. Benign file categories.

Bookmark managers 22 Browsers 43
Camera 13 Clipboard 23
Screen capture 11 Misc 29
System information 20 Tweaks 25
IP scanners 19 Desktop enhancement 21
Internet remote utilities 19 Graphic 90

Audio and video 91 Total 426

Table 4. Packed benign files.

Packer Name Type Source Successfully Packed
Samples

UPX Protector Online/benign 392
PECompact Protector Online/benign 384
NSPack Protector Online/benign 328
Aegis Hostile Online/benign 410
Aspack Protector Online/benign 398

Total 1912

5.1.2. Malware Samples

The malware samples used in this experiment were classed based on the packer’s
family using two signature-based detection repositories. First, we selected 25K malware
samples from VirusTotal and partitioned the samples into five folders, each folder contain-
ing 5K samples for ease of use.

We used two packer signature-based repositories to identify packed samples; we
listed each packed sample under its main packer category. For those UPX-packed samples
detected, we used them as our base for the malware data, unpacked the packed UPX
samples detected, and used them to generate new packed samples for the other packers.
All samples used were 32-bit files as illustrated in Table 5.

Information 2024, 15, 102 16 of 26

Table 5. Packed Win32 malware files.

Packer Name Type Source Packed Samples

UPX Protector VirusTotal/malware 870
Aegis Hostile VirusTotal/malware 870
PECompact Protector VirusTotal/malware 863
NSPacker Protector VirusTotal/malware 869
Aspack Protector VirusTotal/malware 856

Total 4327

5.2. Evaluation Metrics

When performing classification predictions, we encounter four types of outcomes:
True positives (TP): these occur when our predictive model correctly identifies an

observation as belonging to a specific class, and indeed, it does belong to that class.
True negatives (TN): in contrast, true negatives manifest when our model accurately

predicts that an observation does not belong to a particular class, and in reality, it does not.
False positives (FP): false positives arise when our model erroneously predicts that an

observation belongs to a certain class, even though it does not.
False negatives (FN): conversely, false negatives materialize when our model mistak-

enly predicts that an observation does not belong to a class, when in fact, it does.
We employed four essential machine learning evaluation metrics for our multiclass

classification:

• Accuracy: this metric quantifies the percentage of correct predictions for the test data.
• Precision: precision signifies the fraction of relevant examples (true positives) among

all the examples that our model predicted to belong to a specific class.
• Recall: recall measures the proportion of examples that our model correctly predicted

as belonging to a class, in relation to all the examples that truly belong to that class.
• F1-score: the F1-score is the harmonic mean of precision and recall, offering a balanced

assessment of a classifier’s performance in multiclass scenarios.

These metrics collectively provide a comprehensive evaluation of our multiclass
classification model’s effectiveness in discerning and categorizing data points across
multiple classes.

5.3. Experimental Results

This section offers a comprehensive overview of the outcomes obtained from our series
of experiments. These experiments encompassed a trio of pivotal investigations, wherein
we meticulously assessed a diverse array of feature sets that spanned three integral layers
integrated into our pioneering packer identification methodology. These layers, namely
Layer 1 (L1) for analyzing PE file formats, Layer 2 (L2) for scrutinizing image plots, and
Layer 3 for delving into entropy analysis, were instrumental in our pursuit of robust packer
identification.

For each of these experiments, we systematically partitioned our dataset into distinct
training and testing subsets. To gauge the effectiveness of our approach, we harnessed the
power of four distinct machine learning algorithms, subjecting each classifier to rigorous
evaluation. The salient findings, highlighted in Figure 8, showcase the performance of
these classifiers concerning the specific feature sets employed.

Notably, a remarkable observation emerged: the amalgamation of all three layers into
the L1L2L3 feature set yielded the most impressive results. This consolidation proved
especially potent when deployed with our chosen classifiers, random forest (RF) and J48.
Of these, the random forest classifier delivered an astonishing accuracy rate of 99.6%.

Figure 8 visually presents the performance of each classifier, emphasizing the effec-
tiveness of different feature sets, with the L1L2L3 feature set particularly standing out. For
a detailed examination, Table 6 complements this visual representation by providing an
extensive breakdown of results for each machine learning classifier.

Information 2024, 15, 102 17 of 26

RF DT SVM NB
0.6

0.7

0.8

0.9

1

ML algorithm

A
vg

.A
cc

ur
ac

y

L1L2L3
L1
L2
L3

L1L2
L2L3

Figure 8. Family-based identification: feature set’s average accuracy showcasing the superior perfor-
mance of L1L2L3.

Tables 6 and 7 go beyond accuracy and include essential metrics like precision, recall,
and F1-score for a more nuanced evaluation. The classification encompassed six distinct
families, delineating five associated with packers and one category representing nonpacked
samples (benign samples), as explained in Table 3. Through visual and tabular formats,
this dual representation enhanced the clarity and depth of our performance evaluation
and classification outcomes. To calculate each feature’s importance, the mean accuracy
decrease method works by evaluating the model’s performance both before and after
randomly permuting the values of a specific feature. The decrease in model accuracy
resulting from permuting the feature is then computed, and this decrease indicates the
feature’s importance. Figure 9 illustrates the top 20 important features out of the 59 features
used in previous experiments. It is evident that features derived from the image plot have
a significant and impactful influence. We can also observe the significance of engineered
features in comparison to raw features. Additionally, other features, such as “tag” and
“.text” entropy, rank among the top 10 important features. Utilizing a diverse set of features
enhances the approach’s resilience against attackers who aim to pinpoint vulnerabilities
within the various layers of the engineered system. This diversity in features ensures
that potential attack vectors are scattered across multiple dimensions, making it more
challenging for malicious actors to identify and exploit specific weaknesses in individual
layers. As a result, the overall security and robustness of the system are significantly
bolstered, reducing the likelihood of successful targeted attacks.

Our approach stands out for achieving high processing times and demonstrating
efficient computational performance during training and inference stages. This efficiency is
consistently observed across various operational scenarios, making our method reliable
for tasks requiring swift processing. In benchmarks, our approach consistently showcased
remarkable speed, highlighting its capability to handle complex tasks efficiently. This
efficiency, coupled with our utilization of an 80–20 split for training and testing data (80% for
training and 20% for testing), makes our approach a dependable choice for computational
tasks demanding rapid and effective processing. Simultaneously, the implementation of
image resizing yielded a substantial reduction in storage requirements, optimizing storage
space by nearly fourfold in terms of image size. On average, each image now occupies
a mere 2.91 KB of storage space, highlighting the efficacy of our resizing strategy. This

Information 2024, 15, 102 18 of 26

reduction is resource-efficient and facilitates more streamlined data processing, contributing
to overall system efficiency.

Table 6. Classification results for L1L2L3: precision, recall, and F1-score.

Feature Set Classifier Family Precision Recall F1-Score

L1L2L3 RF UPX 1.00 1.00 1.00
PECompact 1.00 0.99 0.99
NSPacker 1.00 1.00 1.00
Aegis 1.00 1.00 1.00
ASPack 1.00 0.99 0.99
Benign 0.96 0.99 0.98

J48 UPX 0.99 1.00 1.00
PECompact 0.99 0.98 0.98
NSPacker 1.00 1.00 1.00
Aegis 1.00 1.00 1.00
ASPack 0.98 0.99 0.99
Benign 0.95 0.92 0.93

SVM UPX 0.93 0.92 0.92
PECompact 0.68 0.91 0.78
NSPack 0.95 0.77 0.85
Aegis 0.98 1.00 0.99
ASPack 0.99 1.00 1.00
Benign 0.56 0.22 0.31

NB UPX 0.99 0.45 0.62
PECompact 0.52 0.80 0.63
NSPack 0.81 0.63 0.71
Aegis 1.00 1.00 1.00
ASPack 1.00 1.00 1.00
Benign 0.37 0.55 0.44

Table 7. Classification results for L1L2: precision, recall, and F1-score.

Feature Set Classifier Family Precision Recall F1-Score

L1L2 RF UPX 0.98 1.00 0.99
PECompact 0.99 0.99 0.99
NSPacker 0.99 1.00 0.99
Aegis 1.00 1.00 1.00
ASPack 1.00 0.98 0.99
Benign 0.95 0.94 0.94

J48 UPX 0.98 0.97 0.97
PECompact 0.98 0.97 0.98
NSPacker 0.99 0.99 0.99
Aegis 1.00 1.00 1.00
ASPack 0.98 0.98 0.98
Benign 0.96 0.95 0.95

SVM UPX 0.93 0.98 0.95
PECompact 0.68 0.93 0.78
NSPack 0.95 0.79 0.86
Aegis 0.97 1.00 0.98
ASPack 1.00 0.99 0.99
Benign 0.74 0.17 0.28

NB UPX 0.96 0.35 0.51
PECompact 0.54 0.20 0.29
NSPack 0.77 0.63 0.70
Aegis 1.00 1.00 1.00
ASPack 1.00 0.99 1.00
Benign 0.20 0.95 0.33

Information 2024, 15, 102 19 of 26

In summation, this section offers an extensive examination of our experimental out-
comes, illustrating the prowess of our packer identification approach and shedding light
on the formidable performance of the random forest and J48 classifiers in our context.

Figure 9. Feature importance: significance visualized.

5.4. Comparing with PEid

We embarked on a comprehensive comparison between our novel packer identifica-
tion approach and the well-established tool PEid. PEid holds a prominent reputation as
software designed to identify packers and compilers employed within executable files. This
comparative analysis stands as a pivotal stride in appraising the efficacy and resilience
of our approach. Figure 10 demonstrates the accuracy of packer identification results
across PEid and our approach. We can notice the significant improvement achieved by our
approach, which outperformed PEid.

5.5. Unknown Packers

Unknown packers are those new packers in the wild that were not trained in our
machine learning model. To determine the robustness of our classifier, we have se-
lected 1243 samples, 250 benign samples, 204 samples packed with MPress packer, and
789 samples for DarkComet RAT. To make our analysis interesting, we plunged into
216,612 malware samples to extract those under DarkComet RAT; we used the Yara signa-
ture detection to extract them. Those samples provided by VirusTotal were spotted between
the years 2017 and 2019 as illustrated in Figure 11 and Table 8.

Information 2024, 15, 102 20 of 26

0 20 40 60 80 100

UPX

PECompact

NSPacker

Aegis

ASPack

Benign

Accuracy

PEid
Our approach

Figure 10. PEid Identification vs. Proposed Approach.

DarkComet is a remote access trojan (RAT) application that operates covertly, collect-
ing system information, user data, and network activity. RAT applications often employ
packing techniques to evade detection [47]. DarkComet attempts to steal stored credentials.
In our innovative approach, we leverage classification techniques to accurately predict the
file packer families used in malicious software. This process is crucial for identifying un-
known packers, as beautifully illustrated in Figure 6. Our methodology involved executing
a carefully crafted unpacking profile procedure, which aimed to reveal the hidden layers of
these packed files. However, in cases where the unpacking procedure failed to expose the
content, we categorized the sample as an unknown packer from an antivirus perspective.

2017 2018 2019

0

0.5

1

1.5

·105

7149

1.5 · 105

59123

Year

N
um

be
r

of
Sa

m
pl

es

Figure 11. VirusTotal malware samples between the years 2017 and 2019.

Information 2024, 15, 102 21 of 26

Table 8. Unknown packers and benign files.

Packer Name Type Source Samples

MPRESS Protector VirusTotal/malware 204
DarkComet Hostile VirusTotal/malware 789
N/A Benign Online/benign 250

Total 1243

The results for MPRESS, DarComet packers, and benign samples are depicted in
Figure 12. The best average accuracy is the RF classifier, achieving 91%. MPRESS in most
classifications best matched with Aegis, while DarkComet samples were identified with
Aspack packer, and very few were packed with UPX and Nspack. Meanwhile, most benign
files were detected as a benign class.

RF DT SVM NB
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ML algorithm

A
vg

.A
cc

ur
ac

y

L1L2L3
L1L2

Figure 12. Unknown packers’ identification: average accuracy highlighting performance metrics,
with feature set L1L2L3 demonstrating the highest performance.

5.6. Comparing with Previous Works

Based on the results of the preceding experiments, it was observed that the suggested
combined feature set outperformed the single feature set. To enhance the precision and
accuracy of the proposed integrated feature set, it is crucial to compare it with previous
works that rely on similar image plot, dataset, and accuracy information. As far as we know,
the only previous study that utilized the image plot field for packer classification is [26].
In their work, Kancherla et al. [26] examined the structured analysis of several fields of
the PE file and highlighted that including these characteristics improved the identification
rate of packers. Meanwhile, Alkhateeb et al. [7] used VirusTotal samples and employed
API PE features along with Levenshtein distance. We used data from the same source and
compared the results.

Table 9 displays the accuracy scores of the top-performing classifiers for image plot and
PE features, indicating that the integrated feature set performed better than the individual
feature sets. The combined feature set outperformed the single-layer feature set by 11.1%
in terms of the accuracy score, as observed in the results for the random forest and other
classifiers. Furthermore, we compared our work with hybrid approaches, as in [48,49],
as hybrid approaches combine both static and dynamic analysis for feature extraction;

Information 2024, 15, 102 22 of 26

our approach was superior in terms of the classification accuracy as well as in identifying
unknown packers with proper dataset integrity.

Table 9. Comparing the proposed work with earlier works.

Works Approach Dataset Accuracy Unknown Packers Dataset Integrity

Kancherla et al. [26] Img OffensiveCompu 81.34% ✗ ✗

Alkhateeb et al. [7] PE VirusTotal 88.50% ✗ ✗

Park et al. [48] PE VXHeavens 99.49% ✗ ✗

Gao et al. [49] PE VirusShare 97.80% ✗ ✗

Proposed work PE/Img VirusTotal 99.60% ✓ ✓

6. Discussion

The experimental results underscore the system’s high accuracy in discerning both
known and unknown packers. This achievement is primarily credited to our meticulous
feature engineering process, where the selection of prevalent features played a pivotal role.
Notably, our empirical experiments revealed that the first layer of features offers crucial
insights, particularly as many unknown packers exhibit behavior akin to known packers.
Additionally, the results show that using the engineered PE features, such as tag, supersedes
traditional raw features adopted by classical methods, making our approach superior.

The second layer of features is dedicated to extracting artifacts from images that
represent an executable’s raw bytes. Given the dynamic nature of packers and their impact
on PE files during the packing process, employing an image plot representation allows us to
visualize the distinctive shape of a packer. This visualization is invaluable, as packer images
contain rich information that significantly enhances our detection capabilities. Figure 13
illustrates three samples each of the Aegis and NSpack packers, showcasing the striking
similarities within each packer family. Our results indicate that the different features used
contribute significantly to the identification capabilities.

The third layer introduces the entropy analysis of PE sections, further augmenting
the assessment of features from the first layer and fortifying the detection process. A
thoughtful selection and refinement of these features were instrumental in achieving
accurate identification and preventing a decline in the identification rate.

These results unequivocally highlight the superior performance of the combined
layers within our proposed approach, surpassing alternative methods. This underscores the
robustness of our multilayer strategy in packer identification, a testament to its effectiveness
in addressing various challenges. Importantly, this achievement is further underscored by
the consistently high accuracy achieved in identifying unknown packers, reinforcing the
efficacy of our innovative approach in enhancing detection capabilities and advancing the
state of the art in the field.

The proposed approach is adaptable to various tasks, including threat detection like
malware family classification, albeit requiring adjustments to meet specific requirements.
The classifier offers flexibility, allowing continuous updates to incorporate new packer
family feeds and optimizations. Moreover, real-world deployment of such approaches,
as discussed in [50], encounters challenges such as statistical heterogeneity, systemic bias,
and data poisoning attacks. In practice, our proposed approach has been actively ap-
plied, notably aiding our initial generic unpacking method, an integral component of our
ongoing work.

In summary, our multilayered feature engineering approach, encompassing prevalent
features, image analysis, and entropy analysis, demonstrated remarkable effectiveness in
identifying both known and unknown packers. This comprehensive strategy resulted in
the development of a robust and reliable detection system.

Information 2024, 15, 102 23 of 26

Figure 13. Aegis and NSPack image plot: a visual representation highlighting distinctive characteris-
tics and patterns identified in the image plots generated for Aegis and NSPack.

7. Conclusions

In the face of the escalating threat of malicious attacks, combating malware has become
a complex challenge. Packed malware, in particular, poses a significant hurdle for antivirus
(AV) detection due to its dynamic and complex nature. Traditional security tools rely
on scanning systems to identify suspicious behavior, taking action against files that raise
concerns by quarantining or flagging them. However, malware creators continually adapt
and devise new techniques to evade these conventional approaches and overcome existing
security measures. Among these techniques, packing stands out as malware authors’ most
widely employed obfuscation method to elude system protection.

Detecting packed PE files is crucial, given the widespread use of the PE file format in
Windows OS. This research introduced an innovative feature engineering approach that
enhanced the performance of machine learning classifiers in identifying packed PE files.
The proposed technique extracted features with minimal time and resource consumption
compared to a dynamic analysis by employing static analysis. Our proposed method used
the most prevalent features extracted during static analysis for packer identification.

To ensure a robust identification rate, we initially concentrated on balancing the dataset
and performed a harmonious analysis and separation of the dataset in multiple stages.
During the feature engineering process, we prioritized prevalent features and modified
them to enhance identification accuracy for both family-based and unknown packers.

The study investigated the effectiveness of multilayer feature engineering in detecting
packed malware. The results revealed that this approach, combined with machine learning
algorithms, achieved an impressive accuracy rate of 99.60% for identifying packed malware
families. Additionally, it achieved an accuracy of 91% for detecting unknown packed
malware. These findings underscore the significance of utilizing this approach as it enables
the triggering of appropriate response mechanisms to mitigate potential threats effectively.

8. Limitations and Future Work

This section delineates the constraints of our framework and proposes potential direc-
tions for future research, specifically focusing on two critical areas: unpacking techniques
and advancing a multilayer packing identification approach. Ongoing efforts aim to

Information 2024, 15, 102 24 of 26

strengthen unpacking capabilities for precisely restoring the original malware code. While
profile unpacking is implemented in the current approach, upcoming work will prioritize
developing generic unpacking methods for extracting content from unknown packed files.
To achieve this, we plan to implement advanced heuristic algorithms for dynamic anal-
ysis, adapt to evolving packing techniques, and integrate hardware-level analysis tools
such as Intel PIN. This dual approach is vital to ensure a more accurate identification and
unpacking of malicious code, optimizing the process for improved speed and efficiency.
This is particularly crucial, considering the challenge posed by packers employing diverse
techniques to conceal unpacking routines.

In terms of computational efficiency, it is noteworthy that transforming and analyzing
binary data, such as large PE files, can be computationally intensive, potentially leading to
increased processing time and resource demands. Optimizing algorithms and employing
parallel processing techniques can enhance efficiency in these tasks.

Additionally, we plan to delve into the classification of packers used in repacking and
multipacking scenarios. Our research will contribute to understanding and classifying
packers in these contexts, considering the nuances of repacking (using one or two packer al-
gorithms) and multipacking (employing three or more packer algorithms). This exploration
is crucial, as not all packing algorithms successfully achieve the repacked or multipacked
state. Addressing these challenges will further advance the effectiveness of our packing
identification system.

Author Contributions: Conceptualization, E.A., A.G. and A.H.L.; data curation, E.A.; investigation,
E.A.; methodology, E.A.; software, E.A.; supervision, A.G. and A.H.L.; writing—original draft, E.A.;
writing—review and editing, A.G. and A.H.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by funding from the National Science and Engineering
Research Council of Canada (NSERC) and the Canadian Institute for Cybersecurity (CIC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The authors thank VirusTotal for providing the malware dataset used
in this research. The malware dataset can be requested at https://www.virustotal.com (accessed
on 21 December 2019). Additionally, the authors thank Softpedia for providing various benign
downloadable software applications, which can be found at https://www.softpedia.com (accessed
on 9 December 2019).

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could appear to influence the work reported in this paper.

Abbreviations

The following abbreviations are used in this manuscript:

AV Antivirus
CFG Control flow graph
PE Portable Executable
API Application programming interface
VX Virus eXchange
GUI Graphical user interface
SVM Support vector machine
FCG Function call graph
ASM Assembly
LD Levenshtein distance
UPX Ultimate Packer for eXecutables
ATR Automatic target recognition
RAT Remote access trojan

https://www.virustotal.com
https://www.softpedia.com

Information 2024, 15, 102 25 of 26

References
1. Jajodia, S.; Shakarian, P.; Subrahmanian, V.; Swarup, V.; Wang, C. Cyber Warfare: Building the Scientific Foundation; Springer:

Berlin/Heidelberg, Germany, 2015; Volume 56.
2. Herrmann, D. Cyber Espionage and Cyber Defence. In Information Technology for Peace and Security: IT Applications and Infrastruc-

tures in Conflicts, Crises, War, and Peace; Reuter, C., Ed.; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2019; pp. 83–106.
[CrossRef]

3. Liţă, C.V.; Cosovan, D.; Gavriluţ, D. Anti-emulation trends in modern packers: A survey on the evolution of anti-emulation
techniques in UPA packers. J. Comput. Virol. Hacking Tech. 2018, 14, 107–126. [CrossRef]

4. McAfee. The Good, the Bad, and the Unknown. 2017. Available online: http://www.techdata.com/mcafee/files/MCAFEE_wp_
appcontrol-good-bad-unknown.pdf (accessed on 12 January 2021).

5. Ugarte-Pedrero, X.; Balzarotti, D.; Santos, I.; Bringas, P.G. SoK: Deep packer inspection: A longitudinal study of the complexity of
run-time packers. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 17–21 May 2015;
pp. 659–673.

6. Hai, N.M.; Ogawa, M.; Tho, Q.T. Packer identification based on metadata signature. In Proceedings of the 7th Software
Security, Protection, and Reverse Engineering/Software Security and Protection Workshop, Orlando, FL, USA, 5–6 December
2017; pp. 1–11.

7. Alkhateeb, E.M.; Stamp, M. United Arab Emirates A Dynamic Heuristic Method for Detecting Packed Malware Using Naive
Bayes. In Proceedings of the 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA),
Ras Al Khaimah, United Arab Emirates, 19–21 November 2019; pp. 1–6.

8. Menéndez, H.D.; Llorente, J.L. Mimicking anti-viruses with machine learning and entropy profiles. Entropy 2019, 21, 513.
[CrossRef] [PubMed]

9. Bat-Erdene, M.; Park, H.; Li, H.; Lee, H.; Choi, M.S. Entropy analysis to classify unknown packing algorithms for malware
detection. Int. J. Inf. Secur. 2017, 16, 227–248. [CrossRef]

10. Bat-Erdene, M.; Kim, T.; Park, H.; Lee, H. Packer detection for multi-layer executables using entropy analysis. Entropy 2017,
19, 125. [CrossRef]

11. Lim, C.; Ramli, K.; Kotualubun, Y.S.; Syailendra, Y. Mal-flux: Rendering hidden code of packed binary executable. Digit. Investig.
2019, 28, 83–95. [CrossRef]

12. Ugarte-Pedrero, X.; Santos, I.; Bringas, P.G.; Gastesi, M.; Esparza, J.M. Semi-supervised learning for packed executable detection.
In Proceedings of the 2011 5th International Conference on Network and System Security, Milan, Italy, 6–8 September 2011;
pp. 342–346.

13. Perdisci, R.; Lanzi, A.; Lee, W. Classification of packed executables for accurate computer virus detection. Pattern Recognit. Lett.
2008, 29, 1941–1946. [CrossRef]

14. Dini, P.; Elhanashi, A.; Begni, A.; Saponara, S.; Zheng, Q.; Gasmi, K. Overview on Intrusion Detection Systems Design Exploiting
Machine Learning for Networking Cybersecurity. Appl. Sci. 2023, 13, 7507. [CrossRef]

15. Santos, I.; Ugarte-Pedrero, X.; Sanz, B.; Laorden, C.; Bringas, P.G. Collective classification for packed executable identification. In
Proceedings of the 8th Annual Collaboration, Electronic messaging, Anti-Abuse and Spam Conference, Perth, Australia, 1–2
September 2011; pp. 23–30.

16. Ugarte-Pedrero, X.; Santos, I.; García-Ferreira, I.; Huerta, S.; Sanz, B.; Bringas, P.G. On the adoption of anomaly detection for
packed executable filtering. Comput. Secur. 2014, 43, 126–144. [CrossRef]

17. Naval, S.; Laxmi, V.; Gaur, M.S.; P, V. An efficient block-discriminant identification of packed malware. Sadhana 2015, 40, 1435–1456.
[CrossRef]

18. Naval, S.; Laxmi, V.; Gaur, M.S.; Vinod, P. ESCAPE: Entropy score analysis of packed executable. In Proceedings of the Fifth
International Conference on Security of Information and Networks, Jaipur, India, 25–27 October 2012; pp. 197–200.

19. Laxmi, V.; Gaur, M.S.; Faruki, P.; Naval, S. PEAL—Packed executable analysis. In Proceedings of the International Conference on
Advanced Computing, Networking and Security, Surathkal, India, 16–18 December 2011; Springer: Berlin/Heidelberg, Germany,
2011; pp. 237–243.

20. Mimura, M.; Ito, R. Applying NLP techniques to malware detection in a practical environment. Int. J. Inf. Secur. 2022, 21, 279–291.
[CrossRef]

21. Jin, Q.; Duan, J.; Vasudevan, S.; Bailey, M. Packer classifier based on PE header information. In Proceedings of the 2015
Symposium and Bootcamp on the Science of Security, Urbana IL, USA, 21–22 April 2015; pp. 1–2.

22. Choi, Y.S.; Kim, I.K.; Oh, J.T.; Ryou, J.C. Pe file header analysis-based packed pe file detection technique (phad). In Proceedings of
the International Symposium on Computer Science and its Applications, Hobart, TAS, Australia, 13–15 October 2008; pp. 28–31.

23. Saleh, M.; Ratazzi, E.P.; Xu, S. A control flow graph-based signature for packer identification. In Proceedings of the MILCOM
2017—2017 IEEE Military Communications Conference (MILCOM), Baltimore, MD, USA, 23–25 October 2017; pp. 683–688.

24. Li, X.; Shan, Z.; Liu, F.; Chen, Y.; Hou, Y. A consistently-executing graph-based approach for malware packer identification. IEEE
Access 2019, 7, 51620–51629. [CrossRef]

25. Liu, H.; Guo, C.; Cui, Y.; Shen, G.; Ping, Y. 2-SPIFF: A 2-stage packer identification method based on function call graph and file
attributes. Appl. Intell. 2021, 51, 9038–9053. [CrossRef]

http://doi.org/10.1007/978-3-658-25652-4_5
http://dx.doi.org/10.1007/s11416-017-0291-9
http://www.techdata.com/mcafee/files/MCAFEE_wp_appcontrol-good-bad-unknown.pdf
http://www.techdata.com/mcafee/files/MCAFEE_wp_appcontrol-good-bad-unknown.pdf
http://dx.doi.org/10.3390/e21050513
http://www.ncbi.nlm.nih.gov/pubmed/33267227
http://dx.doi.org/10.1007/s10207-016-0330-4
http://dx.doi.org/10.3390/e19030125
http://dx.doi.org/10.1016/j.diin.2019.01.004
http://dx.doi.org/10.1016/j.patrec.2008.06.016
http://dx.doi.org/10.3390/app13137507
http://dx.doi.org/10.1016/j.cose.2014.03.012
http://dx.doi.org/10.1007/s12046-015-0399-x
http://dx.doi.org/10.1007/s10207-021-00553-8
http://dx.doi.org/10.1109/ACCESS.2019.2910268
http://dx.doi.org/10.1007/s10489-021-02347-w

Information 2024, 15, 102 26 of 26

26. Kancherla, K.; Donahue, J.; Mukkamala, S. Packer identification using Byte plot and Markov plot. J. Comput. Virol. Hacking Tech.
2016, 12, 101–111. [CrossRef]

27. Jung, B.; Bae, S.I.; Choi, C.; Im, E.G. Packer identification method based on byte sequences. Concurr. Comput. Pract. Exp. 2020,
32, e5082. [CrossRef]

28. Dam, K.H.T.; Given-Wilson, T.; Legay, A.; Veroneze, R. Packer classification based on association rule mining. Appl. Soft Comput.
2022, 127, 109373. [CrossRef]

29. Biondi, F.; Enescu, M.A.; Given-Wilson, T.; Legay, A.; Noureddine, L.; Verma, V. Effective, efficient, and robust packing detection
and classification. Comput. Secur. 2019, 85, 436–451. [CrossRef]

30. Bergenholtz, E.; Casalicchio, E.; Ilie, D.; Moss, A. Detection of metamorphic malware packers using multilayered LSTM networks.
In Proceedings of the International Conference on Information and Communications Security; Springer: Berlin/Heidelberg, Germany,
2020; pp. 36–53.

31. Damaševičius, R.; Venčkauskas, A.; Toldinas, J.; Grigaliūnas, Š. Ensemble-based classification using neural networks and machine
learning models for windows pe malware detection. Electronics 2021, 10, 485. [CrossRef]

32. Noureddine, L.; Heuser, A.; Puodzius, C.; Zendra, O. SE-PAC: A Self-Evolving PAcker Classifier against rapid packers evolution.
In Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy, Virtual Event, USA, 26–28 April
2021; pp. 281–292.

33. Cheng, B.; Leal, E.A.; Zhang, H.; Ming, J. On the feasibility of malware unpacking via hardware-assisted loop profiling.
In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9–11 August 2023;
pp. 7481–7498.

34. D’alessio, S.; Mariani, S. PinDemonium: A DBI-based generic unpacker for Windows executables. In Proceedings of the Black
Hat 2016, Las Vegas, NV, USA, July 2016. Available online: https://www.politesi.polimi.it/handle/10589/120861 (accessed on 12
June 2021).

35. Carrera, E. PEFile. 2023. Available online: https://github.com/erocarrera/pefile (accessed on 12 June 2021).
36. Rezaei, T.; Hamze, A. An efficient approach for malware detection using PE header specifications. In Proceedings of the 2020 6th

International Conference on Web Research (ICWR), Tehran, Iran, 22–23 April 2020; pp. 234–239.
37. Levenshtein, V.I. Binary codes capable of correcting deletions, insertions, and reversals. Sov. Phys. Dokl. 1966, 10, 707–710.
38. Ristad, E.S.; Yianilos, P.N. Learning string-edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 522–532. [CrossRef]
39. Wellman, M.; Nasrabadi, N. Gabor Jets for Clutter Rejection in Infrared Imagery. Defense Technical Information Center. 2004.

Available online: https://apps.dtic.mil/sti/pdfs/ADA487612.pdf (accessed on 12 June 2021).
40. Wiskott, L.; Krüger, N.; Kuiger, N.; Von Der Malsburg, C. Face recognition by elastic bunch graph matching. IEEE Trans. Pattern

Anal. Mach. Intell. 1997, 19, 775–779. [CrossRef]
41. Günther, M.; Haufe, D.; Würtz, R.P. Face recognition with disparity corrected Gabor phase differences. In Proceedings of the Inter-

national Conference on Artificial Neural Networks, Lausanne, Switzerland, 11–14 September 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 411–418.

42. Biryukov, A.; Nakahara, J., Jr.; Yıldırım, H.M. Differential entropy analysis of the IDEA block cipher. J. Comput. Appl. Math. 2014,
259, 561–570. [CrossRef]

43. Donabelle, B.; Richard, M.L.; Mark, S. Structural entropy and metamorphic malware. J. Comput. Virol. Hacking Tech. 2013, 9,
79–192.

44. Cozzi, E.; Graziano, M.; Fratantonio, Y.; Balzarotti, D. Understanding linux malware. In Proceedings of the 2018 IEEE Symposium
on Security and Privacy (SP), San Francisco, CA, USA, 20–24 May 2018; pp. 161–175.

45. Shannon, C.E. A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 3–55. [CrossRef]
46. Alkhateeb, E.; Ghorbani, A.; Habibi Lashkari, A. A survey on run-time packers and mitigation techniques. Int. J. Inf. Secur. 2023,

1–27. [CrossRef]
47. Kazoleas, I.; Karampelas, P. A novel malicious remote administration tool using stealth and self-defense techniques. Int. J. Inf.

Secur. 2022, 21, 357–378. [CrossRef]
48. Park, L.H.; Yu, J.; Kang, H.K.; Lee, T.; Kwon, T. Birds of a Feature: Intrafamily Clustering for Version Identification of Packed

Malware. IEEE Syst. J. 2020, 14, 4545–4556. [CrossRef]
49. Gao, X.; Hu, C.; Shan, C.; Han, W. MaliCage: A packed malware family classification framework based on DNN and GAN. J. Inf.

Secur. Appl. 2022, 68, 103267. [CrossRef]
50. Thantharate, P.; Anurag, T. CYBRIA-Pioneering Federated Learning for Privacy-Aware Cybersecurity with Brilliance. In

Proceedings of the 2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics
and IoT (HONET), Boca Raton, FL, USA, 4–6 December 2023; pp. 56–61.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11416-015-0249-8
http://dx.doi.org/10.1002/cpe.5082
http://dx.doi.org/10.1016/j.asoc.2022.109373
http://dx.doi.org/10.1016/j.cose.2019.05.007
http://dx.doi.org/10.3390/electronics10040485
https://www.politesi.polimi.it/handle/10589/120861
https://github.com/erocarrera/pefile
http://dx.doi.org/10.1109/34.682181
 https://apps.dtic.mil/sti/pdfs/ADA487612.pdf
http://dx.doi.org/10.1109/34.598235
http://dx.doi.org/10.1016/j.cam.2013.08.002
http://dx.doi.org/10.1145/584091.584093
http://dx.doi.org/10.1007/s10207-023-00759-y
http://dx.doi.org/10.1007/s10207-021-00559-2
http://dx.doi.org/10.1109/JSYST.2019.2960076
http://dx.doi.org/10.1016/j.jisa.2022.103267

	Introduction
	Related Works
	Packers Identification Approaches
	Dynamic Analysis
	Static Analysis

	Background
	Packers
	The Functioning of Packing
	Packer Identification and Unpacking

	Approach
	Feature Engineering
	The PE File Format
	Image Plot
	Entropy Analysis

	Feature Set
	Packers Classification

	Experiments
	Dataset Preparation
	Benign Samples
	Malware Samples

	Evaluation Metrics
	Experimental Results
	Comparing with PEid
	Unknown Packers
	Comparing with Previous Works

	Discussion
	Conclusions
	Limitations and Future Work
	References

