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Abstract: A bilinear map whose domain and target sets are identical is called a self-bilinear map.
Original self-bilinear maps are defined over cyclic groups. Since the map itself reveals information
about the underlying cyclic group, the Decisional Diffie–Hellman Problem (DDH) and the computa-
tional Diffie–Hellman (CDH) problem may be solved easily in some specific groups. This brings a lot
of limitations to constructing secure self-bilinear schemes. As a compromise, a self-bilinear map with
auxiliary information was proposed in CRYPTO’2014. In this paper, we construct this weak variant
of a self-bilinear map from generic sets and indistinguishable obfuscation. These sets should own
several properties. A new notion, One Way Encoding System (OWES), is proposed to summarize
these properties. The new Encoding Division Problem (EDP) is defined to complete the security
proof. The OWES can be built by making use of one level of graded encoding systems (GES). To
construct a concrete self-bilinear map scheme, Garg, Gentry, and Halvei(GGH13) GES is adopted in
our work. Even though the security of GGH13 was recently broken by Hu et al., their algorithm does
not threaten our applications. At the end of this paper, some further considerations for the EDP for
concrete construction are given to improve the confidence that EDP is indeed hard.

Keywords: self-bilinear map; indistinguishability obfuscation; One Way Encoding System

1. Introduction

The bilinear map is a very useful cryptographic primitive. It provides solutions for
many cryptographic applications such as identity-based encryptions [1–3], non-interactive zero-
knowledge proof systems [4–9], attribute-based encryptions [10] and short signatures [11–15], etc.
A self-bilinear map is a special variant of bilinear maps whose domain and target groups
are identical. Because of this exclusive property, a self-bilinear map may have more in-
teresting potential. A straightforward application of a self-bilinear map is to construct
multilinear maps.

A multilinear map is a generalization of the bilinear map. Not long after the bilin-
ear map showed the convenience it brought to cryptography, Boneh and Silveberg [16]
imaged applications of a multilinear map. But, they met serious obstacles, when they
tried to construct such a good tool. From then on, constructing multilinear maps became
a long-standing open problem. Until recently, three candidate multilinear maps were
proposed, the GGH13 scheme [17] on ideal lattices, the CLT13 scheme [18] over the integer
and the GGH15 [19] on lattices. a multilinear map is a basic component of various crypto-
graphic primitives such as witness encryption [20,21], indistinguishability obfuscation and
functional encryption [22], etc.

Recently, the current candidates for multilinear maps met extremely strong chal-
lenges. The CLT13 scheme was completely broken by the “zerozing algorithm” [23]. Two
patches [24,25] were proposed very soon after the CLT13 was broken. But Coron et al. [26]
stated that these two patches were still unsafe. Then, they described a new multilinear map
over the integer [27], and this scheme was soon attacked by Cheon et al. [28]. Not long after
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the CLT scheme was completely broken; the GGH scheme was also under attack. Hu and
Jia designed a modified encoding/decoding algorithm [29] to break the MDDH assumption
which is the security basis of various applications. Moreover, Hu and Jia solve the MCDH
problem in their further work [30]. As a substrate of the current program obfuscation, the
secret encoding version of the GGH13 map was threatened by Miles et al.’s “Annihilation
attacks”. This attack has broken the security of indistinguishability obfuscation that builds
upon the GGH13 map, e.g., [31–36]. From this situation, we can see that constructing a
secure and efficient multilinear map is still worthwhile work. This also highlights the study
of finding a secure and efficient self-bilinear map.

The first candidate self-bilinear map was designed by Lee [37]. Cheon and Lee [38]
remarked that Lee’s map is not essentially a self-bilinear. They also proved the impossibility
that the secure self-bilinear map could not be constructed over the cyclic group of known
prime order. The computational Diffie–Hellman (CDH) assumption collapses because the
map itself reveals much information about the underlying group. To avoid this situation,
Yamakawa et al. [39] adopted the signed quadratic residue group QR+

n of Z∗n where the
order of this group is composite and kept secret. The security of their scheme is based on
the factoring assumption and the property of indistinguishability obfuscation (iO).

Motivation

In this paper, we build a self-bilinear map with auxiliary information over generic
sets instead of cyclic groups. A new concept OWES is defined to describe the generic sets
that can be used to construct the weak variant of self-bilinear maps. Besides the one-way
problem, we also define an encoding division problem (EDP) in the OWES. Then, we
will prove that the Bilinear Computational Diffie–Hellman with Auxiliary Information
(BCDHAI) assumption of a self-bilinear map with auxiliary information is held if the EDP
in the underlying OWES is hard. The OWES can be initiated by using graded encoding
systems (GES). Based on the GGH13 GES [17], a concrete weak variant of the self-bilinear
map is proposed. We also analyze the security of the concrete scheme.

The remainder of this paper is organized as follows. In Section 2, we provide some
backgrounds of the techniques we used in this paper, including the definition of iO, self-
bilinear map with auxiliary information and problems required to be hard in a self-bilinear
map with auxiliary information. Then we introduce the new notion of the One Way
Encoding System (OWES) in Section 3. Our generic construction of a self-bilinear map from
the OWES and iO is described in Section 4. By instantiating the OWES with GGH13 GES,
we give a concrete self-bilinear map with auxiliary information in Section 5, and discuss
whether the one-way problem and EDP are hard in GGH13 GES. Finally, we give our work
a brief summary.

2. Preliminaries

In this section, we describe the notations that will be used in this paper. Then, we
review the iO.

2.1. Notations

We use Z to denote the set of all integer numbers and Q to denote the rational number
field. Z[x] are polynomials with coefficients in Z. For a positive integer n, [n] denotes the set
{x ∈ Z|1 ≤ x ≤ n}. λ is the secure parameter. We denote the discrete Gaussian distribution
on S with parameter σ as DS,σ. For an alphabet x, define {xi}n

i=1 as {x1, · · · , xn}. If R/I
is a residue class ring of a ring R, for an element a ∈ R, we use ā to denote the coset of
I where a is one of the representatives. For a set S, |S| denotes the cardinal of S. We say
that a function in λ is negligible, written negl(λ), if it vanishes faster than the reciprocal
of any positive polynomial. For a polynomial r, its ith coefficient is named by ri. If M is a
probabilistic polynomial time (PPT) algorithm (Turing machine), then by M(x; r) we refer
to the result of running M on input x and random string r.
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2.2. Indistinguishability Obfuscator

The following formulation of indistinguishability obfuscator is due to Garg et al. [22].

Definition 1 (Indistinguishability Obfuscator). A uniform PPT machine iO is called an
indistinguishability obfuscator for a circuit class {Cλ} if the following conditions are satisfied:

• For security parameters λ ∈ N, all C ∈ Cλ, and all inputs x, we have that

Pr[C′(x) = C(x) : C′ ← iO(λ, C)] = 1

• For any (not necessarily uniform) PPT distinguisher D, and for all security parameters λ ∈ N,
and all pairs of circuits C0, C1 ∈ Cλ, we have that if C0(x) = C1(x) for all inputs x, then

|Pr[D(iO(λ, C0)) = 1]− Pr[D(iO(λ, C1)) = 1]| ≤ negl(λ)

An indistinguishability obfuscator is an efficient randomized algorithm that makes
circuits C0 and C1 computationally indistinguishable if they have the same functionality.

2.3. Self-Bilinear Map with Auxiliary Information

Before we formalize a self-bilinear map with auxiliary information, we recall the ideal
notion of a self-bilinear map. An ideal self-bilinear map is a special kind of self-bilinear
map whose domain and target groups are identical.

Definition 2 (Ideal Self-bilinear map [38]). For a cyclic group G of order p, a map e : G×G→ G
is self-bilinear, if it has the following properties.

• For all g1, g2 ∈ G and the integer a ∈ Zp, it holds that

e(ga
1, g2) = e(g1, ga

2) = e(g1, g2)
a.

• The map e is non-degenerate so that e(g1, g2) generates G, if both g1 and g2 are generators
of G.

It is well known that a k-multilinear map can be constructed inductively from a self-
bilinear map (which is essentially a 2-multilinear map). If ek−1 is a (k− 1)-multilinear map
from self-bilinear map e2, a k-multilinear map ek can be generated by setting

ek(g1, . . . , gk−1, gk) = e2(ek−1(g1, . . . , gk−1), gk).

The fact, that constructing a self-bilinear map is a candidate approach to building a
multilinear map, highlights the study of self-bilinear maps.

A self-bilinear map with auxiliary information (described in [39]) is a weak notion of
the ideal one, where map e is efficiently computable only if the auxiliary information is
given. That is, when one computes e(gx, gy), the auxiliary information τx for gx or τy for gy

is required.

2.4. Efficient Procedures

Instead of constructing an ideal self-bilinear map, we construct the weak notion of
a self-bilinear map [39] which can be formalized as a set of algorithms SBP= (InstGen,
Sample, Enc, Add, Neg, AlGen, Map, AlAdd) and a ring R. These procedures are described
below.

Instance Generation. The randomized InstGen(1λ) takes as input the parameter λ, and
outputs params, which are descriptions of the group G, the order of G and a self-bilinear
map e : G× G → G.
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Element Encoding. Given the instance params from above, and an element a ∈ R, the
procedure Enc(params,a) outputs an element in G which encode a. We require that for any
a1 ≠ a2, Enc(params, a1) ≠ Enc(params, a2).

Group Operation. Given x, y ∈ G, Add(params, x, y) computes x + y ∈ G, and Neg(x)
computes −x ∈ G.

Auxiliary Information Generation. The procedure AIGen(params, x), outputs corre-
sponding auxiliary information τx, on input x ∈ R.

Self-Bilinear Map. The procedure Map(params, Enc(params, x1), τx2) takes
Enc(params, x1) and τx2 as input, outputs e(Enc(params, x1), Enc(params, x2)).

Auxiliary Information Operation. On input auxiliary information τx1 , τx2 ,
AIAdd(params, τx1 , τx2 ) outputs τx1+x2 .

2.5. Hardness Assumptions of SBP
For the ideal self-bilinear map to be cryptographically useful, at least the discrete

logarithm (one-way problem) must be hard in the underlying group, and it usually also
requires the bilinear-DDH problem to be hard. In the case of the self-bilinear map with
auxiliary information, these hardness problems are defined in a slightly different way, since
the auxiliary information may reveal extra information about a self-bilinear map and the
underlying group. Here, we introduce the bilinear computational Diffie–Hellman with
auxiliary information (BCDHAI) assumption and bilinear hashed Diffie–Hellman with
auxiliary information (BHDHAI) assumption whose generalizations (if the multilinear
level is 2, the BCDHAI (BHDHAI) is equivalent to the MCDHAI (resp., MHDHAI) defined
in [39]) are both defined in [39].

Definition 3 (BCDHAI assumption). We say that the BCDHAI assumption holds with respect
to SBP if for any efficient algorithm A,

Pr[e(g, g)a0a1a2 ← A(params, g, ga0 , ga1 , ga2 , τa0 , τa1 , τa2)] ≤ negl(λ),

where params← InstGen(1λ), g is the generator of G. ai ← ord(G), τai ← AIGen(params, ai)
for i = 0, 1, 2.

The BCDHAI assumption is an analog of the classic bilinear computational Diffie–
Hellman (BCDH) assumption and the following BHDHAI assumption is the analog of the
bilinear hashed Diffie–Hellman assumption.

Definition 4 (BHDHAI assumption). We say that the BHDHAI assumption holds with respect
to SBP and a family of hash functionsH = {H : G → {0, 1}k} if for any efficient algorithm D,

|Pr[1← D(params, g, ga0 , ga1 , ga2 , τa0 , τa1 , τa2 , H, T)|β = 1]
−Pr[1← D(params, g, ga0 , ga1 , ga2 , τa0 , τa1 , τa2 , H, T)|β = 0]| ≤ negl(λ)

where params← InstGen(1λ), g is the generator of G, ai ← ord(G), τai ← AIGen(params, ai),
for all i = 0, 1, 2, β← {0, 1} and T ← {0, 1}k if β = 0, and otherwise T = H(e(g, g)a0a1a2).

Depending on the work of [39], if the MCDHAI assumption holds with respect to
SBP then the MHDHAI assumption holds with respect to SBP and the Goldreich–Levin
hardcore bit function [40].

3. One Way Encoding Systems

In this section, we will give the definition of the One Way Encoding System (OWES),
and describe some problems which are required to be hard in the OWES.
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One Way Encoding Systems

The notion of a One Way Encoding System (OWES) is generalized from graded
encoding systems (GES) and cryptographic cyclic groups which formed the substrates of
current candidate multilinear maps and bilinear maps, respectively. We are trying to refine
all properties, which are necessary for building a self-bilinear map. We will first shape the
frame of OWES by comparing it to the current GES, and then, show that the frame is also
suitable for cryptographic cyclic groups or even more algebraic structures.

We begin by recalling the Modules.

Definition 5 (S0-modules). Let R be a commutative ring with identity 1. An S0-module is an
abelian group S1 together with a map

⊗ : S0 × S1 → S1
(a, x) 7→ a⊗ x

satisfying the following properties:

1. a⊗ (x + y) = a⊗ x + a⊗ y,
2. (a + b)⊗ x = a⊗ x + b⊗ x,
3. (ab)⊗ x = a⊗ (b⊗ x),
4. 1x = x

for x, y ∈ S1, a, b ∈ S0.

Without loss of generality, we make the following further assumptions. Let (S0,+, ·)
be a finite commutative integral domain with identity (S0 is essentially a finite field) and S0
is a residue class ring of S′0 modulo m (If S0 is not a rigorous residue class ring, consider
S0 = S′0/⟨0⟩ = S′, where m = 0). Let (S1,⊕) be an abelian group and assume similarly that
S1 is a quotient group S′1/H, where H is a normal subgroup of S′1 (Regarding S1 as S1/{e}
if it is not, where {e} is the subgroup of S1 which only involves identity e). We make the
above assumptions because of the observation of the current graded encoding system.

In practical terms, to manipulate elements in a residue class ring S0 (e.g, ā, b̄ ∈ S0,
ā + b̄) is instead achieved by doing the corresponding computation in the complete system
of coset representatives of S0 relative to S′0 (e.g., a, b ∈ S′0, a + b).

Definition 6 (Complete system of coset representatives of S′
0 relative to ⟨m⟩). Let S′0 be

an abelian group and ⟨m⟩ be a subgroup of S′0. From each coset of S′0 relative to ⟨m⟩ we choose a
coset representative, then the set so obtained, denoted by Scom

0 , is called a complete system of coset
representatives of S′0 relative to ⟨m⟩.

The residing class ring S0 = S′0/⟨m⟩ and complete system Scom
0 are isomorphic. But

at most times, the user can hardly choose a unique representative for each coset, if the
generator of ideal ⟨m⟩ is kept secret. For example, in GGH13 GES [17], the sampled level-0
encoding is a random (and short) representative of some ring element in R/I. Since the
I = ⟨g⟩ is a secret system parameter, it is hard to fix |R/I| representatives such that the
complete system of coset representatives of R relative to I and R/I are isomorphic. Thus, in
this situation, the representative of a coset {a + kg|a, k ∈ S′0} ∈ S0 is a random variable of
the form a + kg ∈ S′0. In our paper, we will refer a representative of coset {a + kg|a, k ∈ S′0}
as the result of running a PPT Algorithm M, computing a + kg, on input a and random
string k, where a ∈ Scom

0 (A normal user will obtain a representative of the form a + kg, but
he cannot obtain the system parameter a). We often omit to write M(a) for simplicity, if the
context is clear. The above discussion is also suitable for group S′1 and its normal subgroup
H. We assume that the complete system of coset representatives of S′1 relative to H is Scom

1 .

Definition 7 (The representative of elements in S0). For any element ā ∈ S0, the representative
of ā is a random variable M(a; k), where M is a PPT algorithm that computes the function a + kg
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on input a ∈ ā, and a is a secret element in Scom
0 . The distribution of M(a; k) is dependent on the

distribution of the random string k.

Now we proceed to discuss the notion of valid elements which are generalized from
the notion of valid encodings in graded encoding scheme. For an algebraic structure to be
cryptographically useful, at least the one-way problem (e.g., discrete logarithm problem)
must be hard in it, and the notion of valid (level-0) encoding is crucial for GES to assure
that. Informally speaking, if u is a level-1 encoding of a + I, one can hardly compute a′ ∈ S′0
such that a′ − a ∈ I efficiently and a′ is a valid level-0 encoding. On our side, the level-0
encoding corresponds to a representative of a coset in S0. The valid representative in S′0
will be defined by limiting the support set of random string r.

Definition 8 (D0-valid representatives of S0). Let D0 be a set of strings. For S0-modules
(S0, S1,⊗), we say that a representative of ā ∈ S0, denoted by M(a; r0), is D0-valid, if the support
of the random variable of strings r0, is D0. Moreover, the set of all D0-valid representatives in S′0 is

SetD0 = {M(a; r0)|a ∈ Scom
0 , r0 ∈ D0}

The discussions above will cause the problem of how can users without system
parameters sample valid representatives at random. Thus, we need a (S0, D0)-sampler,
which is like the ring sampler in GGH13 GES, to solve this problem.

Definition 9 ((S0, D0)-sampler). The (S0, D0)-sampler is a PPT algorithm Samp, which on
input security parameter λ and the description of S′0, outputs a random representative b ←
Samp(1λ, S′0; r0) such that

• for any ā ∈ S0, Pr[b ∈ ā] = 1
|S0|

,

• all representatives sampled by Samp(1λ, S′0; r) are in SetD0 .

The definition shows that (S0, D0)-sampler draws a random element b in a residue
class ā relying on the random string r0. Furthermore, the corresponding residue class ā
obeys the uniform distribution in S0.

After discussing the valid “level-0 encodings”, we proceed to describe the valid
“level-1” encodings. A valid “level-0” encoding is a representative in group S′1 with some
specific properties.

Definition 10 (D1-valid representatives of S1). For S0-modules (S0, S1,⊗), we say that a
representative of x̄ ∈ S1, denoted by M(x; r1), is D1-valid, if the support of random variable of
strings r1 is D1. Moreover, the set of all D1-valid representatives in S′1 is

SetD1 = {M(x; r1)|x ∈ Scom
1 , r1 ∈ D1}

Since the presentative of the residue class in S0 is a random variable, we require a
zero testing predicate, which is similar to the functionality of the zero testing procedure
in GGH13 GES.

Definition 11 (Zero testing predicate for D1-valid representative in S1). The Zero testing
predicate for D1-valid representative in S1 is a deterministic algorithm isZero(x), which on input
x ∈ x̄ , where x̄ ∈ S1, outputs

isZero(x) =
{

1 , if x is D1-valid and x̄ = 0̄
0 , otherwise

Now we are ready to give the formal definition of OWES.
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Definition 12 ((D0, D1)-OWES). Let S0, S1 be the algebraic structure defined above, and
(S0, S1,⊗) be S0-modules. We say that a PPT Turing machine E, which computes the map
⊗ : S0 × S1 → S1, is a (D0, D1)-OWES if the following properties hold:

1. Valid encoding: For every D0-valid representative a and every D1-valid representative x,
E(a, x; r) is D1-valid.

2. Valid manipulation: For all D1-valid E(a1, x1; r1) and E(a2, x2; r2), the encoding E(a1, x1; r1) +
E(a2, x2; r2) is D1-valid.

3. Hard to invert: For every PPT algorithm A and all sufficiently large λ,

Pr
x∈S0

[isZero(E(a′, x; r)− E(a, x; r)) = 1 : a′ ← A(E(a, x; r), 1λ)] < negl(λ)

If we set S0 = Zp, S1 = G = ⟨g⟩, |G| = p, and set ⊗ to be the power operation in G,
and let D0, D1 be the set of bit strings with a polynomial size length, such a (D0, D1)-OWES
becomes a cryptographic cyclic group in which the “hard to invert” property is equivalent
to the DLP assumption with respect to G. In another case, if we set S0 = R/I, S1 = Rq/I,
⊗ to be the GGH13 encoding procedure, and make σ to be a predicate to tell whether
an element in a residue class is short, such an σ-OWES is exactly the GGH 13 graded
encoding scheme.

For completing the security proof of a self-bilinear map, we have to define a new hard
problem called EDP below.

Definition 13 (EDP). For a (D0, D1)-OWES E(a, x; r) with respect to the modules (S0, S1,⊗),
the Encoding Division Problem is, on input the E(a, b⊗ x; r) and a ∈ ā, where ā is a unit of S0, to
compute a representative y ∈ S′0 such that isZero(E(a, y; r)− E(a, b⊗ x; r)) = 1.

The Encoding Division assumption says that there are no PPT algorithms solving the
EDP with non-negligible probability.

The OWES can be constructed by making use of one level of graded encoding systems.
To construct a concrete SBP , the GGH13 is adopted in Section 5.

4. Generic Construction from OWES and iO
In this section, we construct the weak self-bilinear map scheme SBP by using the

OWES and iO.

4.1. Our Construction

In the SBP scheme, iO circuits will act as the auxiliary information. We describe
notations for circuits on OWES first.

Notation for Circuits on OWES. For the (D0, D1)-OWES with respect to the modules
(S0, S1,⊗) and a ∈ ā, where ā ∈ S0, Ca(x) denotes the circuit that takes x ∈ x̄, where x̄ ∈ S1
is the input and output an element that is equivalent to E(a, x; r). For circuits Ca(x), Cb(y)
whose outputs can be parsed as the element in S′1, respectively, Plus(Ca(x), Cb(y)) denotes
a circuit that computes the sum of outputs of Ca(x) and Cb(y).

Now, we are ready to introduce the procedures of the generic constructing SBP . The
generic construction of a self-bilinear map is as follows.
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Instance Generation: params← InstGen(1λ).

• On inputting the security parameter λ, initiate (D0, D1)-OWES with respect to mod-
ules (S0, S1,⊗).

• Choose a random representative x ∈ S1, where x ∈ x̄ and x̄ ∈ S1.
• Choose an invertible representative r ∈ r̄ at random, where r̄ ∈ S0.
• Output params = {S′0, S′1, E(·), r} as the system parameters.

After the InstGen procedure executed, a self-bilinear map e is defined as:

e : S1 × S1 → S1
(E(a1, x), E(a2, x)) 7→ E(ra1a2, x)

Encoding: E(a, x; r1)← Enc(params, a).

• On input params and a ∈ ā, where ā ∈ S0, compute E(a, x; r1).

Auxiliary Information Generation: τa ← AIGen(params, a)

• On input a ∈ ā, where ā ∈ S0, generate the corresponding τa = iO(Cra).

Adding encodings:

• It is easy to see that the encoding as above is additively homomorphic, in the sense
that adding encodings yields an encoding of the sum.

Auxiliary Information Manipulation: τa+b ← AIAdd(params, τa, τb)

• On input, the auxiliary information τa and τb, compute τa+b ← iO(Plus(τa, τb)).

Self-biliner Map: E(ra1a2, x)← Map(params, E(a1, x), τa2).

• On input E(a1, x), run the obfuscated circuit τa2 to compute τa2(E(a1, x)) = E(ra1a2, x).

4.2. Security Analysis of SBP
We prove that the BCDHAI assumption holds with respect to our generic construction

SBP if iO is an indistinguishability obfuscator for P/poly and the EDP in the correspond-
ing OWES is hard.

The BCDHAI assumption holds with respect to SBP if the EDP is hard in the underly-
ing OWES and iO is an indistinguishability obfuscator for P/poly.

Proof. Assume that the algorithm A can solve the BCDHAI problem in SBP . We consider
the following games.
Game 1. This game is the original BCDHAI problem game.

1. Initiate the (D0, D1)-OWES with respect to the modules (S0, S1,⊗). Choose a random
representative x ∈ S′1, where x ∈ x̄ and x̄ ∈ S1. Choose an invertible representative
r ∈ r̄ at random, where r̄ ∈ S0. Set the params = {S′0, S′1, E(·), x, r}. params describe
a SBP .

2. Run the (S0, D0)-Sampler to obtain a0, a1, a2 ∈ S′0, so that ā, b̄, and c̄ are distributed
uniformly in S0.

3. Compute E(ai, x) and its corresponding auxiliary information τai = iO(Crai) for i = 0, 1, 2
4. U ← A(params, E(a0, x), E(a1, x), E(a2, x), τa0 , τa1 , τa2).

Game 2. This game is the same as Game 1 except that a0, a1, a2, τa0 , τa1 , τa2 are set differently.
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1. Initiate the (D0, D1)-OWES with respect to the modules (S0, S1,⊗). Choose a random
representative x ∈ S′1, where x ∈ x̄ and x̄ ∈ S1. Choose an invertible representative r ∈ r̄
at random, where r̄ ∈ S0. Compute x = r⊗ y. Output params = {S′0, S′1, E(·), x, r}.
params describe a SBP .

2. Choose a′0, a′1, a′2 ∈ S′0, where ā′0, ā′1, ā′2 ∈ S0 are distributed uniformly.
3. Let rai = ra′i + 1. Thus, E(ai, x) = E(ai, r⊗ y) = E(ra′i + 1, y), for i = 0, 1, 2.
4. Generate the auxiliary information τai = iO(Cra′i+1), for i = 0, 1, 2.

5. U ← A(params, E(a0, x), E(a1, x), E(a2, x), τa0 , τa1 , τa2).

We say that A wins these games if U = E(ra0a1a2, x). Let Pr[Ti] denote the probability
that A wins Game i, for i = 1, 2. Next, we will prove that |Pr[T1]− Pr[T2]| is negligible
if iO is an indistinguishability obfuscator for P/poly. The hybrid games H0, . . . , H3 are
considered. Hi is the same as Game 2 except that the first i auxiliary information is
generated as in Game 1. Therefore, H0 is identical to Game 2 and H3 is identical to Game 1.
If Hi is indistinguishable from Hi+1, for i = 0, 1, 2, then Game 1 is indistinguishable from
Game 2. Now, we assume that A wins Hi and Hi+1 with probability Pr[Hi] and Pr[Hi+1],
respectively, and |Pr[Hi]− Pr[Hi+1]| = γ(λ) is a non-negligible value, for i = 0, 1, 2. The
newly designed Algorithm 1 works as follows.

Algorithm 1 The Games Distringuisher

1: Initiate the (D0, D1)-OWES with respect to the modules (S′0, S′1,⊗), B wants to know
the circuit C∗ comes from iO(Crai ) or iO(Cra′i+1), where rai = ra′i + 1.

2: Compute x = r × y, where r ∈ S0 is invertible and b ∈ S1. Then, set params =
(S′0, S′1, E(·), x, r). params describe a SBP .

3: Choose a′j ∈ S0, j ∈ {0, 1, 2} at random, and compute raj = ra′j + 1.
4: Set C0 = Crai−1 , C1 = C2a′i−1

+ 1.
5: Set

τaj =


iO(Cra′i+1) , if j = 0, . . . , i− 2
C∗ , if j = i− 1
iO(Craj) , if j = i, . . . , 2

6: B runs A(params, E(a0, x), E(a1, x), E(a2, x), τa0 , τa1 , τa2) to obtain U.
7: If isZero(U − E(ra0a1a2, x)) = 1, outputs 1, and otherwise output 0.

If C∗ = iO(Crai ), B simulates Hi−1 for A, otherwise it simulates Hi. With the hypothe-
sis, we have

|Pr[1← B(iO(Crai ))]− Pr[1← B(iO(Cra′i+1))]| = |Pr[Hi]− Pr[Hi+1]| ≥ γ(λ),

which means B breaks the security of iO with non-negligible probability, in contradiction
to the assumption. Thus Hi and Hi+1 are computationally indistinguishable; so are Game 1
and Game 2.

At the end of the proof, we give an Algorithm 2 which reduces the EDP to the BCDHAI
Problem in Game 2.

Algorithm 2 The reduction of EDP to BCDHAI problem in Game 2

1: C takes an EDP instance (S0, S1,⊗), E(·), y, r as input.
2: Compute x = r⊗ y, and output params = {S′0, S′1, E(·), x, r}.
3: Choose a′0, a′1, a′2 ∈ S′0, where ā′0, ā′1, ā′2 ∈ S0 are distributed uniformly.
4: Set ai ⊗ x = (a′i ⊗ x) + y, this implies that ai = a′i + r−1, for i = 1, 2, 3.
5: Generate the auxiliary information τai = iO(Crai ) = iO(Cra′i+1), for i = 0, 1, 2.

6: Send params, {ai ⊗ x}2
i=0 and {τai}2

i=0 to A. A outputs U.

7: Compute q =
(r⊗a′1+1)(r⊗a′2+1)−1

r = r⊗ a′1a′2 + a′1 + a′2.
8: Compute p = a′0 ⊗ (r⊗ a′1 + 1)(r⊗ a′2 + 1), and output U′ = U − [p + q]⊗ y.
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Correctness: If the output of Algorithm 2 is U = E(ra0a1a2, x). Assume that ⊖ is the
inverse operation of ⊕.

U = E(ra0a1a2, x)
= E(ra0a1a2, ry)
= E[(a0)(ra1)(ra2), y]
= E[(a′0 + r−1)(ra′1 + 1)(ra′2 + 1), y]
= E[(a′0(ra′1 + 1)(ra′2 + 1)) + r−1(ra′1 + 1)(ra′2 + 1), y]
= E[(a′0(ra′1 + 1)(ra′2 + 1)) + r−1(r2a′1a′2 + ra′1 + ra′2) + r−1, y]
= E[(a′0(ra′1 + 1)(ra′2 + 1)) + (ra′1a′2 + a′1 + a′2) + r−1, y]

U′ = U ⊖ [p + q]⊗ y
= U ⊖ [a′0(ra′1 + 1)(ra′2 + 1) + r⊗ a′1a′2 + a′1 + a′2]⊗ y
= E(r−1, y)

Time complexity: We use T(·) to denote the time complexity. Besides the sub-routing
A, the number of manipulations in each step of C is a constant. Assume that the sum of
these constants is t. The time complexity of each manipulation is a polynomial poly(λ),
since they are efficiently computable (addition in a ring, etc). Thus, the time complexity
of the Algorithm 2 is bounded by T(C) = t · poly(λ) + T(A). Since A is assumed to be an
efficient algorithm, T(A) is bounded by poly(λ). So, T(C) = poly(λ) which means C is
efficiently computable.

In summary, the Algorithm 2 is a polynomial reduction from EDP to the BCDHAI
problem. Since EDP is hard, the algorithm that can solve the BCDHAI problem with respect
to Game 2 does not exist. Since Game 2 and Game 1 are computationally indistinguishable,
the BCDHAI assumption also holds in Game 1 (Game 1 is the original scheme).

5. Concrete Construction from GGH and iO
The OWES can at least be constructed by making use of the graded encoding system

(GES). To design a concrete SBP scheme, the GGH13 GES [17] is adopted as an example.

5.1. Relationships between GGH13 and OWES

To construct a concrete OWES, only one level of the GGH13 is needed. Even though
GGH13 does not completely satisfy the property of OWES, some relaxation could lead
us to our destination. We introduce the relationship between GGH13 and OWES by first
recalling the GGH13.

Depending on the security parameter λ, GGH13 consists of three sets R = Z[x]/⟨ f (x)⟩,
Rq = R/qR, and R/I, where f (x) = xn + 1, I = ⟨g⟩, g ∈ R, encoded elements are the
short representative of elements in R/I. GGH13 outputs the public parameters y = [a/z]q,
xi = [bi/z]q where a ∈ 1 + I, b ∈ I are short. For a representative d ∈ d + I, it is encoded
as [(da + b)/z]q at level 1. Note, that [(da + ∑ ribi)/z]q is a representative of the unique
element in Rq/I. A zero testing parameter is used to check whether u is the highest level
encoding of I. Now we are ready to compare GGH13 to OWES.

Assume that we initiate a GGH13 GES with the multi-linearity level κ = 1. We explain
what parameters in GGH13 act as S0, S1, f in OWES and how to define the hard problem in
GGH13 as the OWES requires.

• Explanation for S0: Regard the R/I as S0 of OWES. Since R is a cyclotomic ring and I
is a prime ideal of R, R/I is an integral domain. Furthermore, R/I consists of finite
elements, so R/I is actually a finite field. Level-0 encoding is a short representative of
d + I, where d ∈ R.

• Explanation for S1: Let Rq/I be the S1 of OWES. The Level-1 encoding is representa-
tive of d + I + kq, where d, q, k ∈ R.

• Explanation for f : The encoding algorithm is f : R/I → Rq/I. But we cannot design
this function without the representative. Thus, fr(d) = [dy + ∑ rixi]q, where r is a
random vector sampled from discrete Gaussian distribution. Note, that for a specified
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d, the output of fr(d) is a random value in Rq. f is not even a function (or map) from
R to Rq. But the output of fr(d) is a unique value in Rq/I, this may be the reason why
the zero-testing procedure will work in GGH13.

• Explanation for hard problem: In GGH13, Given a level-1 encoding [dy + ∑ rixi]q, it
is not hard for adversaries to find a not short representative in d + I. This contradicts
the property of OWES. The same problem happens in EDP. So we make a relaxation to
the one-way property and EDP for the concrete construction.

Definition 14 (A relaxation of One Way Property). For the OWES constructed from GGH13,
we say that the one-way property holds if the following problem is hard. Given a level-1 encoding
[dy + ∑ rixi]q, it is hard to find a short d′ ∈ d + I.

Definition 15 (A relaxation of EDP). For the OWES constructed from GGH13, the EDP is, on
input [αdy + ∑ rixi]q, α, to compute [d′y + ∑ r′i xi]q such that d′ ∈ d + I.

The modified one-way property is held in GGH13 since this problem is essentially
the analog of a discrete logarithmic problem. We believe that the new EDP is also hard in
GGH13, but we cannot reduce it to some classical hard problems. Some further considera-
tion to EDP is given in Section 5.4.2 to improve the secure confidence.

5.2. Construction

The concrete construction is parameterized by the security parameter λ. Based on
it, we generate an instance of the GGH13 with multi-linearity level k = 1. We will use
the symbol c(d) to denote the level-1 encoding of d + I for simplicity. The notation for the
circuit on OWES is defined similarly as that in Section 4.1. The concrete SBP scheme is
disigned below.
Instance Generation: params← InstGen(1λ).

• Take as input the security parameter λ, and generate the 1-GES. It has the following
parameters: y = c(1); re-randomization parameters xi = c(0), i = [m]; the zero testing
parameter Pzt = [hz/g]q.

• Choose a random element α← DZm ,σ′ .
• Choose a random element s← DZm ,σ′ , and compute v = s · y.
• Define params = (v, {xi}m

i=1, α, Pzt) and publish them.

Even though R/I and Rq/I are not published explicitly, GGH13 provides a sampling
level-zero encoding procedure to sample an element in R/I uniformly at random (choose d
from DZm ,σ′ , d + I obey the uniform distribution in R/I). Since the encoding parameters
are published explicitly, Rq/I is also known by users. However, users may not know the
particular representative of an element in Rq/I (like a “short” representative). Pzt helps to
check whether two elements in Rq/I are identical. After the instance generation procedure
is executed, a self-bilinear map e is defined as

e : Rq/I × Rq/I → Rq/I
(c(d), c(d

′)) 7→ c(αdd′)

Encode: (c(d), τc(d))← Encode(params, d).

• Compute c(d) = [dv + ∑m
i=1 rixi]q, where r ← DZm ,σ∗ .

• Generate the corresponding auxiliary information τc(d) = iO(Cαd).

Addition: (c(d+d′), τc(d+d′))← Add(params, c(d), c(d
′), τc(d) , τc(d′)).

• Compute c(d+d′) = [c(d) + c(d
′)]q directly.

• Generate the auxiliary information as τc(d+d′) ← iO(Plus(τc(d) , τc(d′))).
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Self-bilinear Map: c(αdd′) ← Map(param, c(d), τc(d′)). Run the circuit τc(d′)(c
(d)) to compute

c(αdd′) = [αd′c(d)]q.
We also need the additional procedure isZero to check whether a element is an

encoding of 0 + I.
isZero(params, c). Output 1 if ||[Pztc(d)]q|| < q3/4, otherwise output 0.

5.3. Setting the Parameters

The setting of parameters should satisfy the basic requirements of GGH13.

• To sample the g ← DZn ,σ, set σ =
√

λn, σ should be larger than the smoothing
parameter (η2−λ(Zn)). As a result, the size of g is bounded with ||g|| ≤ σ

√
n = n

√
λ.

• To sample ai, bi and level-0 elements, set σ = λn3/2. Then, these elements are bounded
by λn2. GGH states that the numerator in y and the xi are bounded by σn4.

• To sample r ← DZn ,σ∗ , set σ∗ = 2λ. As a result, the numerator xi is bounded by
||c|| ≤ 2λ · poly(n).

• The value of the k-multilinear map of k encodings is essentially the product of one
level-1 encoding and k− 1 plaintext. Hence, the numerate of this final encoding is
bounded by ||c|| ≤ 2λ · poly(n) · (λn3/2)k−1 = λ2λnO(k).

• To obtain λ-level security against lattice attacks, the dimension n should be roughly
fixed so that q < 2n/λ, which means that n > Õ(κλ2).

• Finally, m should be larger than n log q. m = O(n2) is enough.

5.4. Security Analysis of the Concrete Construction

The proof of the hard assumption in the concrete construction directly follows that of
the generic construction with minor differences, so we omitted it here. In this section, we
discussed the algorithm proposed by Hu et al. which almost totally solves the k-MDDH
problem in GGH13 GES. We state that Hu’s algorithm does not threaten our scheme. Then,
we try to analyze the hardness of the concrete EDP in GGH13.

5.4.1. Modified Encoding/Decoding Attack

Hu et al. provided the modified encoding/decoding algorithm to solve the k-MDDHP [29]
in the advanced multilinear map GGHLite [41]. If we use c(d)k to denote the level-k encoding

of I + d,
{
{c(di)

1 }
k+1
i=1 , T

}
is an instance of the k-MDDHP, then the attack procedure works

as follows.

1. Use the weak-DL attack to generate the level-0 encoding d′i of level-1 encoding c(di)
1 .

Note, that d′ is not a short element.
2. Multiply these level-0 encodings together to obtain the level-0 encoding ∏k+1

i=1 di.
3. Use the modified encoding/decoding procedure to obtain the parameter T′ that is

functionally the same as pztc
(∏k+1

i=1 di)

k .
4. Compare the high order bits of T and T′. If they are the same, output 1, otherwise,

output 0.

If T is computed from {c(di)
1 }

k+1
i=1 , this procedure will output 1 with overwhelming

probability. Even though the algorithm of Hu et al. can solve the MDDH problem, it does
not threaten our scheme.

The attacking algorithm requires some intermediate parameters. These parameters
are called special decodings that are obtained as below.

Y = yk−1x(1)pzt (mod q) = h(1 + ag)k−1b(1)

X(i) = yk−2x(i)x(1)pzt (mod q) = h(1 + ag)k−2(b(i)g)b(1), i = 1, 2

where x(i) = [b(i)g/z], i = 1, 2. y=(1 + ag)/z. The exponent of y brings a limitation to this
procedure. If 0 ≤ k ≤ 2, k− 1 or k− 2 will be smaller than 0. On one hand, since some
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elements in the ring Rq are not invertible, yk−2 can not always be computed. On the other
hand, if y2−κ is invertible in Rq, the invert operations cannot ensure that the coefficient of
yk−2 is smaller than q. The “mod q” operation couldn’t be omitted on the right sides of the
equations above. So, the attacking procedure can only solve the k-MDDHP, for k ≥ 3.

Our self-bilinear map scheme adopts the level-1 encoding of the GGH13. The param-
eter k = 1, which means “Modified Encoding/Decoding Attack” does not threaten our
self-bilinear map.

5.4.2. Further Consideration for EDP

We discuss the hardness of EDP in the concrete OWES. An instance of EDP in the
concrete OWES is denoted as (α, v, c(αd) = αdv + ∑ rixi). Assume that α ∈ A, d ∈ B, A,
B are elements in R/I. Every element in R/I is invertible because I = ⟨g⟩ is the prime
ideal of R and R/I is a finite set. Since α is public, the adversary could try to solve EDP
as follows.

1. Divide c(αd) = αdv + ∑ rixi by α in R.
2. Divide c(αd) = αdv + ∑ rixi by α in Rq.
3. Find short enough a′ ∈ A−1, and compute c′ = [α′c(αd)]q. c′ is a valid level-1 encoding

of B.

Case 1. We cannot conduct the division in R directly, since the Euclidean algorithm is
defined in Q[X]. Elements in R can be regarded as polynomials with degree less than n.
Thus, c(αd) divide α can be written as

αdv + ∑ rixi
α

= dv +
∑ rixi

α
.

∑ rixi is an element in I. It can be written as a polynomial ∑ rixi = k(x)g(x)+ l(x) f (x),
where k(x), l(x) ∈ Z[X]. Since α(x) is a random polynomial, a degree smaller than n and
g(x) generates a prime ideal for R, α(x) ∤ g(x) and α(x) ∤ f (x) in Z[x] with high probability.
Thus, ∑ rixi

α is not an element in R and the first method cannot output the right answer
for EDP.
Case 2. Computing [ αdv+∑ rixi

α ]q has a similar problem.
Case 3. If the short a′ ∈ A−1 is found, attack method 3 truly can solve EDP. We discuss the
hardness of finding a′.

We use f to denote the polynomial f (x) for simplicity. The element in R can be
written as p + k f , where p, k, f ∈ Z[x]. The element in R/I can be written as p̄ + r̄ḡ, where
q̄, r̄, ḡ ∈ R. It can also be written as

(p + k f ) + (r + k′ f )(g + k′′ f )
= p + rg + (k′g + k′′ f + rk′′) f
= p + rg + r′ f

(1)

where r′ = k′g + k′′ f + rk′′. Note, that (1) is a polynomial Z[X]. This fact tells us, the
element ¯̄p in R/I can be written as p + rg + r′ f , and p ∈ Z[X] is a representative of ¯̄p.

Thus, to find an element α′ ∈ A(−1) is equivalent to find polynomials α′, s, t ∈ Z[X]
such that

α′α + sg + t f = 1 (2)

where f is a public parameter, g is a secret parameter, but GGH13 states that a not short
representation g′ ∈ ⟨g⟩ could be recovered. Equation (2) has three variables, thus to find a
random element α′ is easy. But it is hard to output the α′ with small coefficients.

Of cause adversaries can fix a short α′ and find random s, t that satisfies Equation
(1). But Equation (1) has solutions if and only if the fixed α′ is a representative of A−1.
The probability Pr[α′ ∈ A(−1)] = |R/I|−1 and |R/I| should be an exponential function of
the secure parameter (otherwise, the analog of the discrete logarithmic problem is easy in
GGH13). So, the probability of finding the short α′ in case 3 is negligible.
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As a result, the EDP seems difficult in the OWES constructed from GGH13.

6. Conclusions

We described a new notion called a One Way Encoding System (OWES). By making use
of the indistinguishability obfuscation, we construct a self-bilinear map over the OWES. The
EBCDHP is proved to be hard if the EDP is hard. We also discussed that a graded encoding
system like GGH can be used to construct OWES. After that, a concrete construction from
the GGH13 encoding system is proposed. To increase confidence in security, we give a
simple analysis of EDP in the concrete OWES.
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