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Abstract: With the rapid development of wireless communication networks and Internet of Things
technology (IoT), higher requirements have been put forward for spectrum resource utilization and
system performance. In order to further improve the utilization of spectrum resources and system
performance, this paper proposes an intelligent reflecting surface (IRS)-assisted fair energy allocation
algorithm for cognitive multiple-input single-output (MISO) wireless-powered networks. The goal
of this paper is to maximize the minimum energy receiving power in the energy receiver, which
is constrained by the signal-to-interference-plus-noise ratio (SINR) threshold of the information
receiver in the secondary network, the maximum transmission power at the cognitive base station
(CBS), and the interference power threshold of the secondary network on the main network. Due
to the coupling between variables, this paper uses iterative optimization algorithms to optimize
and solve different variables. That is, when solving the active beamforming variables, the passive
beamforming variables are fixed; then, the obtained active beamforming variables are fixed, and the
passive beamforming variables are solved. Through continuous iterative optimization, the system
converges. The simulation results have verified the effectiveness of the proposed algorithm.

Keywords: intelligent reflecting surface; wireless-powered networks; cognitive radio; iterative
optimization

1. Introduction

With the increasing integration of future wireless communication and intelligent ap-
plications, wireless networks require higher spectral efficiency and lower communication
costs to meet the growing demands of wireless communication networks and traffic [1].
Although direct sequence ultra-wideband and random cooperative beamforming technolo-
gies can reduce the cost of long-distance communication in wireless sensor networks [2,3],
in reality, most of the spectrum is not fully utilized. Therefore, addressing the issues of
scarce radio frequency spectrum resources and improving utilization is of utmost impor-
tance [4]. Cognitive radio (CR) technology, as an important means to enhance spectrum
utilization, has been widely applied to alleviate spectrum scarcity [5,6]. In recent years,
the development of artificial intelligence and software-defined radio technologies has pro-
vided a theoretical basis and implementation means for cognitive radio technology. In CR
networks, primary users (PUs) possess higher spectrum access rights. Secondary users
(SUs) communicate by sharing the spectrum, keeping their interference power below a
threshold to ensure the PU’s communication performance, effectively increasing spectrum
efficiency [7].

Currently, research in CR networks mainly focuses on spectrum sensing [8], dynamic
spectrum resource allocation [9], interference suppression [10], etc. Reference [8] primarily
investigated perception-enhanced spectrum-sharing CR networks. The proposed method
has an important improvement effect on the perceptual performance and spectral efficiency
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of CR networks. Reference [9] proposes a system dynamic spectrum allocation scheme
based on a central heterogeneous network architecture, considering the efficiency and
fairness of different CR systems. Reference [10] mainly studies interference suppression
techniques in CR communication systems from the perspective of dynamic spectrum
management and proposes a cell-based dynamic spectrum management scheme. The
above-mentioned literature primarily focuses on the effective management and utilization
of limited resources without considering their integration with new technologies.

As a new technique, IRS can further improve spectral efficiency. IRS consists of
numerous small reflecting units, each of which can adjust its reflection coefficient and
phase to modify the amplitude and direction of incident signals. They can be arranged
in various geometric patterns on a reflecting surface to achieve more intricate signal
manipulation. By intelligently controlling the parameters of the reflecting surface, IRS
can optimize signal coverage, reduce interference, enhance the effective utilization of
spectrum resources, and improve signal quality in multi-user communication scenarios.
This technology holds the potential to offer better performance and efficiency for future
wireless communication systems.

Today, IRS technology is more widely applied, and numerous studies have made
new advancements with IRS assistance. Reference [11] studied the use of passive beam-
forming and information transmission technology in IRS for multi-input multi-output
(MIMO) systems and proposed a turbo message-passing algorithm to generate near op-
timal, low-complexity solutions. Reference [12] studied a MIMO secure simultaneous
wireless information and power transfer (SWIPT) system assisted by IRS, proposed an
imprecise block coordinate descent (BCD) method, and verified the effectiveness of IRS in
enhancing security. Reference [13] proposes an unmanned aerial vehicle (UAV) CR system
based on IRS, which contributes to rebuilding a dependable chain in UAV-assisted CR
networks. In the past few years, research combining CR and IRS technologies has also
made significant progress. Reference [14] investigates the maximization of the SUs rate
in downlink MISO CR communication with IRS assistance. Considering that half-duplex
communication may not fully exploit radio frequency spectrum resources, Reference [15]
explores the maximization of spectrum efficiency in IRS-assisted full-duplex CR systems,
aiming to improve the behavior of secondary networks while effectively reducing interfer-
ence to PUs. Reference [16] further investigated the rate maximization problem of SUs in
symmetric and asymmetric cross interference links. Reference [17] studied channel-aware
binary decision fusion on a shared flat fading channel with multiple antennas with the
assistance of IRS. While proposing the optimal rule, the (suboptimal) joint fusion rule
and IRS design were derived as an alternative solution to reduce complexity and system
knowledge requirements.

With the advancement of IoT technology, the increasing need for ubiquitous device-to-
device communication, and the widespread adoption of low-power devices [18], in order
to better utilize wireless spectrum resources, SWIPT technology is a good solution for a
large number of low-power devices to simultaneously decode information and transmit
energy [19–22]. Currently, IRS-assisted SWIPT technology is gaining widespread attention.
Reference [23] uses power allocation at the user’s location and introduces artificial noise at
the access point, which further improves user security while collecting energy and decoding
information. Reference [24] used an IRS model with physical properties and researched the
resource allocation algorithm for IRS-assisted SWIPT systems. Reference [25] designed an
active IRS-assisted SWIPT system to address the inherent path loss attenuation problem in
IRS-assisted communication channels, which significantly improved system performance.
Reference [26] studied the problem of simultaneously optimizing the information rate and
harvesting power in IRS-assisted MISO downlink multi-user wireless networks. However,
it did not consider cognitive scenarios, and spectrum resource utilization was still limited.
Moreover, only two models with and without IRS were considered, without considering
the situation with and without energy beams. The system performance still has great room
for improvement. Reference [27] studied a simultaneously transmitting and reflecting
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reconfigurable intelligent surface assisted SWIPT system, but it also did not consider the
situation with and without energy beams.

However, the fairness-aware resource allocation for a large number of low-power
devices in IRS-assisted cognitive scenarios has been less explored in the literature mentioned
above. In addressing this issue, this article studies the IRS-assisted MISO wireless portable
communication system in CR scenarios, which can provide energy for a large number of
low-power devices in the IoT and fully utilize idle spectrum resources. Due to potential
obstacles between the CBS and SUs leading to degraded communication quality, this
article optimizes signal transmission by adjusting the IRS reflection coefficient and phase.
The objective of this article is to maximize the minimum energy received power in the
energy receiver, while satisfying SINR thresholds for information decoders, the maximum
interference at the primary users, and the transmit power constraints of the CBS, to balance
energy reception and information decoding fairness.

The main contributions of this article are as follows:

• This article focuses on the simultaneous transmission of information and energy
storage between numerous single-antenna devices at the receiving end in a cognitive
network. With the assistance of IRS and SWIPT technologies, a system model is
constructed to study the beamforming of cognitive networks assisted by IRS. The
research objective of this article is to achieve an optimal state of the system under
certain physical constraints, in order to achieve a balance between energy reception
and information exchange. While ensuring the minimum SINR threshold requirement
for all information receivers and maximizing the energy power received by the smallest
energy receiver, the energy receiver has the optimal energy transmission performance
while fully utilizing the spectrum resources of the entire communication network.

• This article proposes an iterative algorithm based on BCD to alternately optimize
active and passive beamforming variables. First, fix the passive beamforming vari-
ables, optimize the active beamforming variables, apply the semi-definite relaxation
(SDR) techniques to non-convex objective and constraint functions to relax the rank
one condition constraints, and use Gaussian randomization schemes to ensure the
rank one condition. Then, fix the active beamforming variables and optimize the
passive beamforming variables. Replace the rank one constraint with a relaxed convex
constraint using the sequential rank one constraint relaxation algorithm, and then, use
a convex optimization method to solve the problem.

• The simulation results indicate that the joint iterative optimization algorithm proposed
in this article can quickly converge and obtain high-quality solutions. At the same
time, the system settings in this article can significantly improve system performance
and produce a significant improvement in spectral efficiency. Comparing the four
system models with energy beam and IRS, with energy beam and no IRS, without
energy beam and IRS, and without energy beam and no IRS, the SINR threshold, the
number of transmitting antennas of the AP, the horizontal distance between the energy
receiver and the AP, and the AP transmission power are used as variables. While the
rest remain unchanged, the system model with energy beam and IRS established in
this paper has the highest energy power received by the minimum energy receiver
and the best performance compared to the other three models. This is because IRS
can increase the signal coverage range of the AP, and even energy receivers in poor
channel environments can receive signals reflected from the IRS. On the other hand,
interference signals can also be coherently cancelled through the superposition of
reflection and direct paths, reducing the energy dependence of the information beam
and giving AP more freedom to allocate more energy to the energy beam for energy
transmission. It can be observed that, regardless of whether there is an IRS or not, the
system performance with an energy beam is always better than that without an energy
beam. This is because in systems with energy beams, energy beams can be designed
specifically for the channel of the energy receiver, while in systems without energy
beams, the channel of the energy receiver can only be considered simultaneously
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by sacrificing the optimality of the information beam, which leads to a decrease in
system performance.

The rest of the paper is organized as follows. In Section 2, we show the cognitive MISO
wireless portable communication system model and formulate the problem of maximizing
the received power of the minimum energy receiver in the secondary network. Section 3
uses iterative optimization algorithms to optimize active beamforming variables and pas-
sive beamforming variables, respectively. Simulations are provided for demonstrating the
performance of proposed algorithms in Section 4. Section 5 is used to conclude the paper.

Notations: CM×1 denotes the space of M × 1 complex valued vectors, diag(x) denotes
a diagonal matrix whose diagonal elements correspond to vector x, and XH denote the
conjugate transpose of vector x and matrix X, respectively. The notations Tr(X) and rank(X)
denote the trace and rank of matrix X, respectively. CN

(
0, σ2) represents the distribution

of a circularly symmetric complex Gaussian variable with zero mean and σ2 variance. All
acronyms and full names in the paper are shown in Table 1.

Table 1. Acronyms and full names.

Acronyms Full Names

IoT Internet of Things
MISO Multiple-Input Single-Output
SINR Signal-to-Interference-plus-Noise Ratio
CBS Cognitive Base Station
SDR Semi-Definite Relaxation
CR Cognitive Radio
PUs Primary Users
SUs Secondary Users
IRS Intelligent Reflecting Surface

MIMO Multi-Input Multi-Output
SWIPT Simultaneous Wireless Information and Power Transfer
BCD Block Coordinate Descent
UAV Unmanned Aerial Vehicle
SDP Semi Definite Programming
KKT Karush–Kuhn–Tucker
LOS Line-Of-Sight

2. System Model and Problem Statement
2.1. System Model

Consider the cognitive portable communication system assisted by IRS, as shown in
Figure 1. It contains two parts: the main network and the secondary network assisted by
the IRS. The main network includes multiple information receivers, while the secondary
network includes multiple information receivers, multiple energy receivers, a CBS, and an
IRS. Adopting a cushion-based spectrum-sharing method to ensure that the interference
power received by the PUs is lower than the pre-set threshold, minimizing the impact
of SUs’ access to the network on system communication performance. Specifically, the
CBS equipped with M transmitting antennas, assisted by IRS with N reflection units,
simultaneously sends corresponding signals to the single antenna information receiver of
the main network, the single antenna information receiver of the secondary network, and
the single-antenna energy receiver. Here, the set of transmit antennas is M ≜ {1, . . . , M},
the set of reflecting elements is N ≜ {1, . . . , N}, the set of information receivers for the PUs
is Kipu ≜

{
1, . . . , Kipu

}
, the set of information receivers for the SUs is Kisu ≜ {1, . . . , Kisu},

and the collection of energy receivers is Kesu ≜ {1, . . . , Kesu}. Regarding the channel, let
the channel from the CBS to IRS be expressed by a matrix T ∈ CN×M, the channel from
the CBS to the k ∈ Kipu information receiver of the PUs be represented by vector hd,k,
the channel to the i ∈ Kisu information receiver of the SUs be represented by vector pd,i
the channel for the j ∈ Kesu energy receiver be represented by a vector gd,j, the channel
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from IRS to the k ∈ Kipu information receiver of the PUs be represented by vector hr,k, the
channel to the i ∈ Kisu information receiver of the SUs be represented by vector pr,i and
the channel to the j ∈ Kesu energy receiver be represented by vector gr,j. In order to better
focus on the design of active beamforming and passive beamforming, while also obtaining
the system performance upper bound brought by spectrum sharing, this article assumes
that all channel state information can be constantly obtained at the CBS.
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2.2. Problem Statement

First, this article considers the scenario of CR, and for active beamforming, in addition
to setting up traditional beamforming for information receivers in cognitive networks,
energy beamforming for energy receivers is also specifically added. Since the information
is random, let the information to be sent to the i ∈ Kisu cognitive information receiver be
denoted as variable si ∼ CN(0, 1). Then, the corresponding information beamforming
is represented by vector wi ∈ CM×1. For energy receivers in the cognitive network, they
only need to receive energy without the need for information decoding. Therefore, the
transmitted energy signal can be generated by the CBS using a pseudo-random sequence.
Its beamforming is represented by variable sE ∈ CM×1, with a mean of 0, and its covari-
ance matrix is defined as SE ≜ E

(
sEsH

E
)
≻0. The matrix SE can be a high-dimensional

matrix. Where A≻0 represents that matrix A is positive semidefinite, combining the above
definitions, we can obtain the transmission signal at the CBS as ∑i∈Ki

wisi + sE. Suppose
the maximum transmission power of the CBS is, then the power constraint at the CBS is
E
(
∥∑i∈Ki

wisi + sE∥
)
= ∑i∈Ki

∥wi∥2 + tr(SE) ⩽ P.
Next, consider passive beamforming in CR networks assisted by IRS and define the

reflection parameters of the reflection array units on the IRS. Define the reflection phase
of the nth reflecting units as θn ∈ [0, 2π), where n ∈ N. Define the reflection phase
vector as θ = [θ1, . . . θN ] and the reflection phase matrix for passive beamforming as
Θ ≜ diag

(
ejθ1 , . . . , ejθN

)
, where diag(a1, . . . , aN) is represented as a diagonal matrix with

a1, . . . , aN as its diagonal elements. Here, j =
√
−1 represents the imaginary unit.

In summary, the receivers can respectively receive direct signals from the CBS and
reflected signals from IRS. The received signal at the k ∈ Kipu primary network information
receiver and the i ∈ Kisu secondary network information receiver are as follows:

ykpu =
(

pH
r,kΘT + pH

d,k

) ∑
m∈Kipu

wmsm + sE

+ nkpu (1)
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yisu =
(

hH
r,iΘT + hH

d,i

) ∑
n∈Kisu

wnsn + sE

+ nisu (2)

where nkpu ∼ CN
(

0, σ2
kpu

)
and nksu ∼ CN

(
0, σ2

ksu
)

are additive white Gaussian noise at
the k-th primary network information receiver and the i-th secondary network information
receiver, with noise powers σ2

kpu and σ2
ksu, respectively. For the primary network, the

energy receivers do not consider the form of energy signal they carry; only the received
signal power is considered. Therefore, energy signals can be generated at the CBS using
pseudo-random sequences. It can be assumed that each information receiver has prior
knowledge of the pseudo-random sequence of the energy signal and can perfectly eliminate
the interference from the energy signal. After interference cancellation from the energy
signal, the SINR for the i ∈ Kisu information receiver can be expressed as:

γi({wi}, θ) =

∣∣∣(pH
r,jΘT + pH

d,i

)
wi

∣∣∣2
∑

k ̸=i,k∈Ki

∣∣∣(pH
r,iΘT + pH

d,i

)
wk

∣∣∣2 + σ2
i

(3)

The interference power generated by the secondary network on the i-th information
receiver in the primary network can be expressed as:

Pk({wi}, SE, θ)

= E

∣∣∣∣∣(pH
r,iΘT + pd,i

)(
∑

m∈Kisu

wmsm + sE

)∣∣∣∣∣
2


=
(

pH
r,iΘT + pd,i

)
SE

(
pH

r,iΘT + pd,i

)H
+ ∑

i∈Kisu

∣∣∣(pH
r,iΘT + pd,i

)
wi

∣∣∣2
(4)

For energy receivers, they aim to collect all radio frequency signals to charge the
battery. Therefore, the energy received at the j ∈ Kepu energy receiver in the secondary
network is:

Qj({wi}, SE, θ)

= E

∣∣∣∣∣(gH
r,jΘT + gH

d,j

)(
∑

n∈Kisu

wnsn + sE

)∣∣∣∣∣
2


=
(

gH
r,jΘT + gH

d,j

)
SE

(
gH

r,jΘT + gH
d,j

)H
+ ∑

i∈Kisu

∣∣∣(gH
r,jΘT + gH

d,j

)
wi

∣∣∣2
(5)

From the SINR at information receivers and the received power at energy receivers,
it can be observed that by adjusting the active beamforming at the CBS and the reflection
phase parameters at IRS to form passive beamforming, a balance can be achieved between
the communication and energy reception levels at the information and energy receivers.
Therefore, in the context of CR, considering the constraints on the CBS’s transmission
power, SINR constraints at all information receivers, and the reflection phase constraints on
the reflecting elements at IRS, this article aims to maximize the minimum received power
among all energy receivers in the secondary network. Hence, the problem considered in
this article can be represented as (6)–(11):

max
{wiSE ,θ}

min
j∈Kesu

Qj({wi}, SE, θ) (6)

s.t.γi({wi}, θ) ⩾ Γi, ∀i ∈ Kisu (7)

Pk({wi}, SE, θ) ⩽ Imax, ∀i ∈ Kisu, ∀k ∈ Kipu (8)
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∑
i∈Kisu

∥wi∥2 + tr(SE) ⩽ P (9)

0 ⩽ θn ⩽ 2π, ∀n ∈ N (10)

SE≻0 (11)

Furthermore, Γi, ∀i ∈ Kisu represents the minimum communication SINR threshold for
the i-th information receiver in the secondary network, and Imax represents the interference
power threshold received by PUs.

Observing the above equation, it is evident that the active beamforming variable
{wi}, SE and the passive beamforming reflection phase parameters θ are highly coupled
in both the objective functions, making them unable to obtain the global optimal solution,
so further decomposition is needed. We introduce variable t and reformulate the above
equation in a conic form, represented as (12)–(18):

max
{wi}SE ,θ,t

t (12)

s.t.Qj({wi}, SE, θ) ⩾ t, ∀j ∈ Kepu (13)

γi({wi, θ}) ⩾ Γi, ∀i ∈ Kipu (14)

Pk({wi}, SE, θ) ⩽ Imax, ∀i ∈ Kisu, ∀k ∈ Kipu (15)

∑
i∈Kisu

∥wi∥2 + tr(SE) ⩽ P (16)

0 ⩽ θn ⩽ 2π, ∀n ∈ N (17)

SE≻0 (18)

Due to the coupling of variables, this article will employ an iterative approach to
optimize and solve for different variables. Specifically, we will first fix the passive beam-
forming reflection phase variable θ and solve for the active beamforming variables {wi}, SE
in the secondary network. Once the optimal solution for {wi}, SE is obtained and remains
unchanged, we will then optimize the passive beamforming variables. This iterative
optimization process will continue until the system converges.

3. Beamforming Design
3.1. Active Beamforming Design for the System

With the passive beamforming fixed as θ, which becomes a constant in the local context,
this article focuses solely on solving for the active beamforming variables {wi}, SE within
the cognitive network. The combined channel information for the direct and reflected
paths at the information and energy receivers in the secondary network is denoted as
pi = THΘH pr,i + pd,i, ∀i ∈ Kipu, gj = THΘH gr,j + gd,j, ∀j ∈ Kjsu. After channel aggrega-
tion, the optimization problem for active beamforming can be represented as (19)–(24):

max
{wi},SE ,t

t (19)

s.t. ∑
i∈Kisu

∣∣∣wH
i gj

∣∣∣2 + gH
j SEgj ⩾ t, ∀j ∈ Kesu (20)

∑
i∈Kisu

∣∣∣wH
i pk

∣∣∣2 + pH
k SE pk ⩽ Imax, ∀k ∈ Kipu (21)

∣∣wH
i hi
∣∣2

Γi
− ∑

n ̸=i,n∈Kisu

∣∣∣wH
n hi

∣∣∣2 − σ2 ⩾ 0, ∀i ∈ Kisu (22)
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∑
i∈Kipu

∥wi∥2 + tr(SE) ⩽ P (23)

SE≻0 (24)

Because of the existence of non-convex quadratic constraints in Problems (20) and (22),
optimization Problem (19)–(24) is a non-convex quadratic programming problem that
cannot be directly solved.

We define a positive semi-definite matrix Wi = wiwH
i , ∀i ∈ Kisu for beamforming,

with a rank of 1, denoted as rank(Wi) ⩽ 1, ∀i ∈ Kisu. Consequently, we can derive the
equivalent form of the above optimization problem as (25)–(32):

max
{Wi},SE ,t

t (25)

s.t. ∑
i∈Kisu

tr
(

gjgH
j Wi

)
+ tr

(
gjgH

j SE

)
⩾ t, ∀j ∈ Kesu (26)

∑
i∈Kisu

tr
(

pk pH
k Wi

)
+ tr

(
pk pH

k SE

)
⩽ Imax, ∀k ∈ Kipu (27)

tr
(
hihH

i Wi
)

Γi
− ∑

n ̸=i,n∈Kisu

tr
(

hihH
i Wn

)
− σi

2 ⩾ 0, ∀i ∈ Kisu (28)

∑
i∈Kipu

∥wi∥2 + tr(SE) ⩽ P (29)

SE≻0 (30)

Wi≻0, ∀i ∈ Kisu (31)

rank(Wi) ⩽ 1, ∀i ∈ Kisu (32)

However, due to the rank constraint (32), optimization Problem (25)–(32) remains
non-convex and cannot be directly solved. Therefore, this article employs the SDR method
to address this problem, resulting in the following semidefinite relaxation (Appendix A)
form with matrices {Wi} and SE as variables:

max
{Wi},SE ,t

t (33)

s.t. ∑
i∈Kisu

tr
(

gjgH
j Wi

)
+ tr

(
gjgH

j SE

)
⩾ t, ∀j ∈ Kesu (34)

∑
i∈Kisu

tr
(

pk pH
k Wi

)
+ tr

(
pk pH

k SE

)
⩽ Imax, ∀k ∈ Kipu (35)

tr
(
hihH

i Wi
)

Γi
− ∑

n ̸=i,n∈Kisu

tr
(

hihH
i Wn

)
− σi

2 ⩾ 0, ∀i ∈ Kisu (36)

∑
i∈Kipu

∥wi∥2 + tr(SE) ⩽ P (37)

SE≻0 (38)

Wi≻0, ∀i ∈ Kisu (39)

This turns the problem in this article into a semi-definite programming (SDP) problem
that can be solved applying mature convex optimization tools.
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3.2. Passive Beamforming Reflection Phase Design for the System

After solving the above problem, we have obtained the optimal solution for active
beamforming, where the active beamforming vectors

{
w∗

i
}

, ∀i ∈ Kisu and
{

v∗k
}rE

k=1 are
fixed. We then optimize the passive beamforming reflection phase parameters θ. For ease
of notation, none of the active beamforming variables are denoted with an asterisk (*).
Therefore, the optimization problem for passive beamforming can be represented as:

max
Θ,t

t (40)

s.t.
(

gH
r,jΘT + gH

d,j

)
SE

(
gH

r,jΘT + gH
d,j

)H
+ ∑

i∈Kisu

∣∣∣(gH
r,jΘT + gH

d,j

)
wi

∣∣∣2 ⩾ t, ∀j ∈ Kesu (41)

∣∣∣(hH
r,iΘT + hH

d,i

)
wi

∣∣∣2
Γi

− ∑
k ̸=i,k∈Kisu

∣∣∣(hH
r,iΘT + hH

d,i

)
wk

∣∣∣2 − σ2
i ⩾ 0, i ∈ Kisu (42)

0 ⩽ θn ⩽ 2π, ∀n ∈ N (43)

∑
i∈Kisu

∣∣∣wH
i pk

∣∣∣2 + pH
k SE pk ⩽ Imax, ∀k ∈ Kipu (44)

Due to the non-convexity introduced by the fact that the desired passive beamforming
vector θ is embedded within the passive beamforming diagonal matrix Θ, the optimiza-
tion problem cannot be directly solved. Therefore, we perform algebraic equivalence
transformations on constraints (41) and (42). First, we combine the following matrix forms:

Ck,i =

[
ck,icH

k,i ck,idH
k,i

cH
k,idk,i 0

]
, ∀k ∈ Kisu, ∀i ∈ Kisu (45)

Ej,i =

[
ej,ieH

j,i ej,i f H
j,i

eH
j,i f j,i 0

]
, ∀j ∈ Kesu, ∀i ∈ Kisu (46)

Oj,k =

[
oj,koH

j,k oj,kqH
j,k

oH
j,kqj,k 0

]
, ∀j ∈ Kesu, ∀k ∈ {1, . . . , rE} (47)

Mr,i =

[
mr,imH

r,i mr,inH
r,i

mH
r,inr,i 0

]
, ∀r ∈ Kesu, ∀i ∈ Kipu (48)

Xr,k =

[
xr,kxH

r,k xr,kyH
r,k

xH
r,kyr,k 0

]
, ∀r ∈ Kesu, ∀i ∈ Kipu (49)

where ck,i = diag
(

hH
r,k

)
Twi, dk,i = hH

d,kwi, ej,i = diag
(

gH
r,j

)
Twi, f j,i = gH

d,jwi, oj,k =

diag
(

gH
r,j

)
Tvk, qj,k = gH

d,jvk, mr,i = diag
(

pH
r,i

)
Twi, nr,i = pH

d,iwi, xr,k = diag
(

pH
r,i

)
Tvk,

yr,k = pH
d,ivk. Additionally, we rearrange the variables related to the passive beamforming

reflection phase parameters into a vector form, ϕ =
[
e−jθ1 , . . . , e−jθN , l

]
, where l2 = 1. The

rearranged passive beamforming matrix is denoted as Φ = ϕHϕ, with a rank of 1 denoted
as rank(Φ) = 1. After algebraic rearrangement, optimization Problem (40)–(44) can be
expressed as:

max
Φ,t

t (50)

s.t. ∑
i∈Kisu

tr
(
Ej,iΦ

)
+

rE

∑
k=1

tr
(

Oj,kΦ
)
+ ∑

i∈Kisu

∣∣ f j,i
∣∣2 + rE

∑
k=1

|qj,k|2 ⩾ t, ∀j ∈ Kesu (51)
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tr(Ck,iΦ) + |dk,i|2 ⩾ Γi ∑
k ̸=i,k∈Kisu

tr(Ci,kΦ) + Γi

{
∑

k ̸=i,k∈Kisu

|di,k|2 + σ2
i

}
, ∀i ∈ Kisu (52)

φn,n = 1, ∀n ∈ {1, . . . , N + 1} (53)

Φ≻0 (54)

rank(Φ) = 1 (55)

where φn,n represents the n-th diagonal element of matrix Φ. However, because the non-
convex rank constraint requirement (55), optimization Problem (50)–(55) is still not convex.
We employ the sequential rank-one relaxation algorithm to transform Problem (50)–(55)
into an optimization problem:

max
Φ,t

t (56)

s.t. ∑
i∈Kisu

tr
(
Ej,iΦ

)
+

rE

∑
k=1

tr
(

Oj,kΦ
)
+ ∑

i∈Kisu

∣∣ f j,i
∣∣2 + rE

∑
k=1

|qj,k|2 ⩾ t, ∀j ∈ Kesu (57)

tr(Ck,iΦ) + |dk,i|2 ⩾ Γi ∑
k ̸=i,k∈Kisu

tr(Ci,kΦ) + Γi

{
∑

k ̸=i,k∈Kisu

|di,k|2 + σ2
i

}
, ∀i ∈ Kisu (58)

φn,n = 1, ∀n ∈ {1, . . . , N + 1} (59)

umax

(
Φ(i)

)H
Φumax

(
Φ(i)

)
⩾ α(i)tr{Φ} (60)

Φ≻0 (61)

where Φ(i) is the optimal solution for the i-th iteration, and α(i), umax

(
Φ(i)

)
represents the

eigenvector corresponding to the maximum eigenvalue of Φ(i).

3.3. Algorithm Design

Due to the coupling between active beamforming variables and passive beamforming
variables, it is not possible to directly solve Problem (6)–(11). It requires fixing one of them
and then iteratively optimizing the other. Therefore, the approach to solving Problem
(6)–(11) involves iteratively optimizing Problems (33)–(39) and (50)–(55). The iterative
algorithm for solving Problem (50)–(55) is shown in Algorithm 1, and the overall iterative
algorithm is shown in Algorithm 2.

Algorithm 1: Iterative Algorithm for Solving Problem (50)–(55)

Initialize convergence threshold ξ1, ξ2 and a feasible Φ0.
For Φ0, solve Problem (50)–(55) using w0.
Set i = 1, initialize step size δ(i):

1: Repeat;
2 : Use w(i), Φ(i) to solve Problem (50)–(55);
3: If Problem (50)–(55) is resolved, then
4 : The optimal solution is denoted as Φ(i+1);
5 : δ(i+1) = δ(i);
6 : Otherwise δ(i+1) = δ(i)/2, Φ(i+1) = Φ(i);
7: Finally, if

8: w(i+1) = min
(

1,
λmax(Φ(i+1))

tr(Φi+1)
+ δ(i+1)

)
,

9 : i = i + 1;

10 : Until
∣∣∣1 − w(i−1)

∣∣∣ ⩽ ξ1 and the objective value are less than ξ2.
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Algorithm 2: Overall Iterative Algorithm

1: Initialize passive beamforming variables θ.
2: Repeat:

Solve Problem (33)–(39) to obtain
{

W∗
i
}

, S∗
E;

Perform EVD decomposition on
{

W∗
i
}

, S∗
E to obtain the vector sets

{
w∗

i
}

, ∀i ∈ Kisu
and

{
v∗k
}rE

k=1;
Formulate optimization Problem (50)–(55) and solve Problem (56)–(61) to obtain Φ∗;
Apply Algorithm 1;
If the absolute difference between the objective function value of this iteration and the
previous iteration is less than the threshold β, stop.

3 : Take the obtained {Wi}, SE and θ at the stopping point as the solution to optimization
Problem (6)–(11).

4. Analysis of Simulation Results

We employ MATLAB software (https://www.mathworks.com/products/matlab.html,
accessed on 31 December 2023) to validate the behavior of the iterative algorithm for the
MISO wireless energy-harvesting communication system with IRS using specific data
inputs. First, concerning the channel model, the location of IRS is often manually deter-
mined and can be constructed within a relatively close line-of-sight (LOS) range from the
transmitting base station. We assume that the channel from the CBS to IRS follows a Rician
channel model, which can be represented as a superposition of a direct LOS component
and a Rayleigh fading component:

T =

√
ρr

1 + ρr
TLOS +

√
1

1 + ρr
TNLOS (62)

where ρr is the Rician factor, matrix TLOS represents the LOS path channel component, and
matrix TNLOS represents the Rayleigh channel component. We assume the Rician factor of
the system to be ρr = 10 dB. As for the channels from the IRS to the receiver and from the
cognitive base station to the receiver, since the receiver can move with the user, the impact
of obstacles on system performance often needs to be considered to some extent depending
on the user’s location. In real-world wireless communication channel environments, there
may not always be a strong LOS path, and the characteristics, such as signal strength
and phase, are subject to fluctuations due to physical factors, often following a Rayleigh
distribution. Therefore, we assume the above channels to be Rayleigh channels.

For the channel fading model, we set it as:

PL =
Pr

Pt
= κ

(
d
d0

)−α

(63)

where Pr represents the received power at the receiver, Pt represents the transmit power
at the transmitter, PL represents the path loss, coefficient κ = −30 dB is the channel
fading value at the reference distance d0 = 1 m, d is the actual distance between the two
communication devices, and α is the channel fading exponent. Due to the relatively short
distance between the IRS and the CBS in the system model, they often have a better LOS
path. The purpose of establishing the IRS is to assist the CBS. Therefore, the channel
fading factor from the CBS to the primary user’s information receiver can be denoted
as αAP−PU = 3.8, and the distance to the right of the IRS is dPU = 50 m. The channel
fading factor from the CBS to the secondary user’s information receiver is denoted as
αAP−SU = 3.5; the distance is dSU = 50 m. The channel fading factor from the CBS to IRS is
denoted as αAP−IRS = 2; the distance is dIRS = 20 m. For a secondary-user energy receiver,
in order to minimize energy loss, it is advantageous to have the secondary-user energy
receiver receive a high-power radio frequency signal transmitted from the CBS. Therefore,
in the system, the distance between the CBS and the secondary-user energy receiver is

https://www.mathworks.com/products/matlab.html
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relatively short, and we set the distance as dEH = 3 m. Additionally, we assume that the
number of reconfigurable reflecting units on IRS is N = 40.

The simulation settings in all the simulation analyses below are shown in the Table 2
below:

Table 2. Model simulation settings.

Simulation Settings Value

Noise Power −80 dBm
The Number of PUs Information Receivers 2

The Number of Information Receivers 3
The Number of Energy Receivers 3

The Interference Power Threshold for Pus −110 dBm
The Minimum SINR Threshold Range 10 dB

First, observe Figure 2, which represents the convergence speed of the iterative algo-
rithm studied in this article for solving Problem (6)–(11). Since Problem (6)–(11) cannot be
directly solved, we use an iterative algorithm to calculate variables with different beam
types separately. Our iterative algorithm ensures the monotonicity of optimizing the maxi-
mum minimum energy reception power. In channel realization 1, approximately in the first
three iterations, the minimum energy received power has reached over 90% of the overall
power. By the fourth iteration, the energy received power tends to stabilize and the image
approaches a straight line. In channel realization 2, approximately in the first five iterations,
the minimum energy received power has reached over 80% of the overall output. In the
sixth iteration, the minimum energy received power has reached over 90%. By the seventh
iteration, the energy received power tends to stabilize, the image approaches a straight line,
and the simulation time required for system convergence is about 52 s. It is evident that our
iterative algorithm is efficient and can quickly iterate high-quality beamforming solutions.
This provides a degree of assurance for optimizing and adjusting related variables in our
subsequent models.
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Figure 2. Illustrates the convergence progress of the iterative algorithm for optimizing Problem (6)–(11).

Figure 3 studies how the minimum energy received power in the energy receiver in the
secondary network varies with the SINR threshold at the information receiver. V in Figure 3
represents the energy beam. At this point, the CBS transmit power is P = 30 dBm, the
number of CBS transmission antennas is M = 8, the number of PU information receivers
is Kipu = 2, the numbers of information receivers and energy receivers in the cognitive
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network are Kisu = 3 and Kesu = 3, respectively, the interference power threshold for Pus is
Imax = −110 dBm, and the number of reflector elements is N = 40. The minimum SINR
threshold range for the information receiver spans from 10 dB to 25 dB. In Figure 3, the
model group with IRS is significantly better than the model group without an IRS regarding
receiving power. This is because the presence of an IRS allows the signals from the CBS to
be reflected, increasing the signal utilization efficiency and, consequently, the minimum
received power at the receiver. When comparing models with and without energy beams,
it can be observed that the models with energy beams generally exhibit better performance
compared to those without energy beams. As the SINR threshold increases, the minimum
received power at the energy receivers for all model groups starts to decrease.
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Figure 3. The variation of the minimum energy received power with the SINR threshold of the
information receiver in the secondary network [27].

Figure 4 shows the influence of transmitting antennas at the secondary base station
side on fair energy acquisition among energy users in all cognitive networks. V in Figure 4
represents the energy beam. At this point, the CBS transmit power is P = 30 dBm, the
number of PUs information receivers is Kipu = 2, the numbers of information receivers
and energy receivers in the cognitive network are Kisu = 3 and Kesu = 3, respectively, the
interference power threshold for Pus is Imax = −110 dBm, and the number of reflector
elements is N = 40. Observing from the graph, it can be noted that the system with an
IRS and energy beams performs the best. Systems with an IRS consistently outperform
those without an IRS. As the number of transmit antennas at the transmitter increases, the
minimum received power at the energy receiver gradually increases. This is because the
larger the number of transmitting antennas, the more signal propagation paths there are,
and IRS contributes to signal propagation through refraction. Thus, the IRS plays a certain
role in mitigating signal fading, enhancing system performance, and allowing the energy
receiver to receive higher power. Under the same conditions in other aspects, systems with
energy beams always outperform those without energy beams. This is because energy
beams effectively focus and enhance the signal, enabling the energy receiver to capture
more energy without being affected by the surrounding environment’s interference and
losses. Consequently, the energy receiver can receive higher power.
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Figure 4. The variation of minimum energy received power with the number of transmitting antennas
in CBS [27].

Figure 5 illustrates the results of a simulation that examines the minimum energy
reception power as the horizontal distance between the energy receiver and the CBS changes
in a cognitive network. V in the figure represents the energy beam. The distance between
the CBS and IRS is dAP−IRS = 20 m, the CBS transmit power is P = 30 dBm, the number
of PU information receivers is Kipu = 2, the numbers of information receivers and energy
receivers in the cognitive network are Kisu = 3 and Kesu = 3, respectively, the interference
power threshold for PUs is Imax = −110 dBm, and the number of reflector units is N = 40.
The horizontal distance between all energy receivers in the secondary network and the CBS
or IRS is always equal. From Figure 5, it is evident that the model with the IRS consistently
exhibits a higher minimum received power compared to the model without the IRS. When
all energy receivers are within 15 m of the CBS, the minimum received power decreases as
the distance between the energy receivers and the CBS increases. However, at a distance
of 15 m from the CBS, there is a divergence in results. In the presence of the IRS, the
minimum received power tends to increase with the horizontal distance. This is because, as
the distance between the energy receivers and the CBS increases, the distance between the
energy receivers and the IRS decreases. Consequently, the energy receivers receive signals
that are reflected by the IRS, compensating for the fading caused by being far from the CBS.
In contrast, in the model without IRS assistance, as the distance between energy receivers
and CBS increases, the minimum received power gradually decreases.

Figure 6 shows an almost linear relationship between the minimum energy received
power in the energy receiver in the secondary network and the transmitted power at the
CBS in dBm units. V in the figure represents the energy beam. At this point, the number of
CBS transmission antennas is M = 8, the number of PU information receivers is Kipu = 2,
the numbers of information receivers and energy receivers in cognitive network are Kisu = 3
and Kesu = 3, respectively, interference power threshold for the PUs is Imax = −110 dBm,
and the number of reflector units is N = 40. Figure 6 shows that models with IRSs perform
better than models without them. The energy receiver receives more power, indicating that
the presence of an IRS increases the coverage range of signals transmitted by the CBS. Even
in relatively poor channel conditions, the energy receiver can still receive signals reflected
from the IRS, enhancing the efficiency of signal transmission from the CBS and optimizing
system operation. On the other hand, in terms of noise reduction in the system, coherent
cancellation is achieved by superimposing interfering signals through both reflection and
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direct paths, reducing the additional power consumption provided at the CBS to ensure
signal quality. From the graph, it can be observed that, regardless of the presence of an IRS,
systems with energy beams perform better than systems without energy beams under the
same transmit power conditions at the CBS. As for an energy beam’s energy signals, they
can be designed specifically for the energy receiver to receive energy beams generated by
the CBS through a pseudo-random mechanism, indirectly avoiding further interference
with information beam reception at the receiver end. For systems without energy beams,
the system performance decreases as only the optimality of the information beam can be
considered in conjunction with the energy receiver’s channel. This emphasizes the crucial
role of energy beams. In summary, with the presence of energy beams and an IRS, system
performance is greatly improved.
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Figure 5. The variation of minimum energy received power with the horizontal distance between the
receiver and the CBS [27].
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Figure 6. The variation of minimum received power of energy receivers with CBS transmission power
in secondary networks [27].
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Figure 7 demonstrates the variation of the minimum received power of the energy
receiver in the secondary network with respect to the IRS reflection array element N. V in
the figure represents the energy beam. At this point, the CBS transmit power is P = 30 dBm,
the number of CBS transmission antennas is M = 8, the number of PU information receivers
is Kipu = 2, the numbers of information receivers and energy receivers in the cognitive
network are Kisu = 3 and Kesu = 3, respectively, and the interference power threshold for
PUs is Imax = −110 dBm. It can be seen from Figure 7 that within a certain range, as the
number of IRS reflex arrays increases, the minimum energy receiving power of the IRS
model is gradually becoming larger. This is because, in the model of the deployment IRS,
when the number of reflex arrangements of the IRS is increased, the IRS has more freedom
to design more IRS-related reflex link channels to increase beamforming gain effect. On
the other hand, the larger the number of reflex arrays of an IRS in the IRS model, the
ways and power that can reflect the transmitting signal of the CBS will also become more,
resulting in power gain. However, as the number of IRS units increases, the growth trend
of the minimum energy receiving power has gradually become smaller, which indicates
that raising the number of reflective units in an IRS within a certain range is beneficial for
improving system performance. When this range is exceeded, the number of reflective
units in the IRS is no longer the main factor affecting the minimum energy receiving power.
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5. Conclusions

This article proposes a fair energy allocation algorithm for IRS-assisted cognitive MISO
wireless-powered networks. When the SINR constraint is met and the interference power
of the secondary network to the main network is less than the set threshold, the problem of
maximizing the received power of the minimum energy receiver in the secondary network
is established. The SDR algorithm is used to decouple and solve the complex and highly
coupled objective function. The simulation results show that, under the constraint of
interference power to the main user, compared with four system models, with energy beam
and IRS, with energy beam and no IRS, without energy beam and IRS, and without energy
beam and no IRS, the system model established in this paper with an energy beam and IRS
has the highest energy power received by the minimum energy receiver, and this system
considers the fairness of balancing energy reception and information decoding. While
ensuring communication quality, it can also solve the energy supply problem of a large
number of low-power devices in the IoT. However, this paper did not consider the presence
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of channel errors. In the future, we will consider how to design a robust cognitive resource
allocation algorithm.
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Appendix A

Theorem A1. The semidefinite relaxation problem of optimization Problem (33)–(39) is tight,
meaning that rank(Wi) ⩽ 1, ∀i ∈ Kisu always holds.

Proof of Theorem A1. First, the Lagrangian function for optimization Problem (33)–(39)
can be determined as:

L
(
{Wi}, SE, t,

{
aj
}

, {bi}, {ck}, d, E, {Fi}
)

= t +
KE
∑

j=1
aj

[
∑

i∈Kisu

tr
(

gjgH
j Wi

)
+ tr

(
gjgH

j SE

)
− t

]

+
KE
∑

i=1
bi

[
Imax − ∑

i∈Kisu

tr
(

pk pH
k Wi

)
− tr

(
pk pH

k SE
)]

+
KE
∑

i=1
ck

[
tr(hihH

i Wi)
Γi

− ∑
n ̸=i,n∈Kisu

tr
(
hihH

i Wn
)
− σi

2

]

+d

P − ∑
i∈Kipu

∥wi∥2 − tr(SE)

+ tr(ESE) +
Kisu
∑

i=1
EiWi

(A1)

where
{

aj
}

, {bi}, {ck}, d, E, {Fi} are the Lagrange multiplier scalars and Lagrange multiplier
matrices corresponding to (25)–(30). Then, we can obtain the Lagrangian dual function for
optimization Problem (33)–(39) as:

g
({

aj
}

, {bi}, {ck}, d, E, {Fi}
)

= sup
{Wi},SE ,t

L
(
{Wi}, SE, t,

{
aj
}

, {bi}, {ck}, d, E, {Fi}
) (A2)

Therefore, we can formulate the dual problem for optimization Problem (45) as:

ming
({

aj
}

, {bi}, {ck}, d, E, {Fi}
)

s.t.aj > 0, bi > 0, ck > 0, ∀j ∈ Kesu, ∀i ∈ Kisu, ∀k ∈ Kipu

d ⩾ 0, E ⩾ 0, Fi≻0, ∀i ∈ Kisu

(A3)

Clearly, since optimization Problem (33)–(39) is an SDP problem, it has a compact
optimal solution space with a zero duality gap to its dual Problem (A3). Due to the
strict establishment of strong duality and the existence of strictly differentiable objective
functions and all corresponding constraints in optimization Problem (33)–(39), the optimal
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solutions of both Problems (33)–(39) and (A3) must meet the Karush–Kuhn–Tucker (KKT)
requirement. First, assuming the optimal solutions for optimization Problem (33)–(39) and
dual Problem (A3) are

{
W∗

i
}

, S∗
E, t∗ and

{
a∗j
}

,
{

b∗i
}

, {c∗}, D∗,
{

E∗
i
}

, the KKT conditions
can be formulated as:

K1 : a∗j ⩾ 0, b∗i ⩾ 0, c∗ ⩾ 0, D∗≻0, E∗
i ≻0, ∀j ∈ Kesu, ∀i ∈ Kisu (A4)

K2 : D∗S∗
E = 0, E∗

i W∗
i = 0, ∀i ∈ Kisu (A5)

K3 : ∇W∗
i
L
(
{Wi}, SE, t,

{
aj
}

, {bi}, c, D, {Ei}
)

=
KE
∑

j=1
a∗j gjgH

j +
b∗i hih∗i

Γi
− c∗ IM + E∗

i

(A6)

where IM represents an N-dimensional matrix, which is a full-rank matrix. For ease of

representation, we define a matrix Fi =
KE
∑

j=1
a∗j gjgH

j +
b∗i hih∗i

Γi
and assume its maximum

eigenvalue is denoted as λ
(Fi)
max. Then, according to the KKT condition’s K3 condition, the

Lagrange multiplier matrix b can be expressed as:

E∗
i = c∗ IM − Fi (A7)

From the complementary slackness condition K2, it is known that the space spanned by{
W∗

i
}

is the null space of
{

E∗
i
}

, meaning their rank relationship is rank(E∗
I )+ rank(W∗

I ) = M,
∀i ∈ Kisu. We can discuss three scenarios:

1. If λ
(Fi)
max ⩽ c∗, then

{
E∗

i
}

is a full-rank matrix, which makes rank
(
W∗

i
)
= 0, and this

would conflict with SINR constraints when there are non-zero transmission power
constraints at CBS, so this scenario is not valid;

2. If λ
(Fi)
max ⩾ c∗, then

{
E∗

i
}

would become a non-semidefinite matrix, which conflicts
with condition K1, so this scenario is not valid;

3. Therefore, only λ
(Fi)
max = c∗ is guaranteed to hold, which implies rank

(
E∗

i
)
= M − 1

will hold, and thus, rank
(
W∗

i
)
⩽ 1, ∀i ∈ Kisu is guaranteed to hold.

□

References
1. Mumtaz, S.; Jornet, J.M.; Aulin, J.; Gerstacker, W.H.; Dong, X.; Ai, B. Terahertz communication for vehicular networks. IEEE Trans.

Veh. Technol. 2017, 66, 5617–5625.
2. Navarro-Camba, E.A.; Felici-Castell, S.; Segura-García, J.; García-Pineda, M.; Pérez-Solano, J.J. Feasibility of a Stochastic

Collaborative Beamforming for Long Range Communications in Wireless Sensor Networks. Electronics 2018, 7, 417. [CrossRef]
3. Pérez-Solano, J.J.; Felici-Castell, S.; Soriano-Asensi, A.; Segura-Garcia, J. Time synchronization enhancements in wireless networks

with ultra wide band communications. Comput. Commun. 2022, 186, 80–89. [CrossRef]
4. Huang, C.; Zappone, A.; Alexandropoulos, G.C.; Debbah, M.; Yuen, C. Reconfigurable intelligent surfaces for energy efficiency in

wireless communication. IEEE Trans. Wirel. Commun. 2019, 18, 4157–4170. [CrossRef]
5. Zhang, W.; Wang, C.-X.; Ge, X.; Chen, Y. Enhanced 5G cognitive radio networks based on spectrum sharing and spectrum

aggregation. IEEE Trans. Commun. 2018, 66, 6304–6316. [CrossRef]
6. Wang, Q.; Zhou, F. Fair resource allocation in an MEC-enabled ultra-dense IoT network with NOMA. In Proceedings of the 2019

IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019.
7. Zhu, Z.; Chu, Z.; Wang, N.; Wang, Z.; Lee, I. Energy harvesting fairness in AN-aided secure MU-MIMO SWIPT systems with

cooperative jammer. In Proceedings of the 2018 IEEE international conference on communications (ICC), Kansas City, MO, USA,
20–24 May 2018.

8. Wu, Y.; Zhou, F.; Wu, Q.; Huang, Y.; Hu, R.Q. Resource allocation for IRS-assisted sensing-enhanced wideband CR networks. In
Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada,
14–23 June 2021.

9. Wei, Z.; Yang, D.; Sang, L. Dynamic system level frequency spectrum allocation scheme based on cognitive radio technology.
China Commun. 2014, 11, 84–91. [CrossRef]

https://doi.org/10.3390/electronics7120417
https://doi.org/10.1016/j.comcom.2022.01.012
https://doi.org/10.1109/TWC.2019.2922609
https://doi.org/10.1109/TCOMM.2018.2863385
https://doi.org/10.1109/CC.2014.6895387


Information 2024, 15, 49 19 of 19

10. Le, V.; Feng, Z.; Bourse, D.; Zhang, P. A Cell Based Dynamic Spectrum Management Scheme with Interference Mitigation for
Cognitive Networks. Wirel. Pers. Commun. 2008, 49, 1594–1598.

11. Yan, W.; Yuan, X.; He, Z.Q.; Kuai, X. Passive Beamforming and Information Transfer Design for Reconfigurable Intelligent
Surfaces Aided Multiuser MIMO Systems. IEEE J. Sel. Areas Commun. 2020, 38, 1793–1808. [CrossRef]

12. Hehao, N.; Ni, L. Intelligent Reflect Surface Aided Secure Transmission in MIMO Channel With SWIPT. IEEE Access 2020, 8,
192132–192140. [CrossRef]

13. Zhou, L.; Xu, W.; Wang, C.; Chen, H.H. RIS-Enabled UAV Cognitive Radio Networks: Trajectory Design and Resource Allocation.
Information 2023, 14, 75. [CrossRef]

14. Yuan, J.; Liang, Y.-C.; Joung, J.; Feng, G.; Larsson, E.G. Intelligent reflecting surface-assisted cognitive radio system. IEEE Trans.
Commun. 2021, 69, 675–687. [CrossRef]

15. Xu, D.; Yu, X.; Sun, Y.; Ng, D.W.K.; Schober, R. Resource allocation for IRS-assisted full-duplex cognitive radio systems. IEEE
Trans. Commun. 2020, 68, 7376–7394. [CrossRef]

16. Guan, X.; Wu, Q.; Zhang, R. Joint power control and passive beamforming in IRS-assisted spectrum sharing. IEEE Commun. Lett.
2020, 24, 1553–1557. [CrossRef]

17. Mudkey, N.; Ciuonzo, D.; Zappone, A.; Rossi, P.S. Wireless Inference Gets Smarter: RIS-assisted Channel-Aware MIMO Decision
Fusion. In Proceedings of the 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM), Trondheim,
Norway, 20–23 June 2022.

18. Ma, Q.; Cui, T.J. Information metamaterials: Bridging the physical world and digital world. PhotoniX 2020, 1, 1. [CrossRef]
19. Kim, J.; Clerckx, B.; Mitcheson, P.D. Signal and system design for wireless power transfer: Prototype, experiment and validation.

IEEE Trans. Wirel. Commun. 2020, 19, 7453–7469. [CrossRef]
20. Clerckx, B.; Bayguzina, E. Waveform design for wireless power transfer. IEEE Trans. Signal Process. 2016, 64, 6313–6328. [CrossRef]
21. Clerckx, B.; Bayguzina, E. Low-complexity adaptive multisine waveform design for wireless power transfer. IEEE Antennas Wirel.

Propag. Lett. 2017, 16, 2207–2210. [CrossRef]
22. Jameel, F.; Faisal; Haider, M.A.A.; Butt, A.A. A technical review of simultaneous wireless information and power transfer (SWIPT).

In Proceedings of the 2017 International Symposium on Recent Advances in Electrical Engineering (RAEE), Islamabad, Pakistan,
24–26 October 2017.

23. Li, B.; Si, F.; Han, D.; Wu, W. IRS-aided SWIPT systems with power splitting and artificial noise. China Commun. 2022, 19, 108–120.
[CrossRef]

24. Xu, D.; Yu, X.; Jamali, V.; Ng, D.W.K.; Schober, R. Resource allocation for large IRS-assisted SWIPT systems with non-linear energy
harvesting model. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing,
China, 29 March–1 April 2021.

25. Gao, Y.; Wu, Q.; Zhang, G.; Chen, W.; Ng, D.W.K.; Di Renzo, M. Beamforming Optimization for Active Intelligent Reflecting
Surface-Aided SWIPT. IEEE Trans. Wirel. Commun. 2023, 22, 362–378. [CrossRef]

26. Mohamed, A.; Zappone, A.; Renzo, M.D. Bi-Objective Optimization of Information Rate and Harvested Power in RIS-Aided
SWIPT Systems. IEEE Wirel. Commun. Lett. 2022, 11, 2195–2199. [CrossRef]

27. Zhu, G.; Mu, X.; Guo, L.; Huang, A.; Xu, S. Robust Resource Allocation for STAR-RIS Assisted SWIPT Systems. IEEE Trans. Wirel.
Commun. 2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JSAC.2020.3000811
https://doi.org/10.1109/ACCESS.2020.3032759
https://doi.org/10.3390/info14020075
https://doi.org/10.1109/TCOMM.2020.3033006
https://doi.org/10.1109/TCOMM.2020.3020838
https://doi.org/10.1109/LCOMM.2020.2979709
https://doi.org/10.1186/s43074-020-00006-w
https://doi.org/10.1109/TWC.2020.3011606
https://doi.org/10.1109/TSP.2016.2601284
https://doi.org/10.1109/LAWP.2017.2706944
https://doi.org/10.23919/JCC.2022.04.009
https://doi.org/10.1109/TWC.2022.3193845
https://doi.org/10.1109/LWC.2022.3196906
https://doi.org/10.1109/TWC.2023.3327502

	Introduction 
	System Model and Problem Statement 
	System Model 
	Problem Statement 

	Beamforming Design 
	Active Beamforming Design for the System 
	Passive Beamforming Reflection Phase Design for the System 
	Algorithm Design 

	Analysis of Simulation Results 
	Conclusions 
	Appendix A
	References

