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Abstract: Smartphones have become ubiquitous, allowing people to perform various tasks anytime
and anywhere. As technology continues to advance, smartphones can now sense and connect to
networks, providing context-awareness for different applications. Many individuals store sensitive
data on their devices like financial credentials and personal information due to the convenience and
accessibility. However, losing control of this data poses risks if the phone gets lost or stolen. While
passwords, PINs, and pattern locks are common security methods, they can still be compromised
through exploits like smudging residue from touching the screen. This research explored leveraging
smartphone sensors to authenticate users based on behavioral patterns when operating the device.
The proposed technique uses a deep learning model called DeepResNeXt, a type of deep residual
network, to accurately identify smartphone owners through sensor data efficiently. Publicly available
smartphone datasets were used to train the suggested model and other state-of-the-art networks
to conduct user recognition. Multiple experiments validated the effectiveness of this framework,
surpassing previous benchmark models in this area with a top F1-score of 98.96%.

Keywords: ubiquitous computing; activity pattern; deep learning; wearable sensors; smartphone

1. Introduction

As smartphones become more predominant, they often store sensitive personal infor-
mation such as medical records, bank details, and login credentials for various services. This
has led to growing worries among users about the privacy and security of their data [1,2].
Safeguarding information privacy is crucial since people tend to keep identifiable informa-
tion on their phones, including medical, financial, and identification information that could
be misused if accessed by others [3]. To better protect data confidentiality, biometric user
authentication is an essential security measure to implement [4,5].

Recently, methods that recognize human actions and behaviors have started being
used for identifying individual users biometrically. These human activity recognition
(HAR) approaches are able to capture unique motion patterns and movement signatures
that act like a fingerprint for each person [6]. Biometrics is a scientific study that aims
to identify individuals based on their characteristics to prevent unauthorized access to
devices [7]. Currently, biometric identification relies primarily on a person’s physiological
properties. However, there are growing concerns regarding privacy and HAR related to
the use of physiological characteristics. This has led to exploring alternative methods that
focus on behavioral biometrics [8].

Several advanced analysis techniques have been explored to address prior challenges
in this field, with a prominent one being identifying people through their unique behav-
ioral patterns when interacting with wearable technology [9]. Algorithms leveraging deep
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learning (DL) have succeeded in user authentication research. DL can automatically detect
and categorize attributes very accurately, influencing user verification studies [10,11]. Deep
neural networks can intrinsically learn distinctive traits from raw input data, offering strong
potential for assessing diverse data types and extending to novel contexts. Numerous DL
models have emerged to leverage the multiple feature levels available across hierarchies
while overcoming limitations of conventional machine learning (ML) approaches reliant
on manual feature selection. Models like recurrent neural networks (RNN), convolutional
neural networks (CNN), and long short-term memory (LSTM) utilize layered architectures
to process both low- and high-level, linear, and nonlinear attributes at different levels,
optimizing learned feature representations. DL networks are frequently applied in recog-
nition problems and activity identification research for feature extraction. A downside
to DL, particularly with complex system designs, is its high computational overhead for
processing substantial datasets. Still, this cost is often justified given the accuracy of the DL
model’s classification output is critical for identification techniques.

This paper investigates verifying users’ identities by analyzing various human ac-
tivities (static, simple, and complex) captured through smartphone sensors. The key
contributions examined were:

• Creating a new smartphone-based user identification framework called DeepUserIden,
which utilizes a DL model to fully automate all steps of identifying individuals based
on assessing their activities;

• Putting forward a novel deep residual network named DeepResNeXt that models
temporal relationships within attribute representations extracted using convolutional
operations;

• Performing experiments demonstrating the superior accuracy and F1-score of the
proposed DL approach over existing baseline DL methods using publicly available
benchmark datasets.

The layout of this paper is structured as follows: Section 2 provides a review of existing
research on ML and DL techniques for user authentication and mobile sensor data analysis.
Section 3 outlines the proposed DeepUserIden framework for biometrically identifying
users via mobile sensing. Section 4 describes details of the experimental methodology,
while Section 5 discusses and evaluates the obtained findings. Finally, Section 6 concludes
by summarizing the study’s conclusions, limitations encountered, and challenges still
remaining for future explorations in this area.

2. Related Works
2.1. Sensor-Based User Identification

Wearable tracking devices have emerged as a potentially useful tool for continuous
and implicit confirmation of a user’s identity, providing a viable alternative to traditional
techniques like personal identification numbers and passwords. Recent research has ex-
plored various approaches that employ these devices to recognize individuals by capturing
unique bodily features and patterns of behavior.

Recent research [12] demonstrates the potential for accurately identifying smartphone
users by analyzing patterns of motion sensor data from actions like walking. By extracting
features from accelerometer, gyroscope, and magnetometer readings in time and frequency
domains, their ML model achieves impressive F1-scores, exceeding 98.96% for user authen-
tication. Further study [13] develops smartphone-based user recognition through similar
sensor data signals and algorithms, attaining over 98% accuracy. Other innovative work [14]
explores identifying individuals from detailed wrist movements recorded via smartwatch,
using DL on gesture patterns. Their proposed 1D-ResNet-SE neural network architecture
highlights the uniqueness of fine-grained hand motions for implicit authentication.

Additional approaches leverage sensor data of day-to-day human activities for bio-
metric verification without interrupts, for example using deep CNN and LSTM models
on accelerometer and gyroscope signals to achieve over 91% accuracy. Ahmad et al. [15]
showcase a system focused specifically on gait recognition through walking activity logged
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by a mobile device’s sensors. By selecting key stride features and comparing to user profiles
with KNN and bagging classifiers, they demonstrate the capability to distinguish autho-
rized mobile users with 99% or higher precision from small samples, despite variability in
patterns.

Across these studies, there are encouraging results for the feasibility of implicit and
continuous authentication of smartphone owners from typical user motion, minimizing
intrusive security procedures that obstruct natural interactions. The sensor data, machine
learning computations, and accuracy metrics signify promise for this area warranting
further real-world advances.

2.2. DL Approaches in User Identification

The previously mentioned research has shown promising results, however traditional
ML techniques used have difficulty extracting salient features from HAR data. To address
this, some studies have explored DL methods like CNNs and RNNa for user verification
based on activities [16]. CNNs help obtain spatial patterns from raw sensor inputs ideal for
HAR. Still, as smartphone sensor data capturing human actions is temporal in nature, time
series models like LSTMs and gated recurrent units (GRUs) have been studied to account
for temporal dependencies. For instance, Zhang [17] put forward a user authentication
framework with an LSTM network recognizing various gait activities and a verification
component using Euclidean distance measures.

3. The DeepUserIden Framework

The study proposed framework called DeepUserIden to identify users through smart-
phone sensors and DL. In this research, the goal of identifying different users is framed
as a multi-class classification challenge. There are N distinct classes defined upfront, each
representing one of the users included in the study. During model development, exam-
ples from each user’s data are labeled with their corresponding class. Then, classification
algorithms are trained to predict the accurate user class for new unlabeled data samples
based on patterns learned from those examples. The proposed framework is illustrated in
Figure 1 and consists of four steps: data collection, pre-processing, data generation, and
training the model and detecting activity. The complete details of each stage are explained
below.
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Figure 1. The biometric user identification framework—DeepUserIden—explored in this research
study.

The DeepUserIden system developed in this research collects raw accelerometer and
gyroscope data from smartphones worn in various on-body positions. It pre-processes
the sensor streams through noise filtering, normalization of values across segments, and
splitting the recordings into fixed-duration extracts. This pre-processed data is divided
into mutually exclusive training, validation, and test subsets. Using 5-fold stratified
cross-validation, DeepUserIden tests and compares DL architectures, including CNNs,
LSTMs, bidirectional LSTMs, GRUs, and DeepResNeXt (the proposed model). It evaluates
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performance metrics such as F1-score and classification accuracy to determine the optimal
identification model, which is then fine-tuned based on insights from the validation data.
The overarching aim is accurate recognition of device owners from only smartphone
sensors capturing their distinctive usage patterns and biomechanics. DeepUserIden seeks
to reliably identify individuals through motion signatures measured unobtrusively during
natural device interactions by iterating on data pre-processing, model evaluation, and
refinement.

3.1. Data Collection

To examine user identification, this study utilized smartphone sensor data from a
dataset called the “pervasive dataset” [18]. This dataset contained data for seven differ-
ent physical activities: walking, sitting, standing, jogging, biking, ascending stairs, and
descending stairs. These common activities represent basic movements in daily life and are
frequently used in related research. The data was collected from 10 male participants be-
tween 25 and 30 years old who performed each activity for 3–4 min. The experiments were
conducted indoors, except biking along a department corridor for walking and jogging. A
5-floor building with stairs was used for ascending and descending stairs. Each participant
wore five smartphones in the following locations: both right and left pants pockets, a belt
clip on the right leg, upper right arm, and right wrist.

Figure 2 shows data samples from accelerometers, gyroscopes, and magnetometers
obtained while an individual was walking. The sensors were placed in various locations
on the body. It is evident that there are likely repetitive visible patterns. The arm position
would most likely display the greatest acceleration magnitudes since the arms swing rapidly
when walking. The steps should be clearly detectable. Measures of rotation and magnetic
field would also demonstrate increased frequency changes. Near the waist, vertical axis
accelerations may be smaller, yet regular cyclic patterns from stepping are still present.
Swaying of the hips could make side-to-side accelerations more visible here. Rotations are
less frequent compared to the arms. Placements in pants pockets (right/left) would pick up
some vertical accelerations from the legs, but these are decreased because of the damping
effect of clothing. While the cyclic pattern of steps remains, amplitudes and peak intensities
are reduced. Lateral sway is present but also smaller. On the wrists, substantial dynamic
motions are possible depending on arm swinging while walking. There is high variability.
Arm swings have a distinct repetitive form. In summary, sensor location impacts observed
acceleration magnitudes and the visibility of specific body motions on different axes during
walking.
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Figure 2. Some sensor data of walking activities from the pervasive dataset.
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3.2. Pre-Processing Process

During the data collection, the participants were moving actively, which resulted in
the raw sensor data being contaminated with measurement noise and other unexpected
noises. This kind of noise can distort the information conveyed by the signals. Thus, it
was essential to minimize noise interference in the signals so valuable information could
be obtained [19]. Popular signal filtering techniques to remove noise include calculating
the mean, low-pass filters, and Wavelet filtering. This research applied a third-order
Butterworth filter to eliminate noise across all three dimensions of the accelerometer,
gyroscope, and magnetometer inputs, using a 20 Hz cut-off frequency. This specific cut-off
threshold was selected since it captures over 99.9% of human body motions, making it
well-suited for monitoring movement patterns [20].

After removing unwanted noise from the sensor data, it was necessary to make further
modifications. Each data point was normalized using a Min-Max normalization approach
which rescales the values to be within the range of [0,1]. This normalization helps balance
the impact of different dimensions during learning. The normalized data from all sensors
were divided into equally sized sections using fixed-size sliding windows during the data
segmentation stage of the process. This study used a sliding window with a duration of
10 s to construct sensory data streams with a length as suggested by previous research [21].
The 10-s window was chosen for user identification because it is long enough to capture
essential features of a person’s activities, such as multiple repetitions of basic movements
like walking and climbing stairs. It allows for faster biometric identification. Moreover,
previous studies on activity recognition have shown that a window size of 10 s outperforms
other window sizes [22].

3.3. The Proposed DeepResNeXt Architecture

This study proposed a multi-branch aggregation model named DeepResNeXt, which
drew inspiration from ResNeXt [23]. The critical innovation in DeepResNeXt is adapt-
ing the established ResNeXt computer vision architecture to process smartphone sensor
time series effectively for user identification. Specific modifications include converting
convolutional blocks to 1D, adding causal convolutions to prevent data leakage between
time steps, and leveraging temporal depth to learn distinctive patterns in sensor feeds
reflecting user biomechanics incrementally. In contrast, the original ResNeXt structure is
restricted to 2D images and does not account for temporal dynamics critical in sequential
sensor recognition problems. Rather than spatial images, DeepResNeXt tailors its compo-
nents and end-to-end flow to extract identifying features efficiently from multi-channel
time-series inputs. To emphasize the significance of these alterations from ResNeXt, the
DeepResNeXt formulation in our work explicitly details the 1D specialized blocks and
architecture, enabling superior user identification accuracy compared to the traditional
model. Highlighting the critical adaptations to sensor data and biometrics objectives is
vital to convey the differentiating factors underpinning DeepResNeXt’s effectiveness gains.

Unlike InceptionNet [22], which concatenates feature maps of different sizes, Deep-
ResNeXt utilizes a convolutional block followed by coordinated multi-kernel blocks to
enhance feature maps uniformly across the network. This unique architecture avoids
merging differently-sized feature maps. Instead, the convolutional block first extracts
features. Then, the joint multi-kernel blocks transform those features holistically without
complex connections between layers of varying dimensions, as in InceptionNet. A detailed
description of the DeepResNeXt model can be found in Figure 3.

The convolutional component of the proposed model consists of a convolutional layer
(Conv), a batch normalization layer (BN), a rectified linear unit layer (ReLU), and a max-
pooling layer (MP). The Conv allows trainable convolutional kernels to learn different
features and generate corresponding feature maps. The kernels are one-dimensional,
similar to the input spectrum. The BN layer stabilizes and speeds up the training phase,
while the ReLU layer enhances the model’s expressive capability. The MP layer compresses
the feature map while retaining important elements. The multi-kernel (MK) block is another
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part of the model. Each MK module contains three different-sized kernels, namely 1 × 3,
1 × 5, and 1 × 7. Before applying the kernels, 1 × 1 convolutions are utilized to decrease
overall complexity and the number of learnable parameters in the model. The resulting
feature maps are then averaged using Global Average Pooling (GAP) and transformed
into a 1D vector via a flat layer. A softmax function converts the fully connected layer’s
output into probability scores representing each class. Model training leverages the Adam
optimization algorithm, while the cross-entropy loss, commonly used for classification
tasks, calculates error to guide learning.
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Figure 3. The architecture of the DeepResNeXt model.

4. Experiments and Results

This section presents the results of experiments we conducted to determine effective
DL models for user identification based on sensor data analysis. Utilizing the pervasive
dataset, our study identified individuals by examining smartphone sensor information. To
evaluate DL model performance, F1-score was employed as assessment metrics.

4.1. Environmental Configuration

The Google Colab Pro+ platform was used in this study. To accelerate DL model
training, a Tesla V100-SXM2 graphics processing unit with 16 GB memory was leveraged,
yielding excellent performance. Utilizing the Tensorflow backend (version 3.9.1) and CUDA
(version 8.0.6) graphics cards, the DeepResNeXt model and other base DL architectures
were integrated into the Python library. Several Python packages were used including
Numpy and Pandas for processing the sensor data, Matplotlib and Seaborn for visualizing
and presenting data analysis and model evaluation outcomes, Scikit-learn for data sampling
and generation, and TensorFlow, Keras and other languages for constructing and training
DL networks.

4.2. Experiment Setting

In this study, sensor data from the pervasive dataset was utilized to conduct three
experiments. These experiments are as follows:

• Experiment I: DL models were trained using accelerometer and gyroscope data from
the wrist location;

• Experiment II: accelerometer and gyroscope data from the arm location were used to
train DL models;

• Experiment III: DL models were trained using accelerometer and gyroscope data from
the belt location;

• Experiment IV: accelerometer and gyroscope data from the left pocket location were
utilized for training DL models;

• Experiment V: DL models were trained using accelerometer and gyroscope data from
the right pocket location.

The performance of several CNNs and RNN models, including the proposed DeepRes-
NeXt model, and their baseline counterparts were evaluated using a 5-fold cross-validation
method in 3 separate trials.
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DL models can be tuned by setting key hyperparameters, with the DeepResNeXt
architecture using: (i) number of epochs, (ii) batch size, (iii) learning rate α, (iv) optimization
algorithm, and (v) loss function. To configure these, the number of training epochs was
set to 200 and batch size to 128 samples. An early stopping callback halted training if
validation loss failed to improve after 20 consecutive epochs. The initial learning rate α was
0.001, lowered to 75% of the previous value if validation accuracy stalled over 6 straight
epochs. The Adam optimizer minimized error with parameters β1 = 0.9, β2 = 0.999, and
ϵ = 1 × 10−8. The categorical cross-entropy function was used to calculate the error in the
optimizer since it has been found to outperform other techniques, such as classification
error and mean square error [24].

4.3. Experimental Results

The results of the first experiment, which focused on training and testing models
solely with accelerometer and gyroscope data from the wrist location, are presented in
Table 1. The DeepResNeXt model that we proposed outperformed all other models in this
experiment. It achieved the highest F1-score, significantly improving it over the baseline
DL models.

Table 1. Experimental studied results of DL models using accelerometer and gyroscope sensors data
from the wrist location.

Sensor Model

Identification Performance

Biking Jogging Sitting Standing Walking Walking Walking
Upstairs Downstairs

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Wrist CNN 90.14 90.01 93.29 93.30 98.45 98.46 95.97 95.95 91.83 91.83 69.15 68.83 46.06 45.91
LSTM 93.84 93.87 96.99 96.98 99.30 99.30 95.28 95.21 97.32 97.32 90.56 90.49 65.77 65.32
BiLSTM 94.38 94.33 96.85 96.81 99.30 99.30 94.86 94.86 97.46 97.46 84.08 83.78 60.42 59.66
GRU 97.40 97.38 97.67 97.66 99.30 99.30 97.50 97.47 98.59 98.58 93.94 93.85 80.85 80.81
BiGRU 96.30 96.28 98.08 98.08 99.01 99.03 97.64 97.63 98.45 98.44 90.14 89.98 76.06 75.75
DeepResNeXt 97.12 97.66 98.08 98.09 99.72 99.72 97.67 97.92 99.02 99.01 96.76 96.77 87.61 88.43

The outcomes in Table 2 demonstrate performance using sensor data from the arm
to train and evaluate DL models. The findings show that the proposed DeepResNeXt
architecture achieved the highest F1-score at 98.86%, outperforming the other baseline deep
networks by a sizable margin.

Table 2. Experimental studied results of DL models using accelerometer and gyroscope sensors data
from the arm location.

Sensor Model

Identification Performance

Biking Jogging Sitting Standing Walking Walking Walking
Upstairs Downstairs

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Arm CNN 82.33 82.20 91.51 91.43 98.31 98.30 96.39 96.38 86.06 85.99 74.23 74.10 58.59 58.20
LSTM 93.01 92.94 96.30 96.26 97.04 97.02 98.06 98.00 94.51 94.51 88.59 88.48 82.68 82.57
BiLSTM 92.47 92.37 96.85 96.82 97.75 97.69 96.81 96.81 94.51 94.55 84.79 84.78 77.32 77.21
GRU 96.99 96.94 98.36 98.09 98.59 98.58 98.06 97.91 97.89 97.88 95.63 95.59 88.03 87.84
BiGRU 96.71 96.64 98.08 98.08 97.75 97.70 97.36 97.39 96.62 96.66 94.79 94.78 85.07 85.08
DeepResNeXt 97.12 98.19 98.81 98.86 98.59 98.58 98.92 98.04 98.03 98.037 97.93 97.02 89.15 90.59

Experiment III results are presented in Table 3, which shows that DL models trained
using accelerometer and gyroscope data from the belt location are effective. The DeepRes-
NeXt model we proposed achieved the highest scores in this experiment. With an F1-score
of 99.86%, the suggested model significantly outperformed other baseline DL models.
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Table 3. Experimental studied results of DL models using accelerometer and gyroscope sensors data
from the belt location.

Sensor Model

Identification Performance

Biking Jogging Sitting Standing Walking Walking Walking
Upstairs Downstairs

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Belt CNN 95.48 95.41 92.88 92.85 99.72 99.72 98.89 98.87 98.87 98.87 93.80 93.80 88.17 88.09
LSTM 98.22 98.23 96.99 97.00 100.00 100.00 99.72 99.71 98.45 98.41 96.34 96.29 90.14 90.03
BiLSTM 97.81 97.76 97.12 97.14 100.00 100.00 99.31 99.30 99.01 99.00 94.51 94.45 87.75 87.58
GRU 98.36 98.35 98.49 98.49 100.00 100.00 99.86 99.72 99.01 99.00 97.75 97.73 95.49 95.46
BiGRU 98.77 98.75 97.81 97.80 100.00 100.00 99.72 99.72 99.15 99.13 95.35 95.29 90.85 90.78
DeepResNeXt 98.90 98.91 98.22 98.64 100.00 100.00 99.17 99.86 99.72 99.72 98.87 99.01 97.32 97.30

Experiment IV aimed to use accelerometer and gyroscope data from the left pocket
location for training and testing DL models, as summarized in Table 4. The results show
that our suggested DeepResNeXt model outperforms other baseline DL models with an
outstanding F1-score of 99.71%.

Table 4. Experimental studied results of DL models using accelerometer and gyroscope sensors data
from the left pocket location.

Sensor Model

Identification Performance

Biking Jogging Sitting Standing Walking Walking Walking
Upstairs Downstairs

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Left CNN 86.71 86.62 91.64 91.55 100.00 100.00 98.06 98.06 89.01 88.90 65.77 65.85 65.77 65.46
pocket LSTM 94.38 94.41 94.79 94.78 100.00 100.00 98.89 98.88 97.46 97.43 92.11 92.09 92.39 92.22

BiLSTM 94.11 94.10 98.08 98.08 100.00 100.00 98.75 98.745 98.45 98.43 86.90 86.76 88.17 88.10
GRU 97.26 97.25 98.77 98.78 100.00 100.00 99.86 99.86 99.72 99.71 97.32 97.29 94.51 94.44
BiGRU 96.16 96.15 98.49 98.49 100.00 100.00 98.75 98.75 99.44 99.43 94.37 94.35 92.68 92.67
DeepResNeXt 97.40 97.40 99.18 99.18 100.00 100.00 99.17 99.30 99.72 99.72 99.30 99.29 95.63 95.60

Experiment V leveraged accelerometer and gyroscope data from the right pants pocket
to train and evaluate DL models, with results shown in Table 5. The findings demonstrate
that our proposed DeepResNeXt architecture performed remarkably well, achieving an
exceptional F1-score of 99.29% that surpassed the other deep networks tested.

Table 5. Experimental studied results of DL models using accelerometer and gyroscope sensors data
from the right pocket location.

Sensor Model

Identification Performance

Biking Jogging Sitting Standing Walking Walking Walking
Upstairs Downstairs

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Right CNN 91.23 91.13 90.41 90.38 100.00 100.00 98.19 98.20 80.85 80.79 68.59 68.64 56.06 55.68
pocket LSTM 96.44 96.41 98.08 98.12 100.00 100.00 99.31 99.18 97.18 97.18 91.27 91.20 89.01 88.87

BiLSTM 96.58 96.57 98.90 98.89 100.00 100.00 99.17 99.15 97.61 97.59 89.44 89.32 78.87 78.61
GRU 97.81 97.80 98.22 98.23 100.00 100.00 99.58 99.58 99.30 98.04 96.62 96.53 92.54 92.43
BiGRU 97.81 97.23 98.90 98.10 100.00 100.00 99.17 99.16 98.73 98.74 95.92 95.90 89.30 89.32
DeepResNeXt 97.83 97.81 98.93 98.91 100.00 100.00 99.27 99.29 99.32 99.30 97.89 99.01 94.23 94.18

4.4. Additional Experiments

Additional experiments in this study showcase the proposed DeepResNeXt system’s
ability to identify individuals using sensor data gathered from many smartphone owners.
The research utilized the publicly available UCI-HAR dataset, captured using waist-worn
Samsung Galaxy SII devices [20]. Thirty volunteers performed six everyday activities,
including walking, ascending/descending stairs, sitting, standing, and lying while carrying
smartphones. The dataset compiled 10,299 total accelerometer and gyroscope measure-
ments at 50 Hz over 2.56-s sliding windows across all participants. This comprehensive
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collection of sensor streams during varied motions enables analysis of biometric identifica-
tion efficacy across a representative smartphone user population sample.

We conducted experiments with the public UCI-HAR dataset to evaluate the proposed
DeepResNeXt system’s effectiveness in identifying users across three diverse scenarios:

• The first experiment scenario utilized accelerometer sensor data exclusively. This sin-
gle motion modality input trained and tested the model using dynamic measurements
of bodily movements and actions;

• The second scenario relied exclusively on gyroscope data to capture rotational motions.
Translational accelerations from the accelerometer sensor were omitted in this case.
Only orientation changes contributed inputs for analysis rather than bodily dynamics;

• The third scenario integrated both accelerometer and gyroscope streams as inputs.
This multimodal fusion provided multivariate time-series data capturing rotational
orientations, bodily movements, and dynamics. The richer input enabled a more
comprehensive analysis of the system’s capability to extract distinctive traits from
diverse signal types during unrestrained motions.

This study compares identification accuracy across single and multiple sensor input
scenarios. The goal is to evaluate how fusing different motion modalities impacts the
proposed system’s ability to recognize individuals based on patterns within their daily
activity characteristics. The analysis assesses explicitly if integrating orientation and
dynamic measurements enhances user distinguishability compared to relying on either
accelerometer or gyroscope data alone.

The results summarized in Table 6 enable the following assessments regarding the
proposed system’s efficacy across various sensor data scenarios:

1. Using only accelerometer data (Scenario 1), the model achieves an admirable 82–95%
accuracy for dynamic activities like walking, climbing stairs, and lying down. How-
ever, the accuracy dips comparatively lower to 75–78% for seated and standing tasks
that involve greater motion inertia and less overall change. More limited distinguish-
ing traits likely manifest for static poses lacking rich accelerometer differentiators;

2. Without gyroscope inputs (Scenario 2), identification accuracy fluctuates dramatically
across activity types. Dynamic motions like walking have significantly higher 94%
recognition, given plentiful distinguishing motion cues. However, static poses lacking
rotations fare far poorer at 23% accuracy for sitting tasks. Likely, the orientation
changes measurable by a gyroscope better differentiates stationary positions that are
otherwise hard to characterize uniquely;

3. Fusing accelerometer and gyroscope data (Scenario 3) significantly boosts accuracy
to 95–98% across most activities versus individual sensor performance. The comple-
mentary orientation and motion measurements provide richer input to characterize
user traits better. Likely, the additional modalities capture distinguishing features that
are difficult to identify from single sensor streams in isolation uniquely. Multimodal
integration enhances recognition efficacy overall;

4. The performance differences across sensor and activity types highlight each modal-
ity’s strengths. Gyroscopes better capture rotational motions while accelerometers
excel at overall body dynamics. Combining these complementary orientations and
translations creates a more comprehensive movement signature. The enriched char-
acterization of user biomechanics and behaviors during daily tasks enables more
reliable identification from sensor readings. Fusing distinct signal captures subtle
distinguishing traits that individual streams miss in isolation.

The analysis verifies that the proposed system can effectively leverage smartphone
sensor data to identify individuals. Fusing accelerometer and gyroscope feeds boosts
accuracy by capturing diverse complementary facets of distinctive user motion patterns
during daily activities. The multifaceted biomechanical characterization enables more
reliable recognition compared to individual data streams.
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Table 6. Experimental studied results of the DeepResNeXt model using different sensor data from
the UCI-HAR dataset.

Sensor Type

Identification Performance

Walking Walking Walking Sitting Standing LayingUpstairs Downstairs

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Accelerometer 94.83 94.55 91.84 91.49 87.41 86.82 77.99 76.53 74.87 73.38 82.87 82.22
Gyroscope 94.02 93.82 84.00 83.49 70.34 69.65 23.41 20.17 19.94 18.04 26.75 23.26
Accelerometer+Gyroscope 98.43 98.43 95.60 95.50 95.67 95.40 87.38 86.25 77.02 75.39 81.89 80.64

5. Discussion
5.1. Effects of Smartphone Sensor Placement

In order to better understand how sensor placement affects the performance of identifi-
cation models, we analyzed the results from Tables 1–5 and calculated the average F1-scores
for the five sensor placements (wrist, arm, belt, left pocket, and right pocket). The findings,
shown in Figure 4, suggest that belt placement is the most effective for smartphone-based
user identification.
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Figure 4. Comparison of the model performance trained and tested at different placements of
smartphone for user identification.

5.2. Effects of Different Activity Types

We examined how different types of sensor inputs affect user identification efficiency
across various activities using the experimental data. We used the pervasive dataset to
evaluate the impact of activity categories since it contained two different types of activities:
static and dynamic. The results of F1-scores presented in Tables 1–5 demonstrate that
the proposed DeepResNeXt model consistently achieved higher average F1-scores when
trained with mobile sensing data of dynamic activities for all sensor placements. This is
illustrated in Figure 5.

We looked at how different types of activities impacted our model’s ability to recognize
them using the UCI-HAR dataset. Unlike the other dataset, this one only had accelerometer
and gyroscope data, not magnetometer data. After reviewing the data in Table 6, we saw
that the model’s capacity to identify users varied depending on the activity. Figure 6 shows
these comparison results. Sitting down generated the lowest F1-score, around 60%. Sitting
likely produces minimal motion signals. The F1-scores for standing and lying down were
roughly 65–70% higher. The similar stationary poses during these activities may have
caused some confusion. Dynamic activities like walking, climbing stairs up and down, had
much higher F1-scores in the 80–95% range. The motion patterns captured during these
activities improved the reliability of identifying the user.
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Figure 5. Comparison results of different activity types.

Figure 6. Comparison results of different activity types using accelerometer and gyroscope data from
the UCI-HAR dataset.

The data in Figure 6 shows that biometric identification works better for dynamic
activities with repetitive motions compared to static poses. This contrasts with the findings
depicted in Figure 5. That figure relates to stationary activities and uses a comprehensive
dataset with accelerometer, gyroscope, and magnetometer data. Later in Section 5.3, we
take a closer look at how different sensor types impact the results.

5.3. Effects of Sensor Types

We conducted more experiments to analyze the effects of using different sensor types
on identifying users. Multiple combinations of sensor data were leveraged to train and test
the DeepResNeXt model. We started by examining the impact of various sensor categories
using a comprehensive dataset with an accelerometer, gyroscope, and magnetometer
included. The results from analyzing how the different individual and combined sensors
influenced the outcomes were summarized in Table 7.
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Table 7. Experimental results of the DeepResNeXt using various sensor combinations (e.g., accelerom-
eter, gyroscope, magnetometer) on belt-position data from the pervasive dataset.

Sensor Type

Identification Performance

Biking Jogging Sitting Standing Walking Walking Walking
Upstairs Downstairs

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Accelerometer 99.31 99.31 99.03 99.02 96.11 96.10 95.69 95.51 99.58 99.58 98.61 98.59 96.29 96.23
Gyroscope 93.61 93.60 100.00 100.00 68.06 66.81 49.86 47.27 98.61 98.62 97.50 97.51 93.86 93.78
Magnetometer 95.83 95.80 87.08 86.78 100.00 100.00 97.64 97.58 89.86 89.59 85.14 84.96 81.14 80.70
Accelerometer+Gyroscope 99.03 99.03 99.17 99.17 95.97 95.98 96.11 96.02 99.58 99.59 98.47 98.49 96.00 95.95
Accelerometer+Magnetometer 99.31 99.31 98.19 98.19 100.00 100.00 99.86 99.86 99.17 99.16 98.47 98.39 97.00 96.95
Gyroscope+Magnetometer 96.94 96.91 91.11 91.15 99.86 99.86 96.11 95.95 93.06 93.04 88.33 88.21 83.00 82.00
Accelerometer+Gyroscope+Magnetometer 99.50 99.51 98.22 98.64 100.00 100.00 99.17 99.86 99.72 99.72 98.87 99.01 97.32 97.30

For most activities, accelerometer data alone provided over 95% accurate identification.
This signals that large-scale body motions are already highly user-specific. Gyroscope data
gave great precision for dynamic actions like walking and biking but significantly declined
for non-moving activities such as resting. Orientation changes are more informative during
movement versus stationary poses. Unlike motions needing significant body movement,
magnetometer data accuracy for standing and sitting neared 100%. It better captured the
user in a fixed pose. The accuracy combining accelerometer and gyroscope data was compa-
rable to accelerometer-only, so adding more orientation information improved a little when
macro motion data already existed. Adding a magnetometer to the accelerometer notably
increased walking and standing accuracy over using the accelerometer alone. Magnetome-
ters provided extra pose-linked information. Over the broadest variety of activities, fusing
all three sensor types achieved maximum total accuracy. Each modality offers distinct
identification details about users’ characteristic motion patterns and biomechanics.

We performed additional experiments with the UCI-HAR dataset to analyze further
how different sensor categories impacted the results. This dataset incorporated accelerome-
ter and gyroscope data. We summarized the findings of testing different combinations of
those sensor inputs in Table 8.

Table 8. Experimental results of the DeepResNeXt using various sensor combinations (e.g., accelerom-
eter and gyroscope) on waist-position data from the UCI-HAR dataset.

Sensor Type

Identification Performance

Walking Walking Walking Sitting Standing LayingUpstairs Downstairs

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Accelerometer 94.83 94.55 91.84 91.49 87.41 86.82 77.99 76.53 74.87 73.38 82.87 82.22
Gyroscope 94.02 93.82 84.00 83.49 70.34 69.65 23.41 20.17 19.94 18.04 26.75 23.26
Accelerometer+Gyroscope 98.43 98.43 95.60 95.50 95.67 95.40 87.38 86.25 77.02 75.39 81.89 80.64

The data in Table 8 shows that even using an accelerometer provided 91–95% accuracy
for walking activities. When strolling, gyroscope data on its own also delivered a decent
performance. This indicates that unique user signatures exist in the overall body motions
and rotational patterns during these actions. Gyroscope accuracy for sitting, standing, and
lying was considerably lower at under 27%. Without dynamic movements, meaningful
orientation changes cannot be captured. Combining accelerometer and gyroscope data
remarkably improved accuracy over individual sensors for all activities, reaching 95–98%.
Blending the data allowed the extraction of complementary distinguishing characteristics
of the users.

Figures 7 and 8 compare the results for stationary activities like sitting, standing,
and lying between Table 7 (using magnetometers) and Table 8 (with no magnetometer
data). When we supplemented the accelerometer and gyroscope data with magnetometer
readings (Table 7), the accuracy for sitting and standing increased substantially by 96–100%.
This highlights how magnetometers, which measure directional shifts in magnetic fields
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created by a user’s presence, provide informative pose-linked details that other sensor
types miss.

Figure 7. Comparison results of the DeepResNeXt using various sensor combinations (accelerometer,
gyroscope, and magnetometer) on belt-position data from the pervasive dataset.
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Figure 8. Comparison results of the DeepResNeXt using various sensor combinations (only ac-
celerometer, and gyroscope) on belt-position data from the pervasive dataset.

5.4. Activity-Free User Identification

Performing specific activities is not necessary for verifying a user’s identity with
activity-free user identification, an approach to biometric user authentication [13]. This
method does not mandate or presume that users must carry out particular motions or tasks
so it can recognize them. For example, individuals do not need to execute certain gestures
or movements deliberately. Thus, people can go about their routines and interactions with
mobile devices without altering their conduct or limiting their actions.

In this study, we analyzed the performance of the proposed DeepResNeXt system
for recognizing users without requiring specific activities, using sensor data from a com-
prehensive dataset. This dataset contained measurements from belt-worn sensors across
various motion categories. Our comparison shows the proposed technique’s effectiveness
for activity-free identification across different activity types, as illustrated in the results of
Figure 9.

The results in Figure 9 demonstrate over 90% accuracy in identifying users based
solely on accelerometer data without presuming any particular activities are performed.
This confirms that overall body motions provide a robust biometric signal for recognition.
Activity-free identification performs worst with only a gyroscope, yielding under 60%
accuracy since rotational data lacks adequacy without dynamic actions. A magnetometer
alone exhibits suboptimal effectiveness at approximately 65% accuracy for arbitrary mo-
tions lacking specific posture conditioning that would cause predictive magnetic distortion.
However, by integrating accelerometer, gyroscope, and magnetometer streams, activity-free
identification accuracy improves to 98%—on par with recognition rates for conditioned
activities. Combining these three sensors enhances the distinctiveness of biometric sig-
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natures extractable from regular motions. Activity conditioning marginally boosts most
single-sensor cases by 2–3% above the activity-free scenario, minus the gyroscope, where
performance differences are negligible.
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Figure 9. Comparison results of the DeepResNeXt using different types of activities and activity-free
identification using belt-position data from the pervasive dataset.

We further analyzed the proposed DeepResNeXt system’s effectiveness for activity-free
user identification using the UCI-HAR dataset, which contains labeled sensor measure-
ments across various motion types. Our analysis mainly focused on evaluating performance
without presuming any specific activities. Figure 10 illustrates the comparative outcomes
of this activity-agnostic evaluation scenario based on this standardized dataset.

Figure 10. Comparison results of the DeepResNeXt using different types of activities and activity-free
identification using waist-position data from the UCI-HAR dataset.

As depicted in Figure 10, accelerometer-only accuracy for activity-free identification
reaches just under 60%. While some unique characteristics persist without assuming
specific motions, overall performance diminishes considerably. A gyroscope alone does
even worse at a dismal 20% accuracy for the unrestricted scenario, as rotational signals lack
adequacy without dynamic actions. However, combining accelerometer and gyroscope
data significantly enhances activity-agnostic recognition to 80% accuracy. Likely, each
sensor captures complementary distinguishing traits that are usable together. However,
this multimodal fusion still lags conditioned activity identification by 15–20%. Presuming
particular motions increases the recognition utility of sensor streams individually.

6. Conclusions and Future Work

Smartphones have become integral to daily life. Holding sensitive photographs,
communications, and banking details, securing access is crucial to prevent unauthorized
use. Meeting this need, we introduced DeepUserIden, a framework identifying users
via mobile sensor analytics. Our novel DeepResNeXt model identifies distinct activity
signatures without requiring user input. Experimenting on the public pervasive benchmark,
we demonstrated DeepUserIden’s effectiveness in accurately verifying individuals across
various sensors. Our results advance state-of-the-art F1-scores for identification through
smartphone sensing.

Moving forward, we intend expanding DeepUserIden to detect more complex be-
haviors by incorporating additional sensors like virtual inputs. Our research also enables
future access control selectively granting users permissions based on behavioral traits.
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