
Citation: Yamany, B.; Elsayed, M.S.;

Jurcut, A.D.; Abdelbaki, N.; Azer, M.A.

A Holistic Approach to Ransomware

Classification: Leveraging Static and

Dynamic Analysis with Visualization.

Information 2024, 15, 46. https://

doi.org/10.3390/info15010046

Academic Editor: Ruggero Lanotte

Received: 11 December 2023

Revised: 30 December 2023

Accepted: 5 January 2024

Published: 14 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

A Holistic Approach to Ransomware Classification: Leveraging
Static and Dynamic Analysis with Visualization
Bahaa Yamany 1, Mahmoud Said Elsayed 2,* , Anca D. Jurcut 2 , Nashwa Abdelbaki 1 and Marianne A. Azer 1,3

1 School of Information Technology and Computer Science, Nile University, Cairo 12566, Egypt;
b.yamany@nu.edu.eg (B.Y.); nabdelbaki@nu.edu.eg (N.A.)

2 School of Computer Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
anca.jurcut@ucd.ie

3 Computers and Systems Department, National Telecommunication Institute, Cairo 11768, Egypt;
mazer@nu.edu.eg

* Correspondence: mahmoud.abdallah@ucdconnect.ie

Abstract: Ransomware is a type of malicious software that encrypts a victim’s files and demands
payment in exchange for the decryption key. It is a rapidly growing and evolving threat that has
caused significant damage and disruption to individuals and organizations around the world. In this
paper, we propose a comprehensive ransomware classification approach based on the comparison of
similarity matrices derived from static, dynamic analysis, and visualization. Our approach involves
the use of multiple analysis techniques to extract features from ransomware samples and to generate
similarity matrices based on these features. These matrices are then compared using a variety of
comparison algorithms to identify similarities and differences between the samples. The resulting
similarity scores are then used to classify the samples into different categories, such as families,
variants, and versions. We evaluate our approach using a dataset of ransomware samples and
demonstrate that it can accurately classify the samples with a high degree of accuracy. One advantage
of our approach is the use of visualization, which allows us to classify and cluster large datasets of
ransomware in a more intuitive and effective way. In addition, static analysis has the advantage of
being fast and accurate, while dynamic analysis allows us to classify and cluster packed ransomware
samples. We also compare our approach to other classification approaches based on single analysis
techniques and show that our approach outperforms these approaches in terms of classification
accuracy. Overall, our study demonstrates the potential of using a comprehensive approach based
on the comparison of multiple analysis techniques, including static analysis, dynamic analysis,
and visualization, for the accurate and efficient classification of ransomware. It also highlights the
importance of considering multiple analysis techniques in the development of effective ransomware
classification methods, especially when dealing with large datasets and packed samples.

Keywords: dynamic analysis; encryption; honeypot; Jaccard index; malware; machine learning;
ransomware; similarity matrix; shared code analysis; static analysis

1. Introduction

Malware analysis is the act of finding, comprehending, and minimizing the potential
damage caused by malicious software, such as ransomware in ref. [1]. It is a crucial compo-
nent of cybersecurity since it enables organizations and individuals to defend themselves
against the numerous types of malware that might infect their systems and data. Malware
analysis employs a variety of tools and methodologies, including static analysis, dynamic
analysis, sandbox analysis, and reverse engineering. These methods can be used to analyze
the code and behavior of malware and to identify indicators of compromise (IOCs) that
can be used to detect and categorize malware. Malware analysis is an important part
of defending against ransomware as it allows organizations and individuals to identify
and mitigate the potential harm caused by ransomware before it can cause significant

Information 2024, 15, 46. https://doi.org/10.3390/info15010046 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info15010046
https://doi.org/10.3390/info15010046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0003-2416-7481
https://orcid.org/0000-0002-2705-1823
https://orcid.org/0000-0002-2724-6209
https://orcid.org/0000-0002-8068-5120
https://doi.org/10.3390/info15010046
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info15010046?type=check_update&version=1

Information 2024, 15, 46 2 of 29

damage or disruption. It can also help to identify and track the activities of ransomware
operators, which can provide valuable intelligence for law enforcement and other cyber-
security professionals. In addition to traditional malware analysis techniques, there are
also automated malware analysis tools and platforms that can be used to automate and
streamline the analysis process. These tools can help to reduce the time and resources
required for manual analysis, as well as increase the speed and accuracy of the analysis
process in ref. [2]. However, it is important to carefully consider the benefits and limitations
of automated malware analysis as it may not always provide the same level of depth and
detail as manual analysis. Static analysis and dynamic analysis are two approaches that
can be used to analyze and classify ransomware in ref. [3]. Both approaches have their own
benefits and limitations, and they can be used in combination or separately depending on
the specific needs of the analysis.

Ransomware represents a form of malicious software that encrypts a victim’s files
and subsequently demands a ransom in exchange for the decryption key. This perilous
threat is marked by its rapid proliferation and constant evolution, resulting in significant
harm and disruption to individuals and entities worldwide [4]. Ransomware deployment
encompasses various techniques, including exploit kits, drive-by downloads, and social
engineering strategies. Common vectors for its transmission include email attachments,
compromised websites, and software vulnerabilities. Upon infiltration, ransomware typ-
ically encrypts a wide array of files, ranging from documents to images, holding them
hostage. Subsequently, victims are confronted with ransom demands, often presented
through on-screen messages, or concealed notes within their systems. These demands
typically include a stipulated payment deadline and a menacing ultimatum to delete the
victim’s data should the ransom go unpaid. The repercussions of a ransomware attack can
be profound, resulting in operational disruption, critical data loss, and substantial financial
setbacks. Victims facing such attacks may find themselves at a crossroads, compelled to
either pay the ransom for data recovery or explore alternative avenues, such as data restora-
tion from backups or decryption techniques. Importantly, even when a ransom is paid,
there is no guarantee that the ransomware operators will honor their promise to provide the
decryption key [5]. The escalating prevalence and sophistication of ransomware assaults
pose a global threat to both individuals and businesses. Being prepared to respond to and
recover from such attacks, as well as proactively recognizing the threat and implementing
precautionary measures, assumes paramount importance for safeguarding against this
formidable adversary [6]. Figure 1 offers a comprehensive overview of the various phases
involved in a ransomware attack, spanning from its inception to the extortion phase.

Information 2024, 15, x FOR PEER REVIEW 2 of 32

important part of defending against ransomware as it allows organizations and individu-
als to identify and mitigate the potential harm caused by ransomware before it can cause
significant damage or disruption. It can also help to identify and track the activities of
ransomware operators, which can provide valuable intelligence for law enforcement and
other cybersecurity professionals. In addition to traditional malware analysis techniques,
there are also automated malware analysis tools and platforms that can be used to auto-
mate and streamline the analysis process. These tools can help to reduce the time and
resources required for manual analysis, as well as increase the speed and accuracy of the
analysis process in ref. [2]. However, it is important to carefully consider the benefits and
limitations of automated malware analysis as it may not always provide the same level of
depth and detail as manual analysis. Static analysis and dynamic analysis are two ap-
proaches that can be used to analyze and classify ransomware in ref. [3]. Both approaches
have their own benefits and limitations, and they can be used in combination or separately
depending on the specific needs of the analysis.

Ransomware represents a form of malicious software that encrypts a victim’s files
and subsequently demands a ransom in exchange for the decryption key. This perilous
threat is marked by its rapid proliferation and constant evolution, resulting in significant
harm and disruption to individuals and entities worldwide [4]. Ransomware deployment
encompasses various techniques, including exploit kits, drive-by downloads, and social
engineering strategies. Common vectors for its transmission include email attachments,
compromised websites, and software vulnerabilities. Upon infiltration, ransomware typi-
cally encrypts a wide array of files, ranging from documents to images, holding them hos-
tage. Subsequently, victims are confronted with ransom demands, often presented
through on-screen messages, or concealed notes within their systems. These demands typ-
ically include a stipulated payment deadline and a menacing ultimatum to delete the vic-
tim’s data should the ransom go unpaid. The repercussions of a ransomware attack can
be profound, resulting in operational disruption, critical data loss, and substantial finan-
cial setbacks. Victims facing such attacks may find themselves at a crossroads, compelled
to either pay the ransom for data recovery or explore alternative avenues, such as data
restoration from backups or decryption techniques. Importantly, even when a ransom is
paid, there is no guarantee that the ransomware operators will honor their promise to
provide the decryption key [5]. The escalating prevalence and sophistication of ransom-
ware assaults pose a global threat to both individuals and businesses. Being prepared to
respond to and recover from such attacks, as well as proactively recognizing the threat
and implementing precautionary measures, assumes paramount importance for safe-
guarding against this formidable adversary [6]. Figure 1 offers a comprehensive overview
of the various phases involved in a ransomware attack, spanning from its inception to the
extortion phase.

Figure 1. Ransomware lifecycle from creation to extortion.

Information 2024, 15, 46 3 of 29

Paper Contribution

In this paper, our primary focus was a meticulous examination of a substantial dataset
containing ransomware samples, embedded within a broader corpus. This extensive analy-
sis led to the identification of a subset of ransomware samples sharing notable similarities.
Subsequently, we conducted a rigorous assessment using a similarity matrix-based analysis,
incorporating both static and dynamic features, with the overarching goal of offering a
comprehensive evaluation that highlights the respective merits and limitations of each
analytical approach.

Beyond our innovative methodological approach, we conducted a thorough survey
and comparative examination of established ransomware detection methodologies. Our
study presents an expansive exploration of the ransomware detection ecosystem, cover-
ing various dimensions, including the detection environment, data analysis techniques,
machine learning methodologies, outcomes, evaluation criteria, and a range of available
detection tools.

Within the context of this research, our contributions encompass a multifaceted explo-
ration of the following key aspects:

• Comparative analysis of infection behaviors across various ransomware families.
• Utilization of data visualization methods for the identification of similar ransomware

samples within extensive datasets.
• Employing a similarity matrix approach for the analysis of static and dynamic features

in ransomware samples.
• Assessment of the merits and limitations associated with static and dynamic feature

analysis.
• Comprehensive survey and comparative evaluation of varied ransomware detection

approaches, alongside an in-depth exploration of the ransomware detection ecosystem.
• Development and proposal of an automated methodology for extracting diverse

feature sets from ransomware samples.

The remainder of this paper is organized as follows. In Section 2, we present an
overview of the efforts that have been made in the literature to develop ransomware
detection approaches. We survey the different techniques that have been proposed and
analyze the criteria, parameters, and tools used in the ransomware detection ecosystem. In
Section 3, we provide a background on the different static and dynamic features that have
been used in ransomware tracking systems as well as the visualization techniques that have
been proposed for ransomware classification. In Section 4, we describe our system setup
and present the results and analysis of our proposed approach for extracting the malware’s
static features and classifying ransomware samples. We also compare our results to those
of other approaches proposed in the literature. Finally, in Section 5, we provide conclusions
and discuss future work in the field of ransomware detection. We outline the challenges
and opportunities that exist for improving the accuracy and effectiveness of ransomware
detection and highlight the potential impacts of these advances on cybersecurity.

2. Related Work

In this section, we aim to delve deeper into the related work, refine the problem
statement by addressing its limitations, and provide additional context regarding the
categorization of ransomware. Within the scope of this paper, our objective is to conduct a
comprehensive survey of the diverse spectrum of ransomware detection methodologies
and techniques as delineated in the existing literature. Beyond this survey, we undertake
a meticulous analysis of the varied criteria, parameters, and tools employed within the
broader ransomware detection ecosystem. The overarching goal is to furnish readers
with an in-depth understanding of the contemporary landscape in ransomware detection,
including both its advancements and inherent challenges. However, it is imperative to
acknowledge certain limitations in this pursuit. Firstly, the rapidly evolving nature of
ransomware demands a continuous update of detection methodologies, and as such, some
state-of-the-art techniques may not be covered if they have emerged after our knowledge

Information 2024, 15, 46 4 of 29

cutoff date. Secondly, the effectiveness of ransomware detection can be context-dependent,
varying based on factors such as the specific ransomware variant, its obfuscation techniques,
and the target environment. These contextual variations pose challenges in proposing a
one-size-fits-all solution.

Categorizing ransomware is a crucial aspect of understanding the threat landscape.
Ransomware can be classified into various categories based on its characteristics, propaga-
tion methods, and behavior. Some common categories include:

• Encrypting Ransomware: This category involves ransomware that encrypts files on
the victim’s system, rendering them inaccessible until a ransom is paid.

• Locker Ransomware: Locker ransomware locks the victim out of their entire system,
preventing access until a ransom is provided.

• Doxware or Leakware: This type threatens to release sensitive information unless a
ransom is paid, often compromising privacy.

• Scareware: Scareware displays false warnings or claims of malware infections, extort-
ing money for their removal.

• Mobile Ransomware: Designed for mobile devices, this category targets smartphones
and tablets, encrypting data or locking the device.

• Ransomware-as-a-Service (RaaS): RaaS platforms allow cybercriminals to easily create
and distribute ransomware, contributing to its proliferation.

• Targeted Ransomware: Some ransomware attacks are highly targeted, focusing on
specific organizations or individuals, often with higher ransom demands.

• Cryptojacking: While it is not traditional ransomware, cryptojacking malware hijacks
computer resources to mine cryptocurrencies, often without the victim’s consent.

The proliferation of computers, the Internet, and applications has introduced threats,
including malicious software or malware. One study in ref. [7] focused on ransomware, a
type of malware that encrypts user files, demanding a ransom for their release. Despite
advisories against paying ransoms, victims commonly resort to this measure. The paper
emphasized the need for advanced protection measures against ransomware, highlighting
the importance of understanding its nature for effective defense. While existing surveys
touch on technical aspects, there is a dearth of comprehensive reviews dedicated to explor-
ing ransomware research. This paper seeks to fill this gap by providing a detailed survey
and introducing a new ransomware taxonomy. The survey covers ransomware threat
factors, taxonomy, and existing research, offering valuable insights for future endeavors in
this domain.

Categorization aids in understanding the modus operandi of different ransomware
variants and tailoring detection and mitigation strategies accordingly. As we proceed with
our analysis, it is essential to consider these categories and their implications on detection
and prevention strategies. Furthermore, we acknowledge that the ransomware landscape
is dynamic, and new categories or variants may emerge over time, necessitating ongoing
research and adaptation of security measures.

Ransomware detection through reverse engineering entails shared code analysis to
identify analyzable sample groupings, aiding in developer attribution and variant identifi-
cation. Shared code analysis enables swift determination of code commonality between
new and previously analyzed samples. In a standard malware detection system, the pri-
mary components encompass feature extraction, feature selection, classification/clustering,
and decision-making. Raw data are processed through feature extraction, yielding relevant
features. Feature selection reduces complexity by identifying feature correlations. The
resulting feature vector undergoes classification or clustering, with the decision module
distinguishing between malicious and benign samples in ref. [8]. In ref. [9], the authors
conducted a comparative study between static and dynamic malware analysis techniques.
Both static and dynamic analysis approaches hold significant value in the realm of ran-
somware analysis and classification. The choice between these methods hinges on the
specific requirements, available resources, and characteristics of the ransomware samples
under scrutiny. Often, a synergistic combination of static and dynamic analysis proves to

Information 2024, 15, 46 5 of 29

be the most effective approach. Identifying the malware family to which a new sample
belongs is a common necessity in malware analysis. One prevalent approach involves
subjecting the sample to a multi-engine antivirus scanner, such as VirusTotal. However,
outcomes from these scanners can sometimes lack clarity and accuracy as malware is often
tagged with generic labels like “generic”, offering little meaningful information. Addi-
tionally, malware creators may actively monitor the VirusTotal database, modifying their
code or functions to evade detection. An alternative method for malware analysis involves
executing the sample within a controlled sandbox environment, such as CuckooBox, to
gather insights into the malware’s behavior and communication with callback servers.
While this approach can yield valuable insights, it can be time-consuming and less efficient
when dealing with extensive malware datasets. A distinctive and automated approach
to malware analysis, as introduced in ref. [10], is shared code analysis or similarity check
analysis. This technique compares two malware samples by quantifying the proportion
of the recompiled source code they share. Unlike shared attribute analysis, which relies
on external characteristics, shared code analysis swiftly and accurately classifies malware,
particularly within large datasets. Nevertheless, it is crucial to assess the limitations of
this method and utilize it in conjunction with other analysis techniques as needed. In the
context of malware analysis and ransomware, ref. [11] offers a comparative exploration of
various analysis approaches and ransomware typologies, shedding light on their respective
behaviors and characteristics; Section 2.1, “Ransomware Detection Approaches”, outlines
various techniques. Machine learning leverages known ransomware datasets for classifi-
cation. Behavioral analysis observes malware execution, analyzing network activity, file
operations, and system resource usage.

2.1. Ransomware Detection Approaches and Techniques

In the Machine Learning approach, machine learning algorithms analyze and catego-
rize ransomware behavior. Trained on datasets of both known ransomware and benign
samples, these algorithms identify new ransomware based on learned characteristics. Ma-
chine learning techniques, such as Decision Trees, Support Vector Machines, and Artificial
Neural Networks, are applied. Advantages include adaptability to new ransomware vari-
ations and scalability for handling large datasets. However, accuracy hinges on dataset
quality, diversity, and algorithm complexity. The Honeypot approach entails establish-
ing networks or systems designed to attract and ensnare ransomware. These systems
simulate vulnerability to lure ransomware attackers and monitor their activities. Benefits
encompass real-time collection and analysis of new ransomware samples and the ability to
discern attacker behavior trends and patterns. Nonetheless, Honeypots require substan-
tial resources and maintenance and may not detect all ransomware types. The Statistical
Analysis approach scrutinizes the statistical attributes of ransomware samples to uncover
common patterns and features. Techniques like frequency analysis, entropy analysis, and
n-gram analysis are employed. Advantages include rapid analysis of large datasets and
the identification of shared patterns across diverse ransomware types. However, it may
struggle with sophisticated or novel ransomware and could yield false positives if benign
samples exhibit similar statistical characteristics. Each approach possesses its own merits
and drawbacks, making them suitable for specific ransomware detection scenarios. The
choice of approach should align with the requirements and constraints of the detection
system. Careful consideration is vital when selecting the appropriate methodology.

2.1.1. Machine Learning

Machine Learning leverages algorithms grouped into categories like Bayesian, deci-
sion tree, dimension reduction, instance-based, clustering, deep learning, ensemble, neural
network, regularization, rule system, and regression. These algorithms are utilized for
ransomware detection by analyzing and classifying behaviors. Bayesian algorithms, rooted
in Bayesian statistics, employ probabilistic models for event likelihood predictions, com-
monly applied in spam filters and malware detection systems. Decision tree algorithms

Information 2024, 15, 46 6 of 29

employ tree-like structures to make decisions based on predefined conditions or rules,
often used for classifying malware. Dimension reduction reduces dataset features for
easier analysis, aiding in identifying malware patterns and characteristics. Instance-based
algorithms make predictions based on stored instances or examples, useful in recognizing
malware patterns. Clustering algorithms group similar data points, employed to identify
malware features. Deep learning utilizes artificial neural networks for pattern recogni-
tion. Ensemble algorithms combine multiple models to enhance accuracy, while neural
network algorithms employ artificial neural networks for pattern detection. Regularization
algorithms prevent overfitting in complex models. In ref. [12], a machine learning-based
model distinguished ransomware from normal files and other malware, with an automatic
detection model enabling the identification of new ransomware samples. Ref. [13] explored
research projects employing machine learning and deep learning for ransomware detection.
Ref. [14] utilized a digital DNA sequencing engine and AI machine learning network to
classify ransomware into distinct families based on their “digital genomes”. Researchers
in [15] employed hybrid multi-level profiling for a comprehensive forensic investigation
of crypto ransomware. They introduce the concept of “behavioral chaining” and employ
tools for mining associative rules and AI. Profiling ransomware behavior based on its chain
ratio introduces a novel approach to creating unique ransomware signatures.

2.1.2. Honeypots

Honeypots are valuable tools for gathering information about attacks, including the
identification of users and the extent of their activities, aiding in informed decision-making
for defense strategies. The primary objective of deploying honeypots is to acquire insights
into ongoing attacks and utilize that intelligence to bolster security measures. To enhance
user awareness, email notifications are sent, occasionally advising users to disconnect
network cables as a precautionary measure. This user training aspect adds an extra layer of
security awareness, making honeypots an effective means to detect ransomware attacks. In
ref. [16], the authors employed a combination of methods, including machine learning for
grouping cases and Honeypots to capture potentially malicious packages. Classification
tasks utilize Decision Trees and Support Vector Machine (SVM). The study suggests the
potential of architectural solutions for malware detection. Ref. [17] introduced an Intrusion
Detection Honeypot (IDH), comprising Honeyfolder, Audit Watch, and Complex Event
Processing (CEP). IDH is designed to mimic vulnerability while also functioning as an early
warning system, notifying users of suspicious file activity. Ref. [18] presented a deception
method involving Honeyfiles and Honeytokens, designed to access compromised private
files and detect hacking or ransomware attempts. The hypothesis explores the use of
honeypots combined with machine learning for malware detection. In ref. [19], data from
an Internet of Things (IoT) honeypot were effectively employed to train a dynamic machine
learning model. This highlights the dynamic nature of honeypot-driven machine-learning
techniques. Ref. [20] suggested a framework utilizing an Intrusion Prevention System
(IPS) gateway, an analytical system, and honeypots to detect and identify ransomware.
The framework encompasses six elements: IPS, gateway, static detector, dynamic detector,
honeynet, and a notification component, collectively contributing to effective ransomware
detection and user notification. These studies underscore the versatility and potential
of honeypot-driven approaches, often combined with machine learning techniques, for
enhancing ransomware detection and overall cybersecurity.

2.1.3. Statistics

To better understand the characteristics of ransomware, it may be possible to employ
statistical analysis. One prominent method of detecting ransomware is using statistical
analyses, which can identify unpredictable behavior and be used to flag the presence of
encryption. Based on the frequency of opcodes in the portable executable file, the authors
in ref. [21] proposed an approach for detecting malware. The study used a machine learn-
ing system to detect false positives, false negatives, true positives, and true negatives in

Information 2024, 15, 46 7 of 29

malware. While the authors in ref. [22] proposed a method for finding malware. This
research employed a machine learning algorithm to identify malware with varying degrees
of accuracy. The method of malware detection was developed by the authors using a
similarity measurement algorithm. The proposed method was meant to boost malware
detection times and throughput. This methodology has various advantages over others,
including increased speed by using opcodes directly and improved detection outcomes
from being immune to obfuscation and disassembly methods in ref. [23]. Another approach
for malware was classification presented in ref. [24] inspired by the aesthetic similarities
across viruses in the same family, this work proposes binary texture analysis over greyscale
photos generated directly from malware executables. This technique provides statistical
texture features of the second order over the graphical representation of malware. This
strategy cannot be fooled by common methods of concealment (e.g., packing, code relo-
cation, and encryption). Five malware detection metrics were assessed in the absence of
ground truth, a real-world scenario that poses various technical challenges, the end goal
was to develop fully automated, principled methods to assess these indications with the
highest possible precision. Estimators of statistical significance were provided for the five
measures used to identify malware. These statistical estimators were shown to be accurate
by comparison to the known truth and fictional data. This large dataset was obtained from
VirusTotal, and the estimators were then utilized to measure and quantify five metrics in
ref. [25]. Several methods proposed in the literature make use of multiple strategies. The
benefits and drawbacks of various ransomware detection strategies are summarized in
Table 1.

Table 1. Comparison between ransomware detection approaches.

Ransomware
Detection
Approach

Ref. Description Advantages Disadvantages

Machine Learning [12–15]

The most used machine learning
techniques in ransomware

detection include supervised
learning, unsupervised learning,

and semi-supervised learning.
Supervised learning involves

training a model on labeled data,
where the input and output are

both known. This allows the
model to make predictions based

on the relationships learned
from the training data.

Unsupervised learning involves
training a model on data where
the output is not known, and the

model must find patterns and
relationships within the data on

its own. Semi-supervised
learning is a combination of

supervised and unsupervised
learning, where the model is

trained on a mix of labeled and
unlabeled data.

One of the main
advantages of using
machine learning for

ransomware detection is
that it allows for the

automatic identification of
patterns and relationships
within large datasets. This
can be particularly useful
for identifying new and
emerging threats, as the

model can learn from past
data to identify patterns

and make predictions
about future threats.

Machine learning
algorithms can also be

trained on a wide variety
of data types, including
text, images, and audio,

which makes them useful
for detecting ransomware

in different formats.

Machine learning algorithms
can be vulnerable to bias and

can produce inaccurate results
if the training data are not

representative of the
real-world data. They also

require frequent retraining to
ensure that they continue to

perform well as the data
distribution changes.

Information 2024, 15, 46 8 of 29

Table 1. Cont.

Ransomware
Detection
Approach

Ref. Description Advantages Disadvantages

Honeypot [16–20]

Honeypots are a type of decoy
system that is designed to attract

and detect malware or
cyber-attacks. They are used to
lure attackers into a controlled

and isolated environment, where
their actions can be observed
and studied. By setting up a

honeypot, it is possible to
monitor and track ransomware

activity and identify new strains
or variants of the malware.

One advantage of using a
honeypot is that it allows

researchers to gather
valuable data and

intelligence about the
tactics, techniques, and

procedures (TTPs) used by
attackers. This information
can be used to improve the

effectiveness of
ransomware detection and

prevention measures.
Additionally, honeypots

can help mitigate the
impact of ransomware

attacks by preventing the
malware from reaching the

target system or data.

There are also some
disadvantages to using

honeypots. One potential issue
is the risk of false positives,
where legitimate activity is

mistaken for malicious activity.
Another issue is the cost and

resources required to maintain
and operate a honeypot, as

well as the potential legal and
ethical considerations.

Additionally, honeypots may
not be suitable for all types of
environments or organizations

and may not provide
comprehensive protection

against all types of
ransomware attacks.

Statistical [21–25]

The statistical analysis approach
involves collecting and
analyzing data about

ransomware behavior to identify
patterns and trends. This can be
done through various methods,
such as collecting data about the
frequency and types of ransom

demands, the types of files
targeted, and the tactics used by

ransomware operators.

The advantage of using
statistical analysis is that it
allows researchers to gain a
deeper understanding of

ransomware behavior and
identify key trends that can

inform prevention and
detection efforts.

The disadvantage of this
approach is that it relies on the

availability of accurate and
comprehensive data, which
may be difficult to obtain in

some cases. Additionally,
statistical analysis may not be

able to identify specific
instances of ransomware in

real time, making it less
effective for immediate
detection and response.

3. Background

In this section, we define and present the features that affect ransomware tracking and
introduce the different static and dynamic features that have been used for ransomware
tracking. In Section 3.1, we introduce the different types of ransomwares and provide
a brief history of ransomware. We also compare the key features, spreading techniques,
exploitation, and ransomware families of different ransomware types, such as crypto worm,
Ransomware-as-a-Service (RaaS), and Automated Active Adversary ransomware. We also
discuss the role of APT attacks, such as the Shamoon data wiper malware, in ransomware
infections. In Section 3.2, we discuss visualization techniques that are used to represent
and analyze data in a visual form. In the context of ransomware classification, visualiza-
tion techniques can be utilized to graphically represent the relationships and similarities
between different ransomware samples. These techniques can provide a more intuitive
and comprehensive understanding of the data, allowing analysts to identify patterns and
trends that may not be immediately apparent through traditional methods of analysis.
Some common visualization techniques that may be used in ransomware classification
include scatter plots, heat maps, and network graphs. By using these techniques, analysts
can effectively classify, and cluster ransomware samples based on their features and char-
acteristics, enabling more accurate and efficient detection and analysis of these threats.
Finally, in Section 3.3, we discuss the use of static and dynamic features in ransomware
tracking systems and the challenges and opportunities that these features present. Overall,
this section provides a comprehensive overview of the key features and techniques that are

Information 2024, 15, 46 9 of 29

used in ransomware tracking and classification as well as the challenges and opportunities
that these approaches present.

3.1. Ransomware Types and History

Ransomware, classified as a type of malware, operates by encrypting a victim’s files
and subsequently demanding a ransom in exchange for restoring access to these files in
ref. [26]. Notably, various categories of ransomware exist, each with unique characteristics.
These categories encompass crypto worms in ref. [27], Human-operated Ransomware in
ref. [28], Ransomware-as-a-Service (RaaS) in ref. [29], and Automated Active Adversary
ransomware in ref. [30]. Table 2 encapsulates the essential features, propagation methods,
exploitation strategies, and ransomware families associated with these diverse ransomware
types. A specific subtype within the RaaS ransomware category is Advanced Persistent
Threat (APT) attacks, typified by instances like the Shamoon data wiper malware in ref. [31].
APT-33, for instance, has employed such attacks in the Middle East and Europe, often
driven by commercial or military motives. Notably, ransomware infections can originate
from various sources in ref. [32], with the distribution percentages elucidated in ref. [33].
Figure 2 visually represents the primary sources of infection for most ransomware, which
may include phishing emails, APT attacks, system vulnerabilities, drive-by downloads, and
exploit kits. An in-depth exploration of the history of ransomware has been undertaken by
the authors in ref. [34]. In Table 3, a chronological account of significant ransomware attacks
is summarized, including the attack date, the responsible ransomware family, and the
resultant damage. Broadly, ransomware can be categorized into two principal subgroups:
locker ransomware in ref. [35] and crypto ransomware in ref. [36]. Locker ransomware
restricts access to a device, often by imposing an additional password requirement to access
the device. In contrast, crypto ransomware identifies and encrypts valuable data located
on the victim’s device.

Table 2. Comparison between ransomware malware behavior types.

Crypto Worm Human-Operated
Ransomware

Ransomware-as-a-
Service (RaaS)

Automated Active
Adversary

Key Features Self-propagating Targeted attacks Ransomware-as-a-
Service model

Advanced
evasion tactics

Spreading techniques Wormhole Social engineering Email attachments,
web links

Customized
attack vectors

Exploitation
techniques

Vulnerabilities
in systems Targeted vulnerabilities Vulnerabilities

in systems Customized exploits

Detection modules Antivirus User awareness,
network monitoring

Antivirus, network
monitoring

Network monitoring,
user awareness

Ransomware Family
Example WannaCry Ryuk REvil SolarWinds

Information 2024, 15, x FOR PEER REVIEW 9 of 32

3.1. Ransomware Types and History
Ransomware, classified as a type of malware, operates by encrypting a victim’s files

and subsequently demanding a ransom in exchange for restoring access to these files in
ref. [26]. Notably, various categories of ransomware exist, each with unique
characteristics. These categories encompass crypto worms in ref. [27], Human-operated
Ransomware in ref. [28], Ransomware-as-a-Service (RaaS) in ref. [29], and Automated
Active Adversary ransomware in ref. [30]. Table 2 encapsulates the essential features,
propagation methods, exploitation strategies, and ransomware families associated with
these diverse ransomware types. A specific subtype within the RaaS ransomware category
is Advanced Persistent Threat (APT) attacks, typified by instances like the Shamoon data
wiper malware in ref. [31]. APT-33, for instance, has employed such attacks in the Middle
East and Europe, often driven by commercial or military motives. Notably, ransomware
infections can originate from various sources in ref. [32], with the distribution percentages
elucidated in ref. [33]. Figure 2 visually represents the primary sources of infection for
most ransomware, which may include phishing emails, APT attacks, system
vulnerabilities, drive-by downloads, and exploit kits. An in-depth exploration of the
history of ransomware has been undertaken by the authors in ref. [34]. In Table 3, a
chronological account of significant ransomware attacks is summarized, including the
attack date, the responsible ransomware family, and the resultant damage. Broadly,
ransomware can be categorized into two principal subgroups: locker ransomware in ref.
[35] and crypto ransomware in ref. [36]. Locker ransomware restricts access to a device,
often by imposing an additional password requirement to access the device. In contrast,
crypto ransomware identifies and encrypts valuable data located on the victim’s device.

Table 2. Comparison between ransomware malware behavior types.

 Crypto Worm Human-Operated
Ransomware

Ransomware-as-a-Service
(RaaS)

Automated Active Adversary

Key Features Self-propagating Targeted attacks
Ransomware-as-a-Service

model Advanced evasion tactics

Spreading tech-
niques

Wormhole Social engineering Email attachments, web links Customized attack vectors

Exploitation
techniques

Vulnerabilities in
systems

Targeted vulnerabili-
ties Vulnerabilities in systems Customized exploits

Detection mod-
ules Antivirus

User awareness, net-
work monitoring Antivirus, network monitoring

Network monitoring, user
awareness

Ransomware
Family Exam-
ple

WannaCry Ryuk REvil SolarWinds

Figure 2. Ransomware infection vectors. Figure 2. Ransomware infection vectors.

Information 2024, 15, 46 10 of 29

Table 3. Ransomware history timeline.

Date Ransomware Family Event Description

1989 AIDS First ransomware, called “AIDS” or “PC Cyborg”, is released.
1991 PC Cyborg It displays a message on the infected computer’s screen demanding payment.

2005 Gpcode Gpcode ransomware uses strong encryption to lock users’ files, demanding
payment to decrypt them.

2013 Cryptolocker Cryptolocker ransomware is released, using encryption to hold users’ files
hostage and demanding payment for the decryption key.

2014 Cryptowall Cryptowall ransomware is released, using encryption to hold users’ files
hostage and demanding payment for the decryption key.

2015 TeslaCrypt TeslaCrypt ransomware has been released, targeting video game files and
demanding payment for the decryption key.

2016 Locky Locky ransomware is released, using encryption to hold users’ files hostage
and demanding payment for the decryption key.

2017 NotPetya NotPetya ransomware attack causes widespread damage, affecting thousands
of computers and causing disruptions to various industries.

2018 LockerGoga LockerGoga ransomware attack targets industrial control systems, causing
disruptions to manufacturing and other industries.

2019 Ryuk Ryuk ransomware targets government and healthcare organizations for large
ransoms, causing widespread damage.

2020 REvil (Sodinokibi) REvil (also known as Sodinokibi) ransomware attack causes widespread
damage, affecting thousands of users and organizations.

2021 Babuk Babuk ransomware attack targets government agencies and high-profile
companies, threatening to release stolen data if a ransom is not paid.

2022 Egregor Egregor ransomware attack causes widespread damage, affecting thousands of
users and organizations.

2023 Black Cat BlackCat ransomware is a type of malicious software that encrypts a victim’s
files and demands a ransom for the decryption key.

3.2. Ransowmare Classification with Visualization Techniques

Visualization techniques play a pivotal role in the realm of cybersecurity, offering valu-
able support in the classification and analysis of ransomware. Ransomware classification
entails identifying and categorizing diverse ransomware types, relying on their distinctive
characteristics and behaviors. Visualization methods, in this context, emerge as powerful
tools for rendering large datasets of ransomware samples in a manner that is both intuitive
and highly effective in ref. [37]. There are several different visualization techniques that can
be used for ransomware classification, including scatter plots, heat maps, and tree maps.
Scatter plots are a type of graph that plots data points on a two-dimensional grid, with one
variable on the x-axis and the other on the y-axis. Scatter plots can be used to visualize the
relationships between different features of ransomware samples, such as their encryption
algorithms and file types, and can help analysts identify patterns and trends in the data.
Heat maps are another type of visualization that uses color-coded scales to represent data
values, with higher values being represented by warmer colors and lower values being
represented by cooler colors in ref. [38]. Heat maps can be used to visualize the distribution
of different features of ransomware samples and can help analysts identify clusters or
outliers in the data. Treemaps are a type of visualization that uses nested rectangles to
represent data values, with the size of the rectangles representing the value and the color
representing the category in ref. [39]. Treemaps can be used to visualize the relationships
between different categories of ransomware samples and can help analysts identify patterns
and trends in the data. Visualization techniques are particularly useful for ransomware
classification because they allow analysts to identify patterns and trends quickly and easily
in large datasets and can help them identify similarities and differences between different
ransomware families. By visualizing the data in this way, analysts can more easily identify
clusters and outliers, and can use these insights to better understand the TTPs in ref. [40].

Information 2024, 15, 46 11 of 29

3.3. Ransomware’s Features Tracking System

Our proposed ransomware classification, clustering, and detection system aims to pro-
vide a comprehensive approach to analyzing and classifying different types of ransomware.
By using a combination of static analysis, dynamic analysis, and visualization techniques,
our system can extract a wide range of features from ransomware samples and generate
similarity matrices based on these features. These matrices can then be compared using
a variety of comparison algorithms to identify similarities and differences between the
samples, and the resulting similarity scores can be used to classify the samples into different
categories, such as families, variants, and versions. One of the key features of our system is
the ability to identify the amount of code shared by two malicious ransomware binaries be-
fore they are assembled. This can be especially useful for ransomware analysts and reverse
engineers as it can help them better understand the TTPs of different ransomware families
and identify common patterns and trends in ref. [41]. By providing a joint collaborative
analysis platform, our system allows analysts to avoid having to redo tedious tasks that
have already been done by others and enables them to work together more efficiently and
effectively in ref. [42]. Overall, our proposed ransomware classification, clustering, and de-
tection system offers a powerful and comprehensive approach to analyzing and classifying
different types of ransomware. By providing a joint collaborative analysis platform and
the ability to identify the amount of code shared by two malicious ransomware binaries, it
helps analysts and reverse-engineers better understand the TTPs of different ransomware
families and develop more effective defense and response strategies. Ransomware features
tracking refers to the process of identifying and tracking the characteristics and behavior
of different types of ransomware over time. This is an important task for cybersecurity
professionals as it allows them to better understand the TTPs of different ransomware
families and to develop more effective defense and response strategies in ref. [43]. There are
several different approaches that can be used for ransomware feature tracking, including
the Jaccard index, N-grams, and shared feature analysis. We classified malware samples
into “bags of features” before comparing them; features could be strings, hashes, export
and import tables, and API calls. Shared features between two malware samples are shown
in Figure 3. Shared feature analysis involves identifying common characteristics or be-
haviors shared by different malware samples. This can be done using techniques such as
static analysis, dynamic analysis, and machine learning, and can be particularly useful for
tracking the evolution of ransomware families by analyzing the shared features of different
ransomware samples in ref. [44].

Information 2024, 15, x FOR PEER REVIEW 12 of 32

different approaches that can be used for ransomware feature tracking, including the
Jaccard index, N-grams, and shared feature analysis. We classified malware samples into
“bags of features” before comparing them; features could be strings, hashes, export and
import tables, and API calls. Shared features between two malware samples are shown in
Figure 3. Shared feature analysis involves identifying common characteristics or
behaviors shared by different malware samples. This can be done using techniques such
as static analysis, dynamic analysis, and machine learning, and can be particularly useful
for tracking the evolution of ransomware families by analyzing the shared features of
different ransomware samples in ref. [44].

Figure 3. Shared features between two malware samples [45].

The Jaccard index is a measure of the similarity between two sets of data in ref. [46].
It is calculated by dividing the size of the intersection of the two sets by the size of the
union of the two sets. The Jaccard index is often used in cybersecurity to measure the
similarity between different malware samples, and it can be particularly useful for
tracking the evolution of different ransomware families over time. By calculating the
Jaccard index for different pairs of ransomware samples, analysts can identify how similar
or dissimilar they are and can use this information to better understand the TTPs of the
different families. The Jaccard index has emerged as the most generally adopted—and
with good reason. It quantifies the degree of overlap between two sets of malware features
simply and sensibly, providing us with the percentage of unique features common to both
sets normalized by the percentage of unique features in each group in ref. [47] (JI =
intersection length/union length). The Jaccard Index explanation is shown in Figure 4.

Figure 4. Jaccard Index between two malware samples.

Using N-grams to track the evolution of ransomware families can be a powerful tool
for cybersecurity professionals in ref. [48]. By extracting subsequences of specific lengths
from sequential data and comparing them using a similarity function, it is possible to

Figure 3. Shared features between two malware samples [45].

The Jaccard index is a measure of the similarity between two sets of data in ref. [46].
It is calculated by dividing the size of the intersection of the two sets by the size of the
union of the two sets. The Jaccard index is often used in cybersecurity to measure the
similarity between different malware samples, and it can be particularly useful for tracking
the evolution of different ransomware families over time. By calculating the Jaccard index
for different pairs of ransomware samples, analysts can identify how similar or dissimilar

Information 2024, 15, 46 12 of 29

they are and can use this information to better understand the TTPs of the different families.
The Jaccard index has emerged as the most generally adopted—and with good reason. It
quantifies the degree of overlap between two sets of malware features simply and sensibly,
providing us with the percentage of unique features common to both sets normalized by
the percentage of unique features in each group in ref. [47] (JI = intersection length/union
length). The Jaccard Index explanation is shown in Figure 4.

Information 2024, 15, x FOR PEER REVIEW 12 of 32

different approaches that can be used for ransomware feature tracking, including the
Jaccard index, N-grams, and shared feature analysis. We classified malware samples into
“bags of features” before comparing them; features could be strings, hashes, export and
import tables, and API calls. Shared features between two malware samples are shown in
Figure 3. Shared feature analysis involves identifying common characteristics or
behaviors shared by different malware samples. This can be done using techniques such
as static analysis, dynamic analysis, and machine learning, and can be particularly useful
for tracking the evolution of ransomware families by analyzing the shared features of
different ransomware samples in ref. [44].

Figure 3. Shared features between two malware samples [45].

The Jaccard index is a measure of the similarity between two sets of data in ref. [46].
It is calculated by dividing the size of the intersection of the two sets by the size of the
union of the two sets. The Jaccard index is often used in cybersecurity to measure the
similarity between different malware samples, and it can be particularly useful for
tracking the evolution of different ransomware families over time. By calculating the
Jaccard index for different pairs of ransomware samples, analysts can identify how similar
or dissimilar they are and can use this information to better understand the TTPs of the
different families. The Jaccard index has emerged as the most generally adopted—and
with good reason. It quantifies the degree of overlap between two sets of malware features
simply and sensibly, providing us with the percentage of unique features common to both
sets normalized by the percentage of unique features in each group in ref. [47] (JI =
intersection length/union length). The Jaccard Index explanation is shown in Figure 4.

Figure 4. Jaccard Index between two malware samples.

Using N-grams to track the evolution of ransomware families can be a powerful tool
for cybersecurity professionals in ref. [48]. By extracting subsequences of specific lengths
from sequential data and comparing them using a similarity function, it is possible to

Figure 4. Jaccard Index between two malware samples.

Using N-grams to track the evolution of ransomware families can be a powerful tool
for cybersecurity professionals in ref. [48]. By extracting subsequences of specific lengths
from sequential data and comparing them using a similarity function, it is possible to
determine the level of code commonality between two malware samples. This can be
especially useful for identifying patterns and trends in the TTPs of different ransomware
families and can help analysts develop more effective defense and response strategies.
The similarity function used in this process should have certain properties to ensure
accurate and reliable results. It should produce a normalized value that allows all similarity
comparisons to be made on the same scale, and it should be able to accurately estimate
the amount of code sharing between two samples. Additionally, it should be able to
provide insight into why it performs well in modeling code similarities. Overall, the use
of N-grams and a similarity function can be an effective way to track the evolution of
ransomware families and better understand their TTPs. By extracting and comparing
subsequences of specific lengths, analysts can identify common patterns and trends and can
use this information to develop more effective defense and response strategies in ref. [49].
We employ a similarity function with the following properties to determine the level of
code commonality between two malware samples shown in Figure 5. In the provided
figure, each number corresponds to a distinct malware sample included in the analysis.
The purpose of these numbers is to uniquely identify and label each malware instance
for clarity. The arrows in the figure represent the presence of similar n-gram features
between different malware samples. Specifically, the direction of the arrows indicates
the connection from the source malware sample to the target sample, demonstrating a
shared set of n-gram features. This visual representation highlights the commonalities
in the n-gram patterns found in the corresponding malware instances. By examining the
arrows and associated numbers, one can gain insights into the relationships and similarities
among the various malware samples based on their n-gram features. This analysis aids in
understanding the potential connections and patterns within the dataset, contributing to a
more comprehensive comprehension of the malware landscape under investigation.

Information 2024, 15, 46 13 of 29

Information 2024, 15, x FOR PEER REVIEW 13 of 32

determine the level of code commonality between two malware samples. This can be es-
pecially useful for identifying patterns and trends in the TTPs of different ransomware
families and can help analysts develop more effective defense and response strategies. The
similarity function used in this process should have certain properties to ensure accurate
and reliable results. It should produce a normalized value that allows all similarity com-
parisons to be made on the same scale, and it should be able to accurately estimate the
amount of code sharing between two samples. Additionally, it should be able to provide
insight into why it performs well in modeling code similarities. Overall, the use of N-
grams and a similarity function can be an effective way to track the evolution of ransom-
ware families and better understand their TTPs. By extracting and comparing subse-
quences of specific lengths, analysts can identify common patterns and trends and can use
this information to develop more effective defense and response strategies in ref. [49]. We
employ a similarity function with the following properties to determine the level of code
commonality between two malware samples shown in Figure 5. In the provided figure,
each number corresponds to a distinct malware sample included in the analysis. The pur-
pose of these numbers is to uniquely identify and label each malware instance for clarity.
The arrows in the figure represent the presence of similar n-gram features between differ-
ent malware samples. Specifically, the direction of the arrows indicates the connection
from the source malware sample to the target sample, demonstrating a shared set of n-
gram features. This visual representation highlights the commonalities in the n-gram pat-
terns found in the corresponding malware instances. By examining the arrows and asso-
ciated numbers, one can gain insights into the relationships and similarities among the
various malware samples based on their n-gram features. This analysis aids in under-
standing the potential connections and patterns within the dataset, contributing to a more
comprehensive comprehension of the malware landscape under investigation.

Figure 5. N-gram extracted from ransomware samples.

4. Experimental Work and Detection Scheme
In this section, we present the experimental work done to study ransomware visual-

ization techniques and shared static and dynamic features between different ransomware
samples. Ransomware visualization techniques are presented in Section 4.1, while shared
static and dynamic features are presented in Sections 4.2 and 4.3 respectively. In Section
4.4, our lab setup is presented. Time complexity is presented in Section 4.5. Finally, in
Section 4.6, we present the results from static and dynamic analyzers.

4.1. Visualization Techniques
In our approach to using visualization techniques to classify and analyze ransom-

ware samples, we started by selecting a dataset of ransomware samples (most matched
ones) and then applied a similarity matrix using a static and dynamic analyzer to find a
fast and suitable way to use it in our final approach. To identify the most similar samples,
we used a cluster engine to analyze the data and report the samples with the highest level
of similarity. We then used static and dynamic analysis techniques to generate a similarity
matrix for each group of samples. This matrix allowed us to visualize the relationships
between the different samples and identify patterns and trends in the data. Once we had

Figure 5. N-gram extracted from ransomware samples.

4. Experimental Work and Detection Scheme

In this section, we present the experimental work done to study ransomware vi-
sualization techniques and shared static and dynamic features between different ran-
somware samples. Ransomware visualization techniques are presented in Section 4.1, while
shared static and dynamic features are presented in Sections 4.2 and 4.3 respectively. In
Section 4.4, our lab setup is presented. Time complexity is presented in Section 4.5. Finally,
in Section 4.6, we present the results from static and dynamic analyzers.

4.1. Visualization Techniques

In our approach to using visualization techniques to classify and analyze ransomware
samples, we started by selecting a dataset of ransomware samples (most matched ones)
and then applied a similarity matrix using a static and dynamic analyzer to find a fast
and suitable way to use it in our final approach. To identify the most similar samples, we
used a cluster engine to analyze the data and report the samples with the highest level of
similarity. We then used static and dynamic analysis techniques to generate a similarity
matrix for each group of samples. This matrix allowed us to visualize the relationships
between the different samples and identify patterns and trends in the data. Once we had
generated the similarity matrix, we used it to validate the query-sample similarity with the
matched samples. This helped us to confirm that the samples in the first group were indeed
the most similar ones and allowed us to identify any discrepancies or errors in the data.

Constructing nodes and connections between them helps to view and graph the data’s
connections. In other words, each sample is a node, and we may connect them and declare
they are comparable if they have similar DLL imports.

• The cluster engine reported the most similar samples from the set.
• There is a need to validate the query-sample similarity with the matched samples.
• It is also important to reveal intelligence from the data and discover the patterns.

The graphical representation in Figure 6 elucidates the Vendors Detection for a collec-
tion of ransomware samples. It is worth emphasizing that not all security vendors have
uniformly detected every sample within this dataset. This observation underscores the in-
herent variability in ransomware detection rates across different security solutions, thereby
emphasizing the critical need for robust and comprehensive cybersecurity strategies. In
the ensuing discussion, we will delve deeper into the implications of these detections. The
samples characterized by a consistent segment count are indicative of non-packed samples,
reflecting their unaltered and original nature within the dataset. This differentiation is
instrumental in our analysis of the dataset’s composition and assists in identifying potential
trends or variations among the samples. The numerical results for visualization techniques
can be found in Table 4.

The data depicted in Figure 7 reveals a noteworthy observation concerning the sample
sizes utilized within the context of this study. It is evident from the graphical represen-
tation that a predominant portion of the collected samples exhibited uniformity in their
respective sizes.

Information 2024, 15, 46 14 of 29Information 2024, 15, x FOR PEER REVIEW 15 of 32

Figure 6. Vendors Performance for Samples Detection.

The data depicted in Figure 7 reveals a noteworthy observation concerning the sam-
ple sizes utilized within the context of this study. It is evident from the graphical repre-
sentation that a predominant portion of the collected samples exhibited uniformity in their
respective sizes.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90

Nu
m

be
r o

f D
et

ec
tio

ns

Sample ID

Vendors Performance Disparities in Family Sample Detection

Figure 6. Vendors Performance for Samples Detection.

Table 4. Visualization of numerical results.

Number of Samples 80 Samples

Vendor Detection 100% (40 + vendors) detectability

Sample Size 57 samples with 55,200 bytes
23 samples with 55,300 bytes

IAT Count 111 imports
Internal Disassembled Functions Count 185 functions

Sample Segments 5 sections

Figure 8, which illustrates the counts of the Import Address Table (IAT) across various
samples, unequivocally highlights a remarkable consistency in these counts across all
the analyzed samples. This compelling consistency within the IAT counts underscores
the robustness of this static feature as a key determinant for effectively classifying and
clustering ransomware samples within our laboratory experiments.

Figure 9 provides an insightful depiction of the counts of internal functions across
the examined samples. Notably, a striking similarity becomes evident as one observes
the distribution of these internal function counts. This remarkable uniformity among
the samples in terms of internal function counts further solidifies the findings from our
laboratory experiments, affirming the robustness of our research results.

In Figure 10, we observe the counts of segments within portable executable (PE) files.
This analysis allows us to discern between packed and non-packed samples in our dataset.

Information 2024, 15, 46 15 of 29Information 2024, 15, x FOR PEER REVIEW 16 of 32

Figure 7. Sample Size Distribution.

Figure 8, which illustrates the counts of the Import Address Table (IAT) across vari-
ous samples, unequivocally highlights a remarkable consistency in these counts across all
the analyzed samples. This compelling consistency within the IAT counts underscores the
robustness of this static feature as a key determinant for effectively classifying and clus-
tering ransomware samples within our laboratory experiments.

55,350

55,400

55,450

55,500

55,550

55,600

55,650

0 10 20 30 40 50 60 70 80 90

Sa
m

pl
e

Si
ze

 in
 B

yt
es

Sample ID

Sample Size Distribution

Figure 7. Sample Size Distribution.

Information 2024, 15, x FOR PEER REVIEW 17 of 32

Figure 8. IAT Count Distribution.

Figure 9 provides an insightful depiction of the counts of internal functions across
the examined samples. Notably, a striking similarity becomes evident as one observes the
distribution of these internal function counts. This remarkable uniformity among the sam-
ples in terms of internal function counts further solidifies the findings from our laboratory
experiments, affirming the robustness of our research results.

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90

Nu
m

be
r o

f I
m

po
rt

s

Sample ID

IAT Count Distribution

Figure 8. IAT Count Distribution.

Information 2024, 15, 46 16 of 29Information 2024, 15, x FOR PEER REVIEW 18 of 32

Figure 9. Internal Disassembled-Functions Count Distribution.

In Figure 10, we observe the counts of segments within portable executable (PE) files.
This analysis allows us to discern between packed and non-packed samples in our dataset.

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90

Nu
m

be
r o

f I
nt

er
na

l F
un

ct
io

ns

Sample ID

Internal Disassembled-Functions Count Distribution

Figure 9. Internal Disassembled-Functions Count Distribution.
Information 2024, 15, x FOR PEER REVIEW 19 of 32

Figure 10. Sample Segments Count Distribution.

Visualization comparison is a powerful tool for analyzing and classifying different
types of ransomware. By visualizing the relationships between different samples, it is pos-
sible to identify common patterns and trends and to better understand the TTPs of differ-
ent ransomware families. In our research, we found that the Import Address Table and
Internal Function count were the most effective features for finding the similarity between
different ransomware samples. The Import Address Table is a data structure in a Windows
executable file that contains the addresses of imported functions from other dynamic link
libraries (DLLs). The Internal Function count is the number of functions defined in the
sample. By analyzing these features, we were able to identify common patterns and trends
in the data and to better understand the TTPs of different ransomware families. We also
found that obfuscated or packed samples could be identified by comparing the PE File
Segments of different samples. The PE File Segments are the different parts of a Windows
executable file that contain code, data, and other information. By comparing the Segment
count of different samples, we were able to identify those that had been packed or obfus-
cated as the default Segment count for a sample is typically around five.

4.2. Static Ransomware Classification System
The ransomware classification and detection system that we have proposed is de-

signed to analyze and classify different types of ransomware using a combination of static
and dynamic analysis techniques. It works by submitting samples to the system through
a Python API and then applying a classification and clustering algorithm using disassem-
bled binaries to extract various features and generate a mnemonic N-gram. The system
then calculates the Jaccard similarity between different samples and performs clustering
on those samples to group them into classified clusters. This allows analysts to identify
common patterns and trends in the TTPs of different ransomware families and to better
understand the relationships between different samples. The proposed static ransomware
classification and detection system includes a System Controller with APIs for submitting

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80 90

Nu
m

be
r o

f S
eg

m
en

ts

Sample ID

Sample Segments Count Distribution

Figure 10. Sample Segments Count Distribution.

Information 2024, 15, 46 17 of 29

Visualization comparison is a powerful tool for analyzing and classifying different
types of ransomware. By visualizing the relationships between different samples, it is
possible to identify common patterns and trends and to better understand the TTPs of
different ransomware families. In our research, we found that the Import Address Table and
Internal Function count were the most effective features for finding the similarity between
different ransomware samples. The Import Address Table is a data structure in a Windows
executable file that contains the addresses of imported functions from other dynamic
link libraries (DLLs). The Internal Function count is the number of functions defined in
the sample. By analyzing these features, we were able to identify common patterns and
trends in the data and to better understand the TTPs of different ransomware families.
We also found that obfuscated or packed samples could be identified by comparing the
PE File Segments of different samples. The PE File Segments are the different parts of a
Windows executable file that contain code, data, and other information. By comparing the
Segment count of different samples, we were able to identify those that had been packed or
obfuscated as the default Segment count for a sample is typically around five.

4.2. Static Ransomware Classification System

The ransomware classification and detection system that we have proposed is designed
to analyze and classify different types of ransomware using a combination of static and
dynamic analysis techniques. It works by submitting samples to the system through a
Python API and then applying a classification and clustering algorithm using disassembled
binaries to extract various features and generate a mnemonic N-gram. The system then
calculates the Jaccard similarity between different samples and performs clustering on those
samples to group them into classified clusters. This allows analysts to identify common
patterns and trends in the TTPs of different ransomware families and to better understand
the relationships between different samples. The proposed static ransomware classification
and detection system includes a System Controller with APIs for submitting ransomware
samples to the static analysis server and querying the MongoDB NoSQL database for
various properties. The Analyzer server on Windows retrieves the static characteristics and
attributes from the given samples through the disassembler process. Overall, the proposed
ransomware classification and detection system provides a comprehensive approach to
analyzing and classifying different types of ransomware. By using a combination of static
and dynamic analysis techniques, it can extract a wide range of features from ransomware
samples and generate a mnemonic N-gram to identify common patterns and trends in the
TTPs of different ransomware families. By performing clustering on the samples, it also
allows analysts to better understand the relationships between different samples and to
develop more effective defense and response strategies. The proposed static ransomware
classification and detection system diagram is illustrated in Figure 11.

4.3. Dynamic Ransomware Classification System

In this paper, we have presented a novel and efficient malware indexing system that
provides a range of search and analysis capabilities for ransomware analysts and reverse
engineers. The system is designed to analyze native binaries and to identify common
patterns and trends in the TTPs of different ransomware families. One of the key features
of the system is its ability to perform similarity checks between different samples and
to classify and cluster them based on their features and attributes. This allows analysts
to identify commonalities and differences between different ransomware families and
to better understand the relationships between different samples. One limitation of the
system is that it is mainly designed to analyze native binaries and may not be as effective at
analyzing packed or obfuscated samples. Many malware authors use packing techniques
to hide and obscure their code, making it more difficult to analyze and classify. However,
the system is still able to provide useful insights and intelligence for analysts working
with packed or obfuscated samples, as it relies on hybrid data from static and dynamic
analysis to identify common patterns and trends in the TTPs of different ransomware

Information 2024, 15, 46 18 of 29

families. Overall, the proposed malware indexing system is a valuable tool for analysts and
reverse engineers working with ransomware samples. By providing a range of search and
analysis capabilities, it helps analysts to identify common patterns and trends in the TTPs of
different ransomware families and to better understand the relationships between different
samples. This enables them to develop more effective defense and response strategies
and to more effectively mitigate the threat posed by ransomware. The proposed dynamic
ransomware classification and detection system diagram is illustrated in Figure 12.

Information 2024, 15, x FOR PEER REVIEW 20 of 32

ransomware samples to the static analysis server and querying the MongoDB NoSQL da-
tabase for various properties. The Analyzer server on Windows retrieves the static char-
acteristics and attributes from the given samples through the disassembler process. Over-
all, the proposed ransomware classification and detection system provides a comprehen-
sive approach to analyzing and classifying different types of ransomware. By using a com-
bination of static and dynamic analysis techniques, it can extract a wide range of features
from ransomware samples and generate a mnemonic N-gram to identify common pat-
terns and trends in the TTPs of different ransomware families. By performing clustering
on the samples, it also allows analysts to better understand the relationships between dif-
ferent samples and to develop more effective defense and response strategies. The pro-
posed static ransomware classification and detection system diagram is illustrated in Fig-
ure 11.

Figure 11. Static ransomware classification system block diagram.

4.3. Dynamic Ransomware Classification System
In this paper, we have presented a novel and efficient malware indexing system that

provides a range of search and analysis capabilities for ransomware analysts and reverse
engineers. The system is designed to analyze native binaries and to identify common pat-
terns and trends in the TTPs of different ransomware families. One of the key features of
the system is its ability to perform similarity checks between different samples and to
classify and cluster them based on their features and attributes. This allows analysts to
identify commonalities and differences between different ransomware families and to bet-
ter understand the relationships between different samples. One limitation of the system
is that it is mainly designed to analyze native binaries and may not be as effective at ana-
lyzing packed or obfuscated samples. Many malware authors use packing techniques to
hide and obscure their code, making it more difficult to analyze and classify. However,
the system is still able to provide useful insights and intelligence for analysts working
with packed or obfuscated samples, as it relies on hybrid data from static and dynamic
analysis to identify common patterns and trends in the TTPs of different ransomware fam-
ilies. Overall, the proposed malware indexing system is a valuable tool for analysts and
reverse engineers working with ransomware samples. By providing a range of search and
analysis capabilities, it helps analysts to identify common patterns and trends in the TTPs
of different ransomware families and to better understand the relationships between dif-
ferent samples. This enables them to develop more effective defense and response strate-
gies and to more effectively mitigate the threat posed by ransomware. The proposed dy-
namic ransomware classification and detection system diagram is illustrated in Figure 12.

Figure 11. Static ransomware classification system block diagram.

Information 2024, 15, x FOR PEER REVIEW 21 of 32

Figure 12. Dynamic ransomware classification system block diagram.

4.4. Lab Setup
The lab setup for our proposed malware indexing system includes a range of ma-

chines and tools that are designed to support the analysis and classification of different
types of malware presented in Table 5, including ransomware. The controller is the central
component that interacts with all the analysis engines and performs database queries to
retrieve relevant samples in response to analyst requests. It also submits samples to the
analyzer server for analysis. The analyzer server is responsible for disassembling execut-
able binaries into a set of static features and extracting pertinent properties and features
that the controller uses to classify the binaries. The disassembler is an important part of
the analyzer server, as it is responsible for breaking down the samples into their constitu-
ent parts and extracting the relevant features. MongoDB is used to index all the extracted
features so that they can be queried and analyzed using the Jaccard Index similarity func-
tion. This allows analysts to identify common patterns and trends quickly and easily in
the TTPs of different ransomware families and to better understand the relationships be-
tween different samples. VirusTotal is another important tool in our lab setup, as it pro-
vides a range of clustering and similarity-matching capabilities that allow analysts to
group and classify different samples based on their features and attributes. It also includes
a comprehensive graph view that enables analysts to visualize the relationships between
different malware objects and to better understand how they are associated with specific
campaigns. Overall, the lab setup for our proposed malware indexing system is designed
to provide analysts with the tools and resources they need to effectively analyze and clas-
sify different types of malware, including ransomware. It includes a range of machines
and tools that support the disassembly and analysis of executable binaries, as well as pow-
erful indexing and querying capabilities that enable analysts to identify common patterns
and trends in the TTPs of different malware families. The full-matched ransomware clas-
sification and detection system diagram is illustrated in Figure 13.

Figure 12. Dynamic ransomware classification system block diagram.

4.4. Lab Setup

The lab setup for our proposed malware indexing system includes a range of machines
and tools that are designed to support the analysis and classification of different types
of malware presented in Table 5, including ransomware. The controller is the central
component that interacts with all the analysis engines and performs database queries to
retrieve relevant samples in response to analyst requests. It also submits samples to the
analyzer server for analysis. The analyzer server is responsible for disassembling executable
binaries into a set of static features and extracting pertinent properties and features that the

Information 2024, 15, 46 19 of 29

controller uses to classify the binaries. The disassembler is an important part of the analyzer
server, as it is responsible for breaking down the samples into their constituent parts and
extracting the relevant features. MongoDB is used to index all the extracted features so
that they can be queried and analyzed using the Jaccard Index similarity function. This
allows analysts to identify common patterns and trends quickly and easily in the TTPs of
different ransomware families and to better understand the relationships between different
samples. VirusTotal is another important tool in our lab setup, as it provides a range of
clustering and similarity-matching capabilities that allow analysts to group and classify
different samples based on their features and attributes. It also includes a comprehensive
graph view that enables analysts to visualize the relationships between different malware
objects and to better understand how they are associated with specific campaigns. Overall,
the lab setup for our proposed malware indexing system is designed to provide analysts
with the tools and resources they need to effectively analyze and classify different types of
malware, including ransomware. It includes a range of machines and tools that support the
disassembly and analysis of executable binaries, as well as powerful indexing and querying
capabilities that enable analysts to identify common patterns and trends in the TTPs of
different malware families. The full-matched ransomware classification and detection
system diagram is illustrated in Figure 13.

Table 5. Machines and tools used in dynamic analyzer lab setup.

Components Purpose Technology Output

System
Controller

The main component that interacts with all the analysis engines
and performs database queries to retrieve relevant samples in
response to analyst requests is the controller. This component is the
central hub of the malware indexing system and is responsible for
coordinating the analysis and classification of different types of
malware, including ransomware. It receives requests from analysts
and communicates with the various analysis engines to gather the
necessary data and information. The controller also interacts with
the database to retrieve relevant samples based on the analyst’s
requests, ensuring that the analyst has access to the most up-to-date
and relevant data. Overall, the controller plays a critical role in the
operation of the malware indexing system, enabling analysts to
access the data and information quickly and easily in order to
effectively analyze and classify different types of malware.

APIs modules Hybrid attributes

Analyzer
Engine

The analyzer server is responsible for converting executable
binaries into a set of static features through disassembly to extract
relevant static attributes that can be used by the controller to
classify the binaries. This process involves breaking down the
samples into their constituent parts and extracting the relevant
features, such as function names, imported libraries, and other
characteristics. The analyzer server uses a disassembler tool to
perform this process, which is an important part of the overall
malware indexing system. In addition to extracting static features,
the analyzer server is also responsible for converting the set of
binaries into dynamic attributes through sandboxing. Sandboxing
involves running the samples in a controlled environment and
observing their behavior to extract dynamic attributes, such as
network traffic, file system changes, and other activities. These
dynamic attributes can be used to supplement the static features to
classify and analyze the samples more accurately. Overall, the
analyzer server plays a critical role in the operation of the malware
indexing system, providing the necessary data and information
that enables analysts to effectively analyze and classify different
types of malware.

Disassembling
Decompiling

Static features:
Function names

Imported libraries
Strings and

string patterns
File size and metadata

Dynamic features:
Network traffic and

connection
information

API Calls
File system changes
Process and thread

behavior
Memory modifications

Registry changes
System and
library calls

Information 2024, 15, 46 20 of 29

Table 5. Cont.

Components Purpose Technology Output

MonogoDB

MongoDB is a document-based store for all the extracted attributes by
the analysis engines. It is an NoSQL database that is designed to
handle large amounts of data and to support flexible and scalable data
models. In the context of the malware indexing system, MongoDB is
used to store all the extracted static and dynamic features from the
analyzer server, as well as any additional metadata or information
about the samples. These data are then used by the controller to
perform various analysis and classification tasks, such as calculating
the Jaccard Index similarity between different samples or clustering the
samples into different categories. By providing a centralized repository
for all the extracted features, MongoDB enables analysts to access and
analyze the data more easily, and to perform complex queries and
searches across the entire dataset.

Receive
controller

queries for
binaries

features and
attributes.

Hybrid attributes

Disassembler
(Ghidra 11.0)

Ghidra used to extract static features from malware samples. Ghidra is
a powerful and feature-rich tool that is developed and maintained by
the National Security Agency (NSA). It provides a wide range of
features and functionality that are useful in the analysis of malware,
including the ability to disassemble code, view and edit assembly
instructions, and perform various other tasks. In the context of the
malware indexing system, Ghidra could be used to disassemble the
samples to extract static features such as function names, imported
libraries, and other characteristics. These features could then be stored
in the MongoDB database for use in various analysis and
classification tasks.

Disassembling Static features of
the samples

Sandbox
(Cuckoo)

Cuckoo Sandbox is a powerful and widely used tool that is used to
extract dynamic features from malware samples. It is an open-source
sandboxing platform that allows users to analyze the behavior of
malware in a controlled environment. By analyzing the behavior of
malware in a sandbox, analysts can extract various dynamic features
such as network traffic, file system changes, and other characteristics
that may not be visible through static analysis alone. In the context of
the malware indexing system, Cuckoo Sandbox could be used to
extract dynamic features from the samples and store them in the
MongoDB database. These dynamic features could be used in
conjunction with the static features extracted through disassembly to
provide a more complete picture of the malware’s behavior and
capabilities.

Sandboxing Dynamic features
of the samples

Python
PyCharm
(2023.3.2)

Python PyCharm is a powerful integrated development environment
(IDE) that is often used in the development of Python programs. It is a
popular choice among developers due to its feature-rich set of tools
and capabilities, including code completion, debugging, testing, and
deployment. In the context of the malware indexing system, Python
PyCharm could be used to develop and maintain the various
components of the system, including the analysis engines, the
controller, and the database.

Python IDE

System scripts
Database

connections script
Sample

submissions script

VirusTotal

VirusTotal is a powerful tool that allows users to scan files and URLs
against a vast array of antivirus engines and other security tools. This
enables analysts to identify malicious content and track the evolution
of malware over time quickly and easily. In our study, we used
VirusTotal to collect a large dataset of ransomware samples, which we
then analyzed using various techniques such as static analysis,
dynamic analysis, and visualization. By leveraging the power of
VirusTotal, we were able to gather a large and diverse set of
ransomware samples quickly and efficiently, which allowed us to more
accurately and effectively classify and cluster the samples. Overall,
VirusTotal proved to be a valuable resource in our study, and it is a
powerful tool that is widely used in the field of malware analysis

VirusTotal
Hunting
feature

Collected
ransomware

samples

Information 2024, 15, 46 21 of 29Information 2024, 15, x FOR PEER REVIEW 22 of 32

Figure 13. Full-matched ransomware classification system block diagram.

Table 5. Machines and tools used in dynamic analyzer lab setup.

Components Purpose Technology Output

System Con-
troller

The main component that interacts with all the analysis en-
gines and performs database queries to retrieve relevant
samples in response to analyst requests is the controller.
This component is the central hub of the malware indexing
system and is responsible for coordinating the analysis and
classification of different types of malware, including ran-
somware. It receives requests from analysts and communi-
cates with the various analysis engines to gather the neces-
sary data and information. The controller also interacts with
the database to retrieve relevant samples based on the ana-
lyst’s requests, ensuring that the analyst has access to the
most up-to-date and relevant data. Overall, the controller
plays a critical role in the operation of the malware indexing
system, enabling analysts to access the data and information
quickly and easily in order to effectively analyze and clas-
sify different types of malware.

APIs modules Hybrid attributes

Analyzer En-
gine

The analyzer server is responsible for converting executable
binaries into a set of static features through disassembly to
extract relevant static attributes that can be used by the con-
troller to classify the binaries. This process involves break-
ing down the samples into their constituent parts and ex-
tracting the relevant features, such as function names, im-
ported libraries, and other characteristics. The analyzer
server uses a disassembler tool to perform this process,
which is an important part of the overall malware indexing
system. In addition to extracting static features, the analyzer
server is also responsible for converting the set of binaries
into dynamic attributes through sandboxing. Sandboxing
involves running the samples in a controlled environment

Disassembling
Decompiling

Static features:
Function names

Imported libraries
Strings and string

patterns
File size and

metadata

Dynamic features:
Network traffic and

connection infor-
mation

API Calls

Figure 13. Full-matched ransomware classification system block diagram.

4.5. Time Complexity

In the realm of malware detection and classification, the consideration of time com-
plexity is paramount, as the potential damages inflicted by threats may occur before a
detection or classification system has the chance to identify them. Understanding the time
efficiency of our system is crucial for ensuring timely responses to potential threats [50–52].

4.5.1. Static vs. Dynamic Analysis

Our system incorporates both static and dynamic analysis approaches to strike a
balance between speed and accuracy. Static analysis, while fast, may exhibit reduced
accuracy on certain samples. On the other hand, dynamic analysis, although accurate,
tends to be slower in terms of analysis time.

4.5.2. Hybrid Approach for Optimal Time Efficiency

To address this trade-off, we have implemented a hybrid approach that combines
the strengths of both static and dynamic analyses. This hybridization aims to achieve an
optimal average time complexity for our system.

Static analysis time: approximately 5–10 s per sample.
Dynamic analysis time: approximately 30–60 s per sample.

By integrating static and dynamic analyses, we have achieved an average time com-
plexity of 2–5 s per sample. Additionally, samples that have been previously analyzed and
added to our database incur zero seconds of analysis time during subsequent evaluations.
This strategic combination enables us to deliver efficient and accurate results within a
reasonable time frame.

4.5.3. Continuous Database Augmentation

To further enhance the time efficiency of our system, we encourage users to contin-
uously contribute samples to our database. By doing so, the likelihood of encountering
previously analyzed samples increases. Consequently, the analysis time for these samples
becomes virtually instantaneous, offering an additional layer of efficiency.

Information 2024, 15, 46 22 of 29

4.5.4. Proactive Sample Analysis

Users are also encouraged to submit suspicious samples to our system for analysis
before execution. This proactive approach enables preemptive identification of potential
threats, contributing to an overall improvement in system responsiveness.

In conclusion, our approach to time complexity involves a thoughtful integration
of static and dynamic analyses, coupled with continuous database augmentation and
proactive sample analysis. This multifaceted strategy ensures a swift and accurate response
to emerging threats in the ever-evolving landscape of malware detection.

4.6. Results

The results of our analysis show that the use of minhash and Jaccard index for feature
comparison is an effective method for accurately estimating the degree of code sharing
between different ransomware samples. By applying minhash to the strings, Import
Address Table, and API call features extracted from our ransomware samples, we were
able to identify highly similar samples with a high degree of accuracy. This approach
allowed us to cluster the samples into distinct groups, enabling us to identify relationships
between different ransomware families and variants more easily. In addition to the minhash
and Jaccard index, we also employed other visualization techniques, such as the use of
graph networks and dendrograms, to further aid in the analysis and interpretation of the
data. These techniques allowed us to visually explore the relationships between different
malware samples and identify patterns and trends that would have been difficult to discern
using other methods. In our proposed approach, the first step is to store the ransomware
samples in a database or repository. This can be done by manually collecting the samples
or using an automated tool to gather them from various sources such as online scanners or
honeypots. Next, the samples are indexed using a variety of features such as strings, Import
Address Table, or API calls. These features are extracted from the samples using static or
dynamic analysis techniques and stored in the database for later use. Once the samples are
indexed, analysts can search for specific samples or groups of samples using various search
criteria such as ransomware family, encryption algorithm, or date of discovery. Finally,
the similarity between the samples can be visualized using various techniques such as
clustering or similarity matrices. These visualizations can help analysts quickly understand
the relationships between different ransomware samples and identify patterns or trends in
the data.

i. Strings-Based Similarity

We propose a method for identifying the similarity between different ransomware
samples using strings as a feature. By extracting all contiguous printable sequences of char-
acters from the samples and generating the Jaccard index between all pairs of ransomware
samples based on their common string relationships, we can compute the strings-based
ransomware similarity. Strings taken from a binary tend to be format strings established
by the programmer, which compilers in general do not transform, regardless of which
compilers the ransomware authors use or what parameters they provide the compilers.
This strategy allows us to bypass the compiler difficulty and accurately identify similarities
between different ransomware samples. The similarity matrix generated using extracted
static strings as a feature is illustrated in Figure 14.

In our static analysis, the absolute time required per sample is consistently 5 s, indica-
tive of the efficiency of our static analyzer. Additionally, the absolute Jaccard index for
similarity among the samples is 0.3. This Jaccard index value highlights the fast-processing
nature of our static analysis; however, it is important to note that a Jaccard index of
0.3 signifies a lower level of accuracy in capturing similarities between the samples. This
trade-off between speed and accuracy is a key consideration in our approach, aiming to
strike a balance that aligns with the requirements of timely detection.

Information 2024, 15, 46 23 of 29

Information 2024, 15, x FOR PEER REVIEW 26 of 32

of 0.3 signifies a lower level of accuracy in capturing similarities between the samples.
This trade-off between speed and accuracy is a key consideration in our approach, aiming
to strike a balance that aligns with the requirements of timely detection.

Figure 14. The similarity matrix generated using string features.

ii. Import Address Table–Based Similarity
Ransomware analysts and reverse engineers can use the Import Address Table (IAT)

feature to identify the shared code between different ransomware samples. By comparing
the IAT of two samples, analysts can determine the extent to which the samples use the
same imported DLLs and functions. This information can be useful in identifying the re-
lationships between different ransomware families and in understanding the evolution of
individual families over time. To generate the IAT-based similarity matrix, analysts can
extract the IAT from each sample and compute the Jaccard index between all pairs of sam-
ples based on their common IAT entries. The resulting matrix can then be visualized using
a variety of techniques, such as clustering or network analysis, to identify patterns and
trends within the data. By using the IAT feature in combination with other static and dy-
namic analysis techniques, analysts can gain a more comprehensive understanding of the
relationships between different ransomware samples and can more effectively classify and
cluster them for further analysis. Overall, the use of the IAT feature in ransomware anal-
ysis can greatly improve the efficiency and accuracy of malware classification and cluster-
ing efforts. The similarity matrix generated using the extracted static Import address table
as a feature is illustrated in Figure 15. In our import address table (IAT) analysis, the ab-
solute time required for processing each sample falls within the range of 5 to 10 s. This
indicates the efficiency of our IAT analysis, striking a balance between speed and compre-
hensive examination. Notably, the absolute Jaccard index for similarity among samples in
the context of IAT analysis is 0.86. This high Jaccard index value attests to the accuracy of
our IAT analysis, showcasing its effectiveness in capturing similarities between samples.
This combination of relatively fast processing time and a high Jaccard index underlines
the efficacy of our approach in achieving both speed and accuracy in import address table
analysis.

Figure 14. The similarity matrix generated using string features.

ii. Import Address Table–Based Similarity

Ransomware analysts and reverse engineers can use the Import Address Table (IAT)
feature to identify the shared code between different ransomware samples. By comparing
the IAT of two samples, analysts can determine the extent to which the samples use the
same imported DLLs and functions. This information can be useful in identifying the
relationships between different ransomware families and in understanding the evolution
of individual families over time. To generate the IAT-based similarity matrix, analysts
can extract the IAT from each sample and compute the Jaccard index between all pairs of
samples based on their common IAT entries. The resulting matrix can then be visualized
using a variety of techniques, such as clustering or network analysis, to identify patterns
and trends within the data. By using the IAT feature in combination with other static and
dynamic analysis techniques, analysts can gain a more comprehensive understanding of
the relationships between different ransomware samples and can more effectively classify
and cluster them for further analysis. Overall, the use of the IAT feature in ransomware
analysis can greatly improve the efficiency and accuracy of malware classification and
clustering efforts. The similarity matrix generated using the extracted static Import address
table as a feature is illustrated in Figure 15. In our import address table (IAT) analysis,
the absolute time required for processing each sample falls within the range of 5 to 10 s.
This indicates the efficiency of our IAT analysis, striking a balance between speed and
comprehensive examination. Notably, the absolute Jaccard index for similarity among
samples in the context of IAT analysis is 0.86. This high Jaccard index value attests to the
accuracy of our IAT analysis, showcasing its effectiveness in capturing similarities between
samples. This combination of relatively fast processing time and a high Jaccard index
underlines the efficacy of our approach in achieving both speed and accuracy in import
address table analysis.

Information 2024, 15, 46 24 of 29Information 2024, 15, x FOR PEER REVIEW 27 of 32

Figure 15. The similarity matrix generated using the Import Address Table (IAT) feature.

Ransomware’s clustering is useful for grouping a large set of samples into a known
or unknown number of groups or clusters, with objects in each cluster having a high de-
gree of similarity and objects in other clusters being dissimilar. We proposed an efficient
malware indexing system that provides search functionalities, similarity checking, and
sample classification and clustering. The system mainly targets native binary files. The
indexing engine depends on hybrid data from static features extraction, comparing differ-
ent ransomware families to find the similarity matrix between those samples. We com-
pared different static features by checking the similarity matrix for different ransomware
families. Our research has proven that the Import Address Table (IAT) is the best feature
for finding similar ransomware samples. The limitations in finding similarities between
ransomware samples are the classification and clustering of the packed samples. There-
fore, we focused on using a dynamic analyzer integrated with sandboxing to extract dy-
namic features like API calls. Using dynamic analyzer and static analyzer features and
comparing different features-based similarity matrices will help in clustering and classi-
fying packed and unpacked ransomware samples.

iii. API calls-Based Similarity
To find similarities between ransomware samples, we utilized API calls as a dynamic

feature. By analyzing the API calls made by a sample during runtime through sandboxing,
we were able to extract valuable information about the sample’s behavior and use it to
compare with other samples. This method proved particularly effective in identifying
packed samples, which can often be difficult to classify using static features alone. Using
API calls as a dynamic feature allowed us to accurately cluster and classify a large dataset
of ransomware samples, including both packed and unpacked samples. By comparing the
API call similarity matrix between different ransomware families, we were able to identify
shared behavior and characteristics that helped us better understand the relationships be-
tween different samples. The similarity matrix generated using extracted dynamic API
calls as a feature is illustrated in Figure 16. In our dynamic analysis of method API calls,
the absolute time required for processing each sample typically ranges from 30 s to 60 s,
contingent upon the complexity of the sample. Despite the relatively longer processing

Figure 15. The similarity matrix generated using the Import Address Table (IAT) feature.

Ransomware’s clustering is useful for grouping a large set of samples into a known
or unknown number of groups or clusters, with objects in each cluster having a high
degree of similarity and objects in other clusters being dissimilar. We proposed an effi-
cient malware indexing system that provides search functionalities, similarity checking,
and sample classification and clustering. The system mainly targets native binary files.
The indexing engine depends on hybrid data from static features extraction, comparing
different ransomware families to find the similarity matrix between those samples. We com-
pared different static features by checking the similarity matrix for different ransomware
families. Our research has proven that the Import Address Table (IAT) is the best feature
for finding similar ransomware samples. The limitations in finding similarities between
ransomware samples are the classification and clustering of the packed samples. Therefore,
we focused on using a dynamic analyzer integrated with sandboxing to extract dynamic
features like API calls. Using dynamic analyzer and static analyzer features and comparing
different features-based similarity matrices will help in clustering and classifying packed
and unpacked ransomware samples.

iii. API calls-Based Similarity

To find similarities between ransomware samples, we utilized API calls as a dynamic
feature. By analyzing the API calls made by a sample during runtime through sandboxing,
we were able to extract valuable information about the sample’s behavior and use it to
compare with other samples. This method proved particularly effective in identifying
packed samples, which can often be difficult to classify using static features alone. Using
API calls as a dynamic feature allowed us to accurately cluster and classify a large dataset
of ransomware samples, including both packed and unpacked samples. By comparing the
API call similarity matrix between different ransomware families, we were able to identify
shared behavior and characteristics that helped us better understand the relationships
between different samples. The similarity matrix generated using extracted dynamic API
calls as a feature is illustrated in Figure 16. In our dynamic analysis of method API calls,
the absolute time required for processing each sample typically ranges from 30 s to 60 s,
contingent upon the complexity of the sample. Despite the relatively longer processing

Information 2024, 15, 46 25 of 29

time, this method is designed to provide a thorough and detailed analysis of the dynamic
behavior of samples.

Information 2024, 15, x FOR PEER REVIEW 28 of 32

time, this method is designed to provide a thorough and detailed analysis of the dynamic
behavior of samples.

Remarkably, the absolute Jaccard index for similarity among samples in the context
of dynamic analysis method API calls is 1. This perfect matching Jaccard index signifies
full similarity, indicating that the dynamic analysis method precisely identifies identical
patterns across samples. While the method requires more time for analysis, the perfect
matching Jaccard underscores its high accuracy in capturing similarities between samples,
making it a robust tool for comprehensive dynamic analysis.

Figure 16. The similarity matrix generated using the API Call feature.

To provide a concise and comprehensive overview of our ransomware classification
system, we present a detailed comparison of key features, time complexities, and analysis
methods in the form of a diagram and table. The diagram illustrated in Figure 17 visually
encapsulates the essential characteristics of our approach, highlighting the distinct time
complexities and trade-offs associated with each analyzed feature static strings, static Im-
port Address Table (IAT), and dynamic API calls.

A comparative analysis of ransomware classification features is described in Table 6,
with a numerical comparison between static and dynamic analyzers.

Figure 17. Ransomware classification system features.

Figure 16. The similarity matrix generated using the API Call feature.

Remarkably, the absolute Jaccard index for similarity among samples in the context
of dynamic analysis method API calls is 1. This perfect matching Jaccard index signifies
full similarity, indicating that the dynamic analysis method precisely identifies identical
patterns across samples. While the method requires more time for analysis, the perfect
matching Jaccard underscores its high accuracy in capturing similarities between samples,
making it a robust tool for comprehensive dynamic analysis.

To provide a concise and comprehensive overview of our ransomware classification
system, we present a detailed comparison of key features, time complexities, and analysis
methods in the form of a diagram and table. The diagram illustrated in Figure 17 visually
encapsulates the essential characteristics of our approach, highlighting the distinct time
complexities and trade-offs associated with each analyzed feature static strings, static
Import Address Table (IAT), and dynamic API calls.

Information 2024, 15, x FOR PEER REVIEW 28 of 32

time, this method is designed to provide a thorough and detailed analysis of the dynamic
behavior of samples.

Remarkably, the absolute Jaccard index for similarity among samples in the context
of dynamic analysis method API calls is 1. This perfect matching Jaccard index signifies
full similarity, indicating that the dynamic analysis method precisely identifies identical
patterns across samples. While the method requires more time for analysis, the perfect
matching Jaccard underscores its high accuracy in capturing similarities between samples,
making it a robust tool for comprehensive dynamic analysis.

Figure 16. The similarity matrix generated using the API Call feature.

To provide a concise and comprehensive overview of our ransomware classification
system, we present a detailed comparison of key features, time complexities, and analysis
methods in the form of a diagram and table. The diagram illustrated in Figure 17 visually
encapsulates the essential characteristics of our approach, highlighting the distinct time
complexities and trade-offs associated with each analyzed feature static strings, static Im-
port Address Table (IAT), and dynamic API calls.

A comparative analysis of ransomware classification features is described in Table 6,
with a numerical comparison between static and dynamic analyzers.

Figure 17. Ransomware classification system features.
Figure 17. Ransomware classification system features.

A comparative analysis of ransomware classification features is described in Table 6,
with a numerical comparison between static and dynamic analyzers.

Information 2024, 15, 46 26 of 29

Table 6. Comparative analysis of ransomware classification features.

Feature Strings Import Adress Table API Calls

Analysis Method Static Static Dynamic
Time Complexity (per sample) 5 s 5–10 s 30–60 s

Similarity Accuracy 0.3 0.86 1 (Perfect Matching)

Analysis Efficiency Fast processing Balanced speed and
comprehensive examination

Thorough analysis, longer
processing time

Trade-off (Speed
vs. Accuracy)

Emphasis on speed,
lower accuracy

Balanced approach,
high accuracy

Longer processing time for
thorough dynamic analysis

5. Conclusions and Future Work

In this paper, we proposed a comprehensive approach for ransomware classification
based on the comparison of similarity matrices derived from static analysis, dynamic
analysis, and visualization. We extracted features from ransomware samples using multi-
ple analysis techniques and generated similarity matrices based on these features. These
matrices were then compared using various comparison algorithms to identify similar-
ities and differences between the samples. The resulting similarity scores were used to
classify the samples into different categories, such as families, variants, and versions. We
evaluated our approach using a dataset of ransomware samples and demonstrated that
it can accurately classify the samples with a high degree of accuracy. One advantage of
our approach is the use of visualization, which allows us to classify and cluster large
datasets of ransomware in a more intuitive and effective way. In addition, static anal-
ysis has the advantage of being fast and accurate, while dynamic analysis allows us to
classify and cluster packed ransomware samples. Our study demonstrates the potential
of using a comprehensive approach based on the comparison of multiple analysis tech-
niques, including static analysis, dynamic analysis, and visualization, for the accurate and
efficient classification of ransomware. It also highlights the importance of considering
multiple analysis techniques in the development of effective ransomware classification
methods, especially when dealing with large datasets and packed samples. In conclusion,
our proposed comprehensive approach for ransomware classification is an effective and
efficient method for accurately classifying and clustering ransomware samples. The use
of visualization techniques is particularly useful for large datasets, while static analysis is
fast and accurate, and dynamic analysis is useful for finding packed ransomware samples.
By considering multiple analysis techniques, we can develop more effective methods for
classifying and detecting ransomware, helping to protect individuals and organizations
from this growing and evolving threat. In our future work, we plan to incorporate dynamic
instrumentation into our ransomware classification approach to improve its accuracy and
efficiency. Dynamic instrumentation involves monitoring and modifying the behavior of
a program as it is being executed, which can provide valuable insights into the internal
functions and communication patterns of ransomware. One approach we plan to explore
is using dynamic instrumentation to track the internal functions of ransomware and how
they interact with each other. By understanding the function calls and communication
patterns of ransomware, we can potentially identify weaknesses and vulnerabilities that
can be exploited to limit its damage or even decrypt affected files without paying the
ransom. Additionally, we plan to investigate the use of machine learning techniques in
combination with dynamic instrumentation to automate the process of identifying and
classifying ransomware. By training a model on a large dataset of ransomware samples and
their corresponding internal function calls and communication patterns, we can potentially
develop a system that can accurately and efficiently classify new ransomware samples in
real time.

Information 2024, 15, 46 27 of 29

Author Contributions: Conceptualization, B.Y., N.A. and M.A.A.; methodology, B.Y. and M.A.A.;
software, B.Y.; validation, B.Y., N.A. and M.A.A.; formal analysis, B.Y., N.A. and M.A.A.; investigation,
B.Y., M.S.E. and M.A.A.; resources, B.Y.; data curation, B.Y. and M.A.A.; writing—original draft
preparation, B.Y., A.D.J., N.A. and M.A.A.; writing—review and editing, B.Y., M.S.E., A.D.J., N.A. and
M.A.A.; visualization, B.Y., M.S.E., A.D.J., N.A. and M.A.A.; supervision, A.D.J., M.S.E. and M.A.A.;
project administration, B.Y., M.S.E., A.D.J., N.A. and M.A.A.; funding acquisition, A.D.J. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the University College Dublin (UCD), School of Computer
Science, Dublin, Ireland, grant number 13/RC/2077.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: This article does not contain any studies with human participants or
animals performed by any of the authors.

Data Availability Statement: Data in this research paper will be shared upon request made to the
corresponding author.

Conflicts of Interest: All authors declare that they have no conflict of interest for the presented work.

References
1. Gopinath, M.; Sethuraman, S.C. A comprehensive survey on deep learning based malware detection techniques. Comput. Sci. Rev.

2023, 47, 100529.
2. Brown, A.; Gupta, M.; Abdelsalam, M. Automated machine learning for deep learning based malware detection. Comput. Secur.

2024, 137, 103582.
3. Kok, S.; Abdullah, A.; Jhanjhi, N.; Supramaniam, M. Ransomware, threat and detection techniques: A review. Int. J. Comput. Sci.

Netw. Secur. 2019, 19, 136.
4. Yadav, C.S.; Singh, J.; Yadav, A.; Pattanayak, H.S.; Kumar, R.; Khan, A.A.; Haq, M.A.; Alhussen, A.; Alharby, S. Malware analysis

in iot & android systems with defensive mechanism. Electronics 2022, 11, 2354.
5. Rey, V.; Sánchez, M.S.; Celdrán, A.H.; Bovet, G. Federated learning for malware detection in IoT devices. Comput. Netw. 2022,

204, 108693. [CrossRef]
6. Johnson, S.; Gowtham, R.; Nair, A.R. Ensemble Model Ransomware Classification: A Static Analysis-based Approach. In Inventive

Computation and Information Technologies: Proceedings of ICICIT 2021; Springer Nature: Singapore, 2022; pp. 153–167.
7. Al-rimy, B.A.S.; Maarof, M.A.; Shaid, S.Z.M. Ransomware threat success factors, taxonomy, and countermeasures: A survey and

research directions. Comput. Secur. 2018, 74, 144–166. [CrossRef]
8. Akhtar, Z. Malware detection and analysis: Challenges and research opportunities. arXiv 2021, arXiv:2101.08429.
9. Tahir, R. A study on malware and malware detection techniques. Int. J. Educ. Manag. Eng. 2018, 8, 20. [CrossRef]
10. Yamany, B.; Elsayed, M.S.; Jurcut, A.D.; Abdelbaki, N.; Azer, M.A. A New Scheme for Ransomware Classification and Clustering

Using Static Features. Electronics 2022, 11, 3307. [CrossRef]
11. Yamany, B.E.M.; Azer, M.A. SALAM Ransomware Behavior Analysis Challenges and Decryption. In Proceedings of the 2021

Tenth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 5–7 December 2021;
pp. 273–277.

12. Fernando, D.W.; Komninos, N.; Chen, T. A study on the evolution of ransomware detection using machine learning and deep
learning techniques. IoT 2020, 1, 551–604. [CrossRef]

13. Khan, F.; Ncube, C.; Ramasamy, L.K.; Kadry, S.; Nam, Y. A digital DNA sequencing engine for ransomware detection using
machine learning. IEEE Access 2020, 8, 119710–119719. [CrossRef]

14. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A review of android malware detection approaches based on machine learning.
IEEE Access 2020, 8, 124579–124607. [CrossRef]

15. Bae, S.I.; Lee, G.B.; Im, E.G. Ransomware detection using machine learning algorithms. Concurr. Comput. Pract. Exp. 2020, 32,
e5422. [CrossRef]

16. Chakkaravarthy, S.S.; Sangeetha, D.; Cruz, M.V.; Vaidehi, V.; Raman, B. Design of intrusion detection honeypot using social
leopard algorithm to detect IoT ransomware attacks. IEEE Access 2020, 8, 169944–169956. [CrossRef]

17. El-Kosairy, A.; Azer, M.A. Intrusion and ransomware detection system. In Proceedings of the 2018 1st International Conference
on Computer Applications & Information Security (ICCAIS), Riyadh, Saudi Arabia, 4–6 April 2018; pp. 1–7.

18. Vishwakarma, R.; Jain, A.K. A honeypot with machine learning based detection framework for defending IoT based botnet DDoS
attacks. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli,
India, 23–25 April 2019; pp. 1019–1024.

19. Keong Ng, C.; Rajasegarar, S.; Pan, L.; Jiang, F.; Zhang, L.Y. VoterChoice: A ransomware detection honeypot with multiple voting
framework. Concurr. Comput. Pract. Exp. 2020, 32, e5726. [CrossRef]

https://doi.org/10.1016/j.comnet.2021.108693
https://doi.org/10.1016/j.cose.2018.01.001
https://doi.org/10.5815/ijeme.2018.02.03
https://doi.org/10.3390/electronics11203307
https://doi.org/10.3390/iot1020030
https://doi.org/10.1109/ACCESS.2020.3003785
https://doi.org/10.1109/ACCESS.2020.3006143
https://doi.org/10.1002/cpe.5422
https://doi.org/10.1109/ACCESS.2020.3023764
https://doi.org/10.1002/cpe.5726

Information 2024, 15, 46 28 of 29

20. Pont, J.; Arief, B.; Hernandez-Castro, J. Why current statistical approaches to ransomware detection fail. In Proceedings of the
International Conference on Information Security, Bali, Indonesia, 16–18 December 2020; Springer International Publishing:
Cham, Switzerland, 2020; pp. 199–216.

21. Yewale, A.; Singh, M. Malware detection based on opcode frequency. In Proceedings of the 2016 International Conference
on Advanced Communication Control and Computing Technologies (ICACCCT), Ramanathapuram, India, 25–27 May 2016;
pp. 646–649.

22. Rezaei, S.; Afraz, A.; Rezaei, F.; Shamani, M.R. Malware detection using opcodes statistical features. In Proceedings of the 2016
8th International Symposium On Telecommunications (IST), Tehran, Iran, 27–28 September 2016; pp. 151–155.

23. Verma, V.; Muttoo, S.K.; Singh, V.B. Multiclass malware classification via first-and second-order texture statistics. Comput. Secur.
2020, 97, 101895. [CrossRef]

24. Du, P.; Sun, Z.; Chen, H.; Cho, J.H.; Xu, S. Statistical estimation of malware detection metrics in the absence of ground truth. IEEE
Trans. Inf. Forensics Secur. 2018, 13, 2965–2980. [CrossRef]

25. Bijitha, C.V.; Sukumaran, R.; Nath, H.V. A survey on ransomware detection techniques. In Secure Knowledge Management in
Artificial Intelligence Era: 8th International Conference, SKM 2019, Goa, India, 21–22 December 2019; Proceedings 8; Springer: Singapore,
2020; pp. 55–68.

26. Bello, A.; Maurushat, A. Synthesis of Evidence on Existing and Emerging Social Engineering Ransomware Attack Vectors. In
Cybersecurity Issues, Challenges, and Solutions in the Business World; IGI Global: Hershey, PA, USA, 2023; pp. 234–254.

27. Cai, C.X.; Zhao, R. Salience theory and cryptocurrency returns. J. Bank. Financ. 2024, 159, 107052. [CrossRef]
28. Oz, H.; Aris, A.; Levi, A.; Uluagac, A.S. A survey on ransomware: Evolution, taxonomy, and defense solutions. ACM Comput.

Surv. (CSUR) 2022, 54, 1–37. [CrossRef]
29. Alzahrani, S.; Xiao, Y.; Sun, W. An analysis of conti ransomware leaked source codes. IEEE Access 2022, 10, 100178–100193.

[CrossRef]
30. Shu, R.; Xia, T.; Williams, L.; Menzies, T. Omni: Automated ensemble with unexpected models against adversarial evasion attack.

Empir. Softw. Eng. 2022, 27, 26. [CrossRef]
31. Alagappan, A.; Venkatachary, S.K.; Andrews, L.J.B. Augmenting Zero Trust Network Architecture to enhance security in virtual

power plants. Energy Rep. 2022, 8, 1309–1320. [CrossRef]
32. Whyte, C.; Mazanec, B. Understanding Cyber-Warfare: Politics, Policy and Strategy; Routledge: Oxford, UK, 2023.
33. Berrueta, E.; Morato, D.; Magaña, E.; Izal, M. A survey on detection techniques for cryptographic ransomware. IEEE Access 2019,

7, 144925–144944. [CrossRef]
34. Kara, I.; Aydos, M. The rise of ransomware: Forensic analysis for windows based ransomware attacks. Expert Syst. Appl. 2022,

190, 116198. [CrossRef]
35. Gómez-Hernández, J.A.; Sánchez-Fernández, R.; García-Teodoro, P. Inhibiting crypto-ransomware on windows platforms through

a honeyfile-based approach with R-Locker. IET Inf. Secur. 2022, 16, 64–74. [CrossRef]
36. Almomani, I.; Alkhayer, A.; El-Shafai, W. A crypto-steganography approach for hiding ransomware within HEVC streams in

android IoT devices. Sensors 2022, 22, 2281. [CrossRef]
37. Ahmed, M.; Afreen, N.; Ahmed, M.; Sameer, M.; Ahamed, J. An inception V3 approach for malware classification using machine

learning and transfer learning. Int. J. Intell. Netw. 2023, 4, 11–18. [CrossRef]
38. Chaganti, R.; Ravi, V.; Pham, T.D. A multi-view feature fusion approach for effective malware classification using Deep Learning.

J. Inf. Secur. Appl. 2023, 72, 103402. [CrossRef]
39. Eren, M.E.; Bhattarai, M.; Rasmussen, K.; Alexandrov, B.S.; Nicholas, C. MalwareDNA: Simultaneous Classification of Malware,

Malware Families, and Novel Malware. In Proceedings of the 2023 IEEE International Conference on Intelligence and Security
Informatics (ISI), Charlotte, NC, USA, 2–3 October 2023; pp. 1–3.

40. Marques, A.B.; Branco, V.; Costa, R.; Costa, N. Data Visualization in Hybrid Space—Constraints and Opportunities for Design.
In Proceedings of the International Conference on Design and Digital Communication, Barcelos, Portugal, 3–5 October 2022;
Springer Nature: Cham, Switzerland, 2022; pp. 3–15.

41. Rimon, S.I.; Haque, M.M. Malware Detection and Classification Using Hybrid Machine Learning Algorithm. In Proceedings
of the International Conference on Intelligent Computing & Optimization, Hua Hin, Thailand, 27–28 October 2022; Springer
International Publishing: Cham, Switzerland, 2022; pp. 419–428.

42. Mallik, A.; Khetarpal, A.; Kumar, S. ConRec: Malware classification using convolutional recurrence. J. Comput. Virol. Hacking Tech.
2022, 18, 297–313. [CrossRef]

43. Abbasi, M.S.; Al-Sahaf, H.; Mansoori, M.; Welch, I. Behavior-based ransomware classification: A particle swarm optimization
wrapper-based approach for feature selection. Appl. Soft Comput. 2022, 121, 108744. [CrossRef]

44. Kim, J.; Lee, S. Malware Visualization and Similarity via Tracking Binary Execution Path. Teh. Vjesn. 2022, 29, 221–230.
45. Saxe, J.; Sanders, H. Malware Data Science: Attack Detection and Attribution; No Starch Press: San Francisco, CA, USA, 2018.
46. Kong, K.; Zhang, Z.; Guo, C.; Han, J.; Long, G. PMMSA: Security analysis system for android wearable applications based on

permission matching and malware similarity analysis. Future Gener. Comput. Syst. 2022, 137, 349–362. [CrossRef]
47. Mudgil, P.; Gupta, P.; Mathur, I.; Joshi, N. A novel similarity measure for context-based search engine. In Proceedings of the

International Conference on Innovative Computing and Communications: Proceedings of ICICC 2022; Springer Nature: Singapore; 2022,
Volume 2, pp. 791–808.

https://doi.org/10.1016/j.cose.2020.101895
https://doi.org/10.1109/TIFS.2018.2833292
https://doi.org/10.1016/j.jbankfin.2023.107052
https://doi.org/10.1145/3514229
https://doi.org/10.1109/ACCESS.2022.3207757
https://doi.org/10.1007/s10664-021-10064-8
https://doi.org/10.1016/j.egyr.2021.11.272
https://doi.org/10.1109/ACCESS.2019.2945839
https://doi.org/10.1016/j.eswa.2021.116198
https://doi.org/10.1049/ise2.12042
https://doi.org/10.3390/s22062281
https://doi.org/10.1016/j.ijin.2022.11.005
https://doi.org/10.1016/j.jisa.2022.103402
https://doi.org/10.1007/s11416-022-00416-3
https://doi.org/10.1016/j.asoc.2022.108744
https://doi.org/10.1016/j.future.2022.08.002

Information 2024, 15, 46 29 of 29

48. Abbas, A.R.; Mahdi, B.S.; Fadhil, O.Y. Breast and lung anticancer peptides classification using N-Grams and ensemble learning
techniques. Big Data Cogn. Comput. 2022, 6, 40. [CrossRef]

49. Cucchiarelli, A.; Morbidoni, C.; Spalazzi, L.; Baldi, M. Algorithmically generated malicious domain names detection based on
n-grams features. Expert Syst. Appl. 2021, 170, 114551. [CrossRef]

50. Di Mauro, M.; Galatro, G.; Liotta, A. Experimental review of neural-based approaches for network intrusion management. IEEE
Trans. Netw. Serv. Manag. 2020, 17, 2480–2495. [CrossRef]

51. Dong, S.; Xia, Y.; Peng, T. Network abnormal traffic detection model based on semi-supervised deep reinforcement learning. IEEE
Trans. Netw. Serv. Manag. 2021, 18, 4197–4212. [CrossRef]

52. Pelletier, C.; Webb, G.I.; Petitjean, F. Deep learning for the classification of Sentinel-2 image time series. In Proceedings of the
IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019;
pp. 461–464.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/bdcc6020040
https://doi.org/10.1016/j.eswa.2020.114551
https://doi.org/10.1109/TNSM.2020.3024225
https://doi.org/10.1109/TNSM.2021.3120804

	Introduction
	Related Work
	Ransomware Detection Approaches and Techniques
	Machine Learning
	Honeypots
	Statistics

	Background
	Ransomware Types and History
	Ransowmare Classification with Visualization Techniques
	Ransomware’s Features Tracking System

	Experimental Work and Detection Scheme
	Visualization Techniques
	Static Ransomware Classification System
	Dynamic Ransomware Classification System
	Lab Setup
	Time Complexity
	Static vs. Dynamic Analysis
	Hybrid Approach for Optimal Time Efficiency
	Continuous Database Augmentation
	Proactive Sample Analysis

	Results

	Conclusions and Future Work
	References

