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Abstract: Bio-Radar (BR) systems have shown great promise for biometric applications. Conventional
methods can be forged, or fooled. Even alternative methods intrinsic to the user, such as the
Electrocardiogram (ECG), present drawbacks as they require contact with the sensor. Therefore,
research has turned towards alternative methods, such as the BR. In this work, a BR dataset with
20 subjects exposed to different emotion-eliciting stimuli (happiness, fearfulness, and neutrality) in
different dates was explored. The spectral distributions of the BR signal were studied as the biometric
template. Furthermore, this study included the analysis of respiratory and cardiac signals separately,
as well as their fusion. The main test devised was authentication, where a system seeks to validate
an individual’s claimed identity. With this test, it was possible to infer the feasibility of these type
of systems, obtaining an Equal Error Rate (EER) of 3.48% if the training and testing data are from
the same day and within the same emotional stimuli. In addition, the time and emotion results
dependency is fully analysed. Complementary tests such as sensitivity to the number of users were
also performed. Overall, it was possible to achieve an evaluation and consideration of the potential
of BR systems for biometrics.

Keywords: bio-radar; biometrics; electrocardiogram; support vector machines

1. Introduction

The term Biometrics is composed of two Greek words: bios, meaning life, and metrikos,
meaning to measure [1]. Biometrics is defined as the recognition of a person’s identity
based on their behavioural or biological characteristics. Since these cannot be misplaced
nor forgotten, representing a tangible component of something that a user is, they are
advantageous as a recognition method [2].

Nonetheless, conventional biometric systems are still vulnerable to attacks, the most
common ones being spoofing, i.e., when an individual poses as another person, and subse-
quently gains illegitimate access [3]. Examples include the reproduction of anatomical features,
such as the acquisition of facial images [4], or using gummy fingers [5], as well as the replica
of behavioural features, such as the reproduction of voices [6] or handwritten signature [7].
Therefore, there is a need to explore other options less vulnerable to eavesdropping (i.e.,
stealthy trait measurement) or spoofing attacks [8]. Typically, the liveness information can be
used as a countermeasure, since it is capable of detecting signs of life [3].

Radar systems are able to measure the chest wall displacement during the cardiopul-
monary activity with the use of electromagnetic waves. These systems, henceforth referred
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to as the Bio-Radar (BR) systems, can not only be used as a diagnosis tool, but also con-
tribute to lifestyle improvement [9]. BR monitoring can be seamlessly integrated into
everyday routines; with the ability to map subjects to their identity, this approach could
act as a health monitoring system, integrated into the context of “smart homes”. More-
over, these systems can be particularly beneficial in authentication applications, that is, in
1:1 matching.

Some authors have contributed to the field [10–18], nevertheless the results are often
described in rest conditions, collected in a single session, and with few participants. Ergo,
it is difficult to assess the true potential of BR-based biometrics, specifically as most studies
fail to address one of the most important questions in biometrics: permanence, i.e., the
temporal invariance of the templates. In this paper, we conducted the first study on
intra- and inter-subject variability of BR signals on different dates, whilst subjected to
different emotions, targeting biometric authentication. Moreover, to the best of the authors’
knowledge, this is the first work that explores a fusion of both BR components (respiratory
and cardiac), as well as the individual analysis of each.

A dataset with 20 subjects was used, collected under an emotion inducing protocol
with an average duration of 30 min, on different days. The signals extracted were used
to perform biometric recognition and verify the ability to accurately authenticate a given
subject. In this respect, a Support Vector Machine (SVM) algorithm was applied, using the
BR signals (respiratory and cardiac) as well as ECG ones (for benchmarking purposes),
acquired simultaneously. Moreover, different emotions were also considered, to understand
the impact that neurophysiological changes, such as the emotional state, may have on the
signal, and thus on the biometric recognition performance.

In essence, the main contributions to the field are:

1. Study the stability over time, with signal acquisition on sessions separated by days;
2. Understand the impact of emotional states on the system’s performance;
3. Assess the system’s sensitivity to the number of classes (subjects).

The remainder of this paper is organised as follows: Section 2 provides a brief back-
ground on biometrics and radar-based biosignal acquisition. Section 3 summarises the
main methodologies proposed for ECG and radar-based biometrics. Section 4 explains the
dataset used and describes the proposed methodology. Section 5 presents the obtained
results, alongside a discussion. Finally, Section 6 summarises the overall conclusions.

2. Background
2.1. Biometrics and the Importance of the Bio-Radar

Biometric recognition can be done using two distinct approaches: authentication and
identification. Authentication aims to answer the question “Am I who I claim to be?”
whereas Identification answers “Who am I?”. The former’s objective is to verify a person’s
claimed identity, and is the main focus of this work, whilst the latter seeks to establish a
subject’s identity [2].

Typically, biometric systems are divided into two categories: biological and/or be-
havioural. Biological biometrics are based on data taken from a direct part of the human
body, whereas behavioural characteristics are based on an action taken by a person. Ex-
amples of the first include the use of the ears, face, fingerprints, irises, palms, or even
physiological signals such as the Electrocardiogram (ECG), whereas the second includes
gait, keystroke dynamics, as well as signature and voice recognition. These can be collected
through specialised image or video capturing devices, or by contact sensors [2].

Recently, research on biosignal-based approaches has been pursued to address the
limitations of conventional biometric systems, as introduced in Section 1, within which
the ECG has shown promising results [8]. Its nature makes it hard to capture, and the
inherent liveness makes it useful for spoofing purposes [3,8,19]. Moreover, it has been
shown to possess high inter-subject variability and low intra-subject variability [8]. Re-
gardless, ECG-based biometrics require contact with the body, which may be unpractical
and disruptive to the users. To mitigate these limitations, alternatives have been explored,
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paving the way towards invisible approaches, which can be integrated on the topic of “smart
homes”, where sensors are incorporated into day-to-day objects, allowing data acquisition
during the subject’s daily activities [20]. BR systems, due to their unobtrusive nature, are
particularly interesting. They send a continuous electromagnetic signal towards a subject;
when the subject’s chest moves as a consequence of the cardiorespiratory activity, there is a
modulation resulting from the vital signals [18].

The use of such systems can lead to innovative applications. They have shown several
employments with examples ranging from the ability to detect signals through barriers
such as clothes, as well as insensibility to environment factors, to identifying sudden events,
and contributing to lifestyle improvement, through continuous monitoring [9,10,21]. BR
systems have proved to be able of being integrated into custom objects to meet market
needs. Furthermore, in such applications, these frameworks may be shared among multiple
people within the household, and consequently, the ability to match the recorded data to the
individual that provided it is a necessary feature. For instance, regarding the topic of “smart
homes”, a possible multimodal approach in sanitary installations alongside the ECG [22]
may also be pursued. It is also important to take into consideration that, in these circum-
stances, there is a reduced number of subjects within the household. Furthermore, consid-
ering the integration of a BR system in a car seat [23,24], it may allow the personalisation of
a car’s settings, or even car-sharing, all of which require the ability to know the driver’s
identity [25].

2.2. The Bio-Radar System

Radar stands for “Radio Detection And Ranging”, and it consists of a transmitter,
a receiver, an antenna, and signal processing software [9,26]. The BR system uses the
principles of radar technology; Figure 1a presents a schema of a general BR system.
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Figure 1. Basic model of a radar system applied to the measurement of vital signs. (a) represents the
ideal scenario, where RX is the receiving antenna and TX the transmitting one; (b) represents the
signal for an ideal scenario in the complex plane. Adapted from [9].

2.2.1. Doppler Radar

Based on the Doppler radar, the BR system allows the cardiorespiratory motion
sensing, with precision and with no direct contact with the subject [9].

As an object undergoes motion, the radar signal reflected off the object experiences
frequency shifts due to the Doppler effect [27]. Additionally, micro-Doppler analysis centres
on extracting further information from the Doppler signature past the primary motion
of the entire target. It investigates the smaller, modulated variations within the Doppler
signature caused by the motion of internal body parts or other vibrating components within
the target. For instance, in vital signs monitoring, micro-Doppler analysis can distinguish
and analyse small Doppler shifts caused by chest wall movements amid breathing or
heartbeats. By considering these micro-Doppler signatures, it is conceivable to estimate
vital signs such as respiratory rate and heart rate [28]. Such detection depends on changes
in the travelled path of the transmitted signal, which causes a phase modulation on the
received signal, when reflected by the human body, more specifically due to displacements
caused by both respiratory and cardiac mechanical activity [27].
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There are several radar architectures based on the Doppler effect. The chosen archi-
tecture for this work is the Continuous Wave (CW) radar, a relatively simple architecture
to implement. A CW radar constantly transmits and receives signals with a very narrow
bandwidth [29], enabling the detection of the Doppler shift. It senses phase changes when
a target is moving, allowing the target’s velocity to be calculated and even distinguish
between stationary and moving objects [30].

2.2.2. Implications of Real-World Applications

As shown in Figure 1a, a sinusoidal signal is continuously transmitted towards the
subject’s chest wall. In an ideal scenario, with no parasitic reflections, the physiological
signals are perceived as an arc in the complex plane. This is shown in Figure 1b, where A0
represents the received signal amplitude, and ar the phase variation, which is proportional
to the amplitude of the motion of the chest wall [9].

Nonetheless, ideal scenarios do not exist. As such, it is important to consider the
surrounding conditions. The received signal is the sum of the intended signal with para-
sitic reflections that occur in the surrounding objects, as depicted in Figure 2a. Parasitic
reflections are addressed as Complex Direct Current (CDC) offsets since they cause a
misalignment of the signal in respect to the origin, increasing the spectral component mag-
nitude. These are depicted in Figure 2b, where A1 is the parasitic component amplitude [9].
We refer the reader to the work by Gouveia et al. [9,31] for a more detailed description.

(a) (b)

A0
ar

120

150

180

210

240
270

300

330

0

30

60
90

0.1
0

0.2
0.3

0.4

A1

TX

RX
Radar

Figure 2. Effect of the surrounding objects: (a) reflections schematics on the environment; (b) equiva-
lent projection of the received signal on the complex plane. Adapted from [9].

3. Related Work

There have been several studies performed on the use of the ECG as well as radar as a
biometric system, in a myriad of contexts and applications.

3.1. ECG-Based Biometric Recognition

Since the ECG is used for benchmarking purposes in this paper, it is necessary to assess
the main contributions. It is possible to divide ECG recognition into three approaches:
fiducial, non-fiducial, and partially fiducial.

Fiducial methods are those that typically rely on the use of landmarks in the time
domain [8]. As such, it is dependent on the exact detection of points of interest. Initially,
pioneering research used predefined medical features as the feature space [32], however it
was later proved that this feature space lacked the ability to fully characterise the waveform
for biometric purposes, and so revisions were made [33]. Furthermore, to accommodate
the users’ needs, it was necessary to turn towards off-the-person/invisible approaches [34].

Nonetheless, this accurate fiducial detection is a difficult task, since there is no univer-
sally acknowledged rule, i.e, no way to precisely establish where the limits of the wave lie.
Consequently, non-fiducial approaches were created, characterised by the lack of reference
detection. Non-fiducial methods are described as those able to extract information without
the need of localising fiducial points [8,35]. Usually, these methods are further divided into
transform domain approaches [36] and other approaches [37], where the former concerns,
as the name implies, feature extraction in the frequency domain.
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Even so, the detection of R-peak proved to be desirable, which led to the partially
fiducial methods, also addressed as hybrid. These methods make use of the R-peak to
segment the waveform, either adopting the full waveform or a subset of it [34].

3.2. BR-Based Biometric Recognition

In spite of this, ECG-based biometrics require contact with the body, thus being
unpractical and disruptive to users’ regular interaction. Therefore, there was the need to
explore a novel invisible approach, namely the use of BR systems. That said, the use of these
radars for identity recognition is still in its inception.

The detection of cardiopulmonary signals using a radar system has already been made
possible [38]; moreover, in 2004 it has been demonstrated that it is possible to measure the
cardiac and respiratory activity through walls [39]. In 2006, the Doppler effect was used to
estimate the amount of individuals in a room [40]. Additionally, these systems could also
be used to study the different stages of the heart contraction cycle [41]. Furthermore, in the
last few years, research has turned to the use of cardiopulmonary signals as a biometric
modality. Table 1 shows a summary of these approaches and their performance.

In 2015, the first use of the cardiac radar signal as a biometric modality was
described [10]. Shortly after, a continuous authentication system, the Cardiac Scan, was
introduced. This system was based on the acquisition of geometric features of the cardiac
motion, introducing the notion of “fiducial-based” identity descriptors in BR biometrics
[11]. Moreover, “partially fiducial-based” features have also been pursued to establish a
reproducible approach in the time domain [12]. Finally, a “non-fiducial” approach has also
been described using spectrograms [13].

Unlike the former studies, other works have focused on the breathing patterns, instead
of the cardiac signal [14]. These typically used “fiducial” descriptors to describe the breath-
ing cycle [15], having been proved successful in identifying individuals under different
conditions, as well as with obstructive sleep apnoea [16,17]. Nevertheless, the adopted
algorithm produced false classifications, and so “non-fiducial approaches” have also been
described, using the Fast Fourier Transform (FFT) [18].

Table 1. Summary of state of the art approaches for BR biometrics. The Feature and Classifier
columns present the feature method and classifier of choice. #x shows the number of subjects, and
lastly Accuracy (Acc) (%) and Equal Error Rate (EER) (%) display the accuracy and equal error rate
in percentage.

Year Feature Classifier # x Acc % EER % Refs.

2015 DWT k-NN 2 26 19.0 – [10]

2016 Breathing energy,
frequency and patterns Neural Network 3 92.13 – [14]

2017 Geometric Features SVM 78 98.61 4.42 [11]
2018 Local Heartbeat SVM 4 94.6 – [12]
2018 Spectrogram CNN 3 4 98.5 – [13]
2018 Various 1 k-NN 6 95.0 – [15]
2019 FFT SVM 6 100 – [18]
2020 Various 1 SVM 10 92 – [16]
2020 Breathing energy,

frequency and patterns
k-NN 5 93.75 – [17]

Data were collected in these experiments. Legend: 1 Breathing/heart rate; inhale/exhale speed, average distances
and standard deviation of peaks; breathing depth; spectral entropy; and dynamic segmentation. Dynamic
segmentation is the act of segmenting a breathing cycle episode with 30–70% amplitude and calculating the
average area ratio of the inhale and exhale segment; 2 k-Nearest Neighbour; 3 Convolutional Neural Network.

The state of the art is lacking in multiple dimensions of radar biometrics. The feature
extraction is mostly fiducial-based and with mostly a small number of participants recorded.
This work intends to expand the state of the art by using a BR system acquired simulta-
neously with an ECG one, on different days, and with an increased number of subjects.
Moreover, to the best of the authors’ knowledge, this is a pioneer work that explores fusing
both BR components, respiratory and cardiac, as well as providing an analysis on each
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individually. Lastly, this paper aims to analyse the intra- and inter-subject variability on
different dates, whilst subjected to different emotions.

4. Proposed Approach

There are three key processes in a biometric system: acquisition of the biometric
data, extraction of the intended features, and lastly classification [42]. Figure 3 shows the
organisation of our biometric recognition system.

Raw
Signal Outcome

Resample
100 Hz

1

Preprocess

2

Fourier
Transform 

4

Segment

3

Classifier

5

Figure 3. Implemented biometric identification system’s architecture.

The present section exposes the acquisition of the signals, alongside the methodology
used to extract the features.

4.1. Dataset Description

In this work, we use a BR dataset (http://hdl.handle.net/10773/36291, accessed on
15 November 2023) unexplored in the context of biometrics. The data of 20 participants
was acquired in 3 different sessions, with at least 2 days between sessions. This study was
approved by the Ethics and Deontology Committee of the University of Aveiro, Portu-
gal (No.29-CED/2021). The implemented procedure was in line with the Declaration of
Helsinki, and an informed consent was obtained from all the participants.

The BR prototype operated in CW mode with a 5.8 GHz carrier frequency, and the
setup was composed of a software-defined radio as radio-frequency front-end, namely the
USRP B210 board from Ettus ResearchTM (https://www.ettus.com/all-products/ub210-kit,
accessed on 15 November 2023), which uses the GNU Radio Companion software. The
electromagnetic waves were transmitted and received using two 2 × 2 antenna arrays with
circular polarisation. The setup was operated with a transmitted power equal to 2 dBm at
the antenna input [9].

In addition to the BR prototype, a reference physiological data acquisition system
was used, namely the BIOPAC MP160 Data Acquisition System (https://www.biopac.
com/product/mp150-data-acquisition-systems, accessed on 15 November 2023), using the
AcqKnowledge 5 software (https://www.biopac.com/product/mp150-data-acquisition-
systems/#product-tabs, accessed on 15 November 2023). This enabled the simultane-
ous acquisition of the respiratory signal, through the RSP100C module with a trans-
ducer chest band attached around the chest wall, as well as the cardiac signal through a
three-lead ECG.

The data collection consisted on recording the physiological signals whilst the subjects
were stimulated with content designed to elicit different emotions, on different dates;
fearfulness was induced via scary videos, happiness via comedy ones and documentaries
were used to induce a neutral condition as well as the baseline. Each session had a baseline
lasting 5 min, and an emotion inducing period lasting 25 to 30 min [43,44]. The sessions are
referenced as N, H, and F according to the intended emotion: Neutrality, Happiness, and
Fearfulness, respectively.

Figure 4 shows the setup disposition; the subjects were seated with their arms on top
of a table, which allowed them to remain stable during the experiment. The radar antennas
were located at a distance of half a meter, in front of the subjects. The signals recorded using

http://hdl.handle.net/10773/36291
https://www.ettus.com/all-products/ub210-kit
https://www.biopac.com/product/mp150-data-acquisition-systems
https://www.biopac.com/product/mp150-data-acquisition-systems
https://www.biopac.com/product/mp150-data-acquisition-systems/#product-tabs
https://www.biopac.com/product/mp150-data-acquisition-systems/#product-tabs


Information 2024, 15, 44 7 of 19

the BR system, alongside the signals obtained using the BIOPAC system are illustrated in
Figure 5.

BIO
PAC

USRP B210

TX/RX Antennas

BIOPAC MP160

~ 50 cm

Figure 4. Data acquisition setup used.
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Figure 5. Example signals of the different modalities: (a) Cardiac signals extracted using the BR (in
yellow), and the ECG signals (in dark grey); (b) respiratory signals extracted with the BR (in green),
and with the BIOPAC (in light grey). The “minimum-maximum” normalisation was applied in these
signals to obtain an amplitude between 0 and 1, so as to provide a better comparison. All signals
were acquired from Subject 1, in neutral conditions.

4.2. Physiological Signals Extraction

The signals were acquired synchronously using the BR and BIOPAC systems, as
explained in Section 4.1. These signals have been preprocessed, in order to enable the
extraction of the physiological signals’ waveform.

In this dataset, the parasitic components of the BR signals were compensated using
the method proposed in [9], as it has been proved to be robust to low amplitude signals,
and is able to take into account changes in the subject or in the setup. After the removal
of the environment clutter, the arctangent was applied, enabling the extraction of a signal
containing both respiratory and cardiac information, henceforth referenced as respiratory
radar signal, and shown in Figure 5b in green.

Afterwards, by following the approach selected in [31], the BR cardiac signal was
extracted. This method consisted in applying a Finite Impulse Response (FIR) band-pass
filter of order 100 with cutoff frequency of 0.7–2 Hz, in order to attenuate the respiratory
component. Following that, a multi-resolution analysis using the Discrete Wavelet Trans-
form (DWT) was made, whose coefficients are obtained using the maximal overlap DWT
considering 7 decomposition levels [45]. The chosen mother wavelet was the Daubechies
with 4 vanishing moments, facilitating the isolation of the cardiac signal, as depicted
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in Figure 5a in yellow, using the wavelet coefficients with 5th and 6th decomposition
levels [31].

Regarding the ECG signals, these were filtered by means of a FIR band-pass filter of
order 15, with a cut-off frequency of 6–20 Hz to emphasise the R peak. This passband filter,
inspired by the work in [46], is able to maximise the energy of the QRS complexes, while
reducing the effect of the P and T waves, as well as powerline interference, motion artefacts,
and muscle noise.

In Figure 5, it is possible to infer the similarity between the BIOPAC signals and the BR
signals, as, in Figure 5a, the local maxima are almost a perfect match, which is emphasised
in the magnification window, and in Figure 5b, there is a clear resemblance.

4.3. Feature Selection

In ECG biometrics, fiducial and partially fiducial methods usually have achieved the
best results [8]. Despite that, the dependence on the exact detection of points of interest is a
difficult task to replicate, or even to establish universally acknowledged rules [47]. On top
of that, non-fiducial methods are simpler to compute as it is not necessary to determine
fiducial points accurately nor wave boundaries. Non-fiducial based approaches are capable
of extracting discriminative information without the need of reference points [48]. Thus, in
this paper the spectral profile is explored. The features are obtained from transforming the
signal from time to frequency domain representation by means of a FFT, using the resulting
coefficients values as they represent how much a given spectral component is present in
the original signal [49]. The FFT was applied on intervals of 30 s.

Figure 6 presents each of the signals in the frequency domain. By comparing Figures 5 and 6,
the respiratory and the cardiac BR signal notoriously have a sinusoidal shape in the time
domain, resulting in a more prominent peak in the frequency domain. The cardiac BR
signal has clearly a higher frequency than the respiratory one, seen in both the time and
frequency domains. The ECG signal spreads across a wider range of frequencies, explained
by its unique shape.

Figure 7 illustrates a comparison between different subjects. This figure shows that,
even though the waveforms in some subjects are completely different, there are others
in which they are similar, which corroborates that the FFT is a method with potential to
distinguish participants. In Figure 7a there is a stark difference between the waveforms
of Subjects 8 & 9, whereas the waveforms of Subjects 9 & 11 only differ slightly in their
magnitude. Nonetheless, the cardiac signal (Figure 7b) remains relatively different between
these subjects, which serves as a motivation towards the use of a fusion signal source.

BR Cardiac SignalBR Respiratory Signal ECG Signal
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Figure 6. Spectral profile of the different signal sources. In darker colour the mean waveform is
showcased for the segmented signal: the respiratory BR signal in yellow, the cardiac BR signal in
green, and the ECG signal in red; the standard deviation is the area surrounding it. The signals
shown were retrieved from Subject 1, in neutral conditions. Once more, the “minimum-maximum”
normalisation was applied for comparison purposes. (a) represents a magnification into the first
3.0 Hz of the FFT signals where most BR frequencies are represented, whereas (b) represents the
whole spectra.
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Figure 7. Spectral profile of different subjects. In colour the mean waveform is showcased for the
segmented signal: yellow for Subject 8, green for Subject 9, and finally red is used to represent
Subject 11. These signals were retrieved, in neutral conditions, after normalising, which is explained
afterwards. In these pictures, the respiratory (a) and cardiac (b) BR signals are shown for comparison.

To transform the features to be on a similar scale, the L2-norm was chosen, followed
by a final step utilising a moving average. Here, the biometric templates are computed
based on the mean of 4 consecutive waveforms, with overlap, which creates a smoothed
version of the template [34].

There is some variability between the different sessions. This is clear in Figure 8,
where three randomly chosen subjects (13, 18, and 20) are plotted for all the three sessions,
illustrating the intra- and inter-subject variability. It is possible to infer that the signals do
not remain the same across sessions.

Lastly, in biometrics there is the notion of multimodal systems, i.e., systems capable
of integrating information provided by multiple biometric modalities [42]. Motivated
by the results present in Figure 7, in this paper we also explored the fusion of both the
respiratory and cardiac BR signals, which is going to be compared to the other signals
separately in order to infer the possibility of this multimodal approach. This was achieved
by concatenating the two vectors into a single one.

Subject 18Subject 13 Subject 20
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Figure 8. Spectral profile of different subjects in different conditions. In the coloured line, the
mean waveform is showcased for the segmented signal: yellow for Subject 13, green for Subject 18,
and finally red is used to represent Subject 20; the standard deviation is portrayed and filled with
colour. These signals were retrieved from the respiratory BR signal, in (a) neutral, (b) happy and
(c) fear conditions.

4.4. Classification

A novelty of this work is the evaluation of the BR biometric performance under the
effects of emotional and temporal variability as a result of different stimuli and different
acquisition dates, as well as the effects of varying the number of subjects.

Focusing on the premise that only a small amount of known users use the system,
the rest being intruders, subsets containing solely 5 subjects of the original dataset were
used, instead of all 20 participants. These 5 subjects were chosen at random, where one
acts as the legitimate owner, and the rest as intruders, in turns. This process was as follows:
one subject, Subject n, was the legitimate owner, n = 1, 2, . . . , 20; the other 4 subjects were
chosen randomly, acting as intruders. This selection is repeated 5 times for each subject as
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the owner, e.g., Subject 1 is the owner in 5 different instances, with 4 other users, chosen
randomly, acting as intruders. The mean EER for each subject is computed. In this work, the
focus was on having all the subjects equally represented, that is, having the same number
of samples of each subject within the subset. As a result, there are more intruders than
legitimate users. This test has the aim of inferring the system’s ability to generalise, and to
simulate what is expected to happen in real conditions.

In order to study both the emotional and temporal effects, there were three testing
scenarios devised; the first scenario uses training and testing biometric templates ob-
tained from the same day, and the remaining two use a combination of templates from
different days:

• Scenario S1–Within each session: The BR and ECG recordings from each session,
for each subject, were divided into two parts: Dtrain and Dtest. The training and
testing windows comprise subsets of the recordings, using the first 2⁄3 of the recordings
for training, and the last 1⁄6 for testing (Dtrain 2/3, and Dtest 1/6) as shown in Figure 9.
The rationale for this partition is to ensure that the segments of the signal are not
contiguous, in order to avoid a temporal relationship between the signals that could
bias the result;

• Scenario S2–Between sessions: The training and testing windows come from different
sessions, e.g., using session H (where happiness was induced) as Dtrain, H , and session
F (fear being the intended emotion) for Dtest, F. In this study, it is possible to infer the
effects of time and emotion variability;

• Scenario S3–Across sessions: Using two different sessions to train the classifier, and
the remainder for testing, e.g., using session H and F as Dtrain, HF, and session N
(where there were no particular stimuli) for Dtest, N . By doing so, the classifier is
trained utilising windows from multiple days, which may improve the performance.

2/3 1/6

Train Windows Test Windows

Figure 9. Train and Test split done for evaluation Scenario S1.

Furthermore, an extra test was devised. This final test has the purpose of evaluating
the performance when different numbers of subjects were considered (2–19 subjects), the
aim being to test the classifier sensitivity to the database size. This was done given that
there are multiple scenarios in which the recognition is performed only for a limited number
of subjects [22]. Subjects were randomly selected, where at each increment, a new member
was added to the already existing group of participants. The process was repeated 10 times,
and the mean accuracy as well as the standard deviation were computed.

The chosen classifier was a Support Vector Machine (SVM). Given that it is a method
vastly supported by the literature [8], it is particularly advantageous for comparison
purposes. The hyperparameters were chosen based on a grid search approach, which uses
cross-validation to select the best parameters. Due to the number of experiments devised
within this work, the focus was on finding the best kernel function, C, gamma, and degree
values for each testing scenario.

Figure 10 presents a graphical overview of the extraction of features from the raw data
obtained via BR sensors to the classifier used.
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Figure 10. Diagram illustrating the steps taken: (1) represents the extraction of the raw data; (2) the
feature extraction, and (3) the classifier used.

5. Results and Discussion

In this section, the results obtained in the scope of authentication are going to be
exposed and discussed. Authentication is a one-to-one problem, where the system validates
an individual’s claimed identity by means of comparing a given newly acquired biometric
template with the biometric templates stored in the database [42,48].

5.1. Scenario S1–Within Session

In this scenario, signals of each subject collected on the same day are segmented into
the training and testing sets, following the partition 2/3–1/6. These are not contiguous so as
to create a certain time gap between acquisitions, preventing temporal relationships that
could impact the result.

The results obtained for this scenario are shown in Table 2, presenting the average
EER results obtained for all subjects, as well as the standard deviation. These results are
satisfactory, as the ECG’s EER results are comparable to those found in the state of the art,
and the BR’s are better than those reported. Nevertheless, not all results are the same, as
the worst results are close to an EER of 10%, indicative of a worse performance.

Table 2. Results (in %) obtained for scenario S1. These results are shown for the BR signals (BR R is
the respiratory BR signal, BR C the cardiac one, and BR RC the fusion), and the ECG signals. The
best results are highlighted in yellow. In the first column, the train and test sets are presented as
Dtrain–Dtest. The letters indicate the emotion elicited: N stands for the neutral emotion, whereas H
stands for happiness and F for fearfulness, e.g., when considering neutral conditions, N-N is used,
representing Dtrain 2/3, N and Dtest 1/6, N .

BR R BR C BR RC ECG

N-N 7.25 ± 4.80 9.64 ± 4.62 4.62 ± 2.97 0.55 ± 1.84
H-H 6.07 ± 4.37 8.26 ± 5.52 3.48 ± 4.89 0.15 ± 0.58
F-F 7.08 ± 4.51 9.13 ± 4.09 3.58 ± 2.92 0.78 ± 3.00

In this scenario, the results obtained using ECG signals validate this method of feature
extraction. Moreover, the BR proves itself to be a competitive biometric system, with



Information 2024, 15, 44 12 of 19

potential, as the fusion biometric template obtained results comparable even to the ECG
literature. In BR biometrics there are not many studies accounting for authentication, in
fact, to the best of the authors’ knowledge, only [11] pursued that information, ergo any
comparison made will be limited, due to the different nature and objective between our
studies. Nevertheless, the results obtained in both our studies are within the same order of
magnitude. On the other hand, it is possible to compare the overall ECG results to the state
of the art due to the extensive studies pertained to this matter.

It is also important to note that, the different emotions, and dates (each emotion was
stimulated on different days for each subject) obtain good results to various degrees, with
happiness consistently being the one that achieved the best results, for all the BR signals
(fusion and individual). As such, happiness proved to be more idiosyncratic, especially
when compared to the neutral conditions’ session. It is possible to assume that the stimuli
lead to certain reactions on the subjects that made their waveform more unique, e.g.,
laughter due to the comic nature of the video, that could lead to shortness of breath or
a rapid contraction of the heart. Another possible conclusion is that people experience
emotions in different ways, eliciting different reactions, which are represented in the
signal waveform.

Finally, there is an important reflection to be made. It is a must to understand how the
signal changes within a session and even across sessions, as there is no guarantee when
the following session may be. In this test, it was possible to train and test the classifier
with signals that were 5 min apart, to understand if the system would reflect these changes.
Nonetheless, studying how different time intervals, or even the subject’s emotional state,
may affect the results, is essential.

5.2. Scenario S2–Between Sessions Evaluation: Single Training Session

If a user were to log out of a system only to return at a later point in time, would the
system still be able to recognise him?

Due to the nature of authentication, it is important to understand the impact time
and/or emotion variability has on the subjects’ physiological signals, and how the system
reacts to the possible changes. The training and testing sets were acquired from different
sessions, considering both the time and emotional state variability:

• Using the entirety of session N as Dtrain, N and session H or F as Dtest, separately;
• Session H as Dtrain, H and the others as Dtest, separately;
• Finally, session F as Dtrain, F and the remainder for test, separately.

Table 3 summarises the results obtained for both the BR and ECG signals.

Table 3. Results (in %) obtained for scenario S2. These results are shown for the BR signals (respiratory,
cardiac, and the fusion of these), as well as the ECG signals. The best results are highlighted in
green. In the first column, the letters indicate the emotion elicited: N stands for the neutral emotion,
whereas H stands for happiness, and F for fearfulness, e.g., when considering training with the
neutral emotion and testing with happiness, N-H, representing Dtrain, N and Dtest, H .

BR R BR C BR RC ECG

N-H 20.84 ± 5.17 28.97 ± 3.61 20.17 ± 5.22 9.82 ± 6.02
N-F 22.06 ± 3.89 27.47 ± 4.34 17.72 ± 4.84 8.67 ± 6.81

H-N 22.97 ± 4.15 27.55 ± 6.13 18.83 ± 3.77 11.32 ± 6.84
H-F 22.17 ± 5.41 25.03 ± 4.48 16.78 ± 4.83 6.69 ± 5.79

F-N 22.72 ± 3.94 26.30 ± 4.11 18.88 ± 3.78 11.31 ± 7.67
F-H 23.81 ± 3.88 24.52 ± 2.64 17.90 ± 3.99 9.79 ± 5.17

There is a clear deterioration of the results when comparing them to the previous
scenario. Nevertheless, these results prove that the waveforms are somewhat distinctive
between subjects, remaining constant within each subject across different time intervals and
emotional states, i.e, there is an inter-subject variability, while maintaining the intra-subject
variability low.
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It is important to note that even the ECG’s performance deteriorated as a function
of time and/or emotions. It is not possible to isolate the specific reason behind this
deterioration, that is, there is no precise information on whether time span or emotional
state played the most important part in this signal distortion.

The analysis between sessions is an important one, as these type of systems may be
used to validate a user’s claimed identity in a continuous use, but also recognise him after
hours or days have spanned between uses. In this scenario, due to the characteristics of
the dataset used, it is possible to make an effort towards understanding the classifier’s
performance at different points in time. Ideally, these type of systems would be able
to retrain themselves with the new information obtained after each use, as with more
information about each user, the better the systems are expected to perform.

5.3. Scenario S3–Across Sessions Evaluation: Multiple Training Sessions

As explained previously, retraining the system after each session would be the op-
timum use case, as with more information about each individual subject, the system’s
performance is expected to increase. In this dataset, there were three different data acqui-
sition periods, and so it is possible to simulate this, to some extent, by training with two
different sessions, and testing with the remaining one. As such, this scenario was devised
as follows:

• The data obtained on the sessions where neutral and happy emotions were stimu-
lated were used for training the classifier (Dtrain, NH), and the fear session is used for
testing (Dtest, F);

• The data obtained where the emotions intended were neutral and fear ones were used
for training the classifier (Dtrain, NF), and the happy session is used for testing (Dtest, H);

• Finally, happiness and fearfulness were used as the training set (Dtrain, HF), and neu-
trality is used for testing (Dtest, N).

This partition allows the maximisation of the training set, utilising the entirety of
two sessions, simulating the ability of retraining, where past information can be used to
constantly train and update the model. Table 4 summarises the results obtained.

Table 4. Results (in %) obtained for scenario S3. These results are shown for both the BR signals,
and the ECG ones. The best results are highlighted in red. In the first column, the letters indicate
the emotion elicited: N stands for the neutral emotion, whereas H stands for happiness and F for
fearfulness, e.g., when considering training with the junction of neutral and happy emotions, NH-F,
representing Dtrain, NH and Dtest, F.

BR R BR C BR RC ECG

NH-F 18.32 ± 3.65 20.11 ± 3.48 13.52 ± 4.63 2.89 ± 3.66
NF-H 18.81 ± 4.21 21.18 ± 3.76 15.46 ± 5.62 6.52 ± 4.66
HF-N 18.54 ± 3.16 24.17 ± 4.32 16.20 ± 4.11 6.43 ± 6.21

As expected, the results (shown in Table 4) are better than the ones obtained in the
previous scenario S2 (Table 3). The fusion source is able to obtain results between 13%
and 16%. These results show that the system does improve with the added information.
Conversely, the ECG obtains satisfactory results, which are more in line with the state of
the art. These are proof that this scenario is promising, because with the increased size of
the training set there is an increase in the performance. Nonetheless, the results obtained
with the BR system are still lacking and leave room for improvement.

Due to the invisible nature of a BR system, it is not unreasonable to think of it in
authentication settings, especially to assure the identity of a user on a continuous use
scenario. Nevertheless, any user will eventually log out of a certain system only to return
at a later point in time. As such, it is imperative to understand how this type of system
would fare in such time gaps between acquisitions, this being accomplished in scenario S2.
However, the time gap as well as the different emotional states impact the physiological
signals, obtaining subpar results. With that being the case, retraining the classifier with new
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information after each use is a possible solution. This section attempted to simulate this
scenario with the information available. Thereby, the training set consisted of two different
sections, with the remaining third used as the testing set.

The increase in performance is notable due to having more available information on
each subject. As such, even though the results are not on par with those obtained when
considering the same session, as in scenario S1, they are favourable to the possibility of
using a BR system in such settings. It is noteworthy, however, that having to retrain the
system after each use has computational costs associated, since with more information
available, the classifier does take more time to tune the hyperparameters.

A biometric authentication system performance is assessed by measuring two misclassi-
fication error rates: mistakenly accepting an intruder’s identity claim (False Acceptance Rate
(FAR)), or mistakenly rejecting a legitimate user’s identity claim (False Rejection Rate (FRR)).
There is a trade-off between these: decreasing the threshold increases the FAR, making the
system more tolerant to noise; analogously, increasing the threshold will in turn increase the
FRR, making the system more secure. It is possible to infer the system’s performance at all
thresholds (operating points) in the form of a Receiver Operating Characteristic (ROC) curve.
Thus, the ROC curve plots the FAR against 1-FRR for different thresholds [42].

Figure 11 presents the ROC curve for the three scenarios devised. It presents the FAR
plotted against the 1–FRR for the best results obtained within each scenario: H for S1, H-F for
S2, and NH-F for S3. In Figure 11a, the ROC curve using ECG signals resembles one from
a perfect classifier. Considering the BR, the increase in performance from the single parts to
the fusion source is notable. There is a correlation between the ROC curve and the EER: the
smaller the EER, the more perfect the ROC curve will be. In Figure 11b the toll in the curve is
apparent: ECG no longer resembles a perfect classifier, and the BR outputs are significantly
closer to the diagonal (where FAR = 1-FRR), implying that they are less accurate; out of these
the cardiac results are the worst, whereas the fusion ones are the best. Finally, Figure 11c
presents an increase in performance, as a consequence of the increase in the training set. Even
the BR presents the same improvement: looking at the case when FAR = 0.2, the fusion
source has a 1-FRR above 0.8, which did not happen before; the FAR is also faster at reaching
the 1.0 value. All of this contributes to the notion that the system does, in fact, improve its
recognition ability as the training set has more information on each subject.

BR Fusion Signal BR Respiratory SignalECG Signal BR Cardiac Signal
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Figure 11. ROC curve with the best results for the three scenarios: (a) S1, (b) S2, and (c) S3. In
it, the 1-FRR and FAR for the ECG as well as the BR signals are plotted in a coloured line: yellow
for the ECG signal, green for the fusion source, red, and blue for the respiratory and cardiac BR
signals, respectively.

5.4. Sensitivity to the Number of Subjects

The final test consisted in the evaluation of the system’s performance for cases where
the database includes different numbers of subjects. For that, the number of subjects was
incremented from 2 to 19. A new subject is randomly chosen from the pool, and added to
the already existing set of subjects. Furthermore, within the random sample of subjects, at
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each iteration, each acted as a legitimate user, and the others as intruders, in turn, and thus
the average EER was recorded.

Figure 12 presents the performance, expressed in terms of EER for each test, as a
function of the population size for the fusion signal source. This figure presents the best
and the worst results attained for this source with linear amplitude, that is, S1 H-H, S2 H-F,
and S3 NH-F as the best combination, and S1 N-N, S2 N-H, and S3 HF-N as the worst one.
At a first glance, in Figure 12a, the values barely increase past 20%, whereas in Figure 12b
they almost reach 30%. Nevertheless, the increase in EER is present as the number of
subjects increases; however, there are a few peculiar aspects.

In Figure 12b, initially the EER is disproportionately big, decreasing as the number
of subjects increases, only to then increase once again. This is most likely a consequence
of the random nature of the test. At a first instance, only two subjects are selected. These
subjects may be apparently similar, especially given that neutral conditions are the worst
case scenario, which has been shown to be less descriptive. As the number of subjects
increases, the EER decreases as there is more information available to the classifier. In
Figure 12a, this most likely does not happen, because we are considering the best case
scenario—happy conditions—which proved to be better at distinguishing samples.

Despite these, the results do stabilise, easily seen by the nature of box plot graphs, as
the box itself becomes smaller, as well as the “whiskers” denoting the variability of the data.
So, the increase in EER is striking as the number of subject increases. It is important to note
that the results stabilise despite the increase in the number of subjects, seen in scenario S1
stabilising below 10%, as well as in the other two scenarios. These results support the fact
that authentication is robust to the number of subjects. Despite that, the results are visibly
affected by the time span and/or emotion variability.
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Figure 12. Best (a) and worst (b) case scenarios using the fusion signal source for different numbers
of subjects.

5.5. Final Remarks

Scenario S1, with the source fusion, has shown promising results, reinforcing the
potential of BR-based biometric systems in real-world applications, where resolving the
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identity of an individual may be necessary. Herein we have focused on authentication,
with the results suggesting that it can be particularly useful, as a means to guarantee that
the user remains the same all throughout a certain session (i.e., continuous authentication).
Considering the sensitivity to the number of subjects, for the time being these systems
appear to be most viable for use cases where the number of subjects is limited (e.g., a
household [22] or in-vehicle passenger recognition [24,25]).

Permanence of the biometric template is still a challenge in BR-derived biometric
templates. Nevertheless, we evaluated two scenarios that provide important insights,
namely: the use of a single training session (S2), or the combination of multiple sessions
(S3), all disjointed from the testing session. There is a clear increase in performance for the
S3 case, as a direct consequence of training the classifier with more diverse information
from the subjects; this suggests that periodically retraining/updating the classifier may
significantly improve the performance (as the system becomes more knowledgeable about
its users and their different states). This is also a possible solution to mitigate the effect of
emotional state on the recognition performance.

6. Conclusions

Doppler radars for biometric recognition have already been analysed in previous
studies. However the number of subjects was usually small, and without accounting for dif-
ferent stimuli. The present work explores a new BR dataset containing 20 subjects, exposed
to content designed to elicit different emotions (happiness, fearfulness, and neutrality), in
sessions separated by several days/weeks. The physiological signals obtained with the
BR system were used, containing both respiratory and cardiac information. With these, it
was possible to explore a novel source, a multimodal approach consisting of the fusion by
concatenation of these signals. The signals obtained were segmented into 30 s windows,
and transformed to the frequency domain by means of the FFT. Afterwards, normalisation
and an extra filtering stages were applied.

To assess the biometric performance under the scope of authentication, there were
three scenarios devised, with the aim of extracting as much information as possible about
the BR system under different conditions. Within the session scenario S1, the fusion
source set obtained an EER of 3.48% for happy conditions, showing promising biometric
authentication recognition rates in short-term data. Nonetheless, different time frames
impact the signal. When considering the use of a single training session, the best results for
the fusion source were an EER of 16.78%, and when intending the combination of multiple
sessions, different from the testing session, the best EER obtained was 13.52%.

This study focused primarily on the evaluation of the performance of these type
of systems in the scope of authentication, moreover a novel contribution of this work
is the evaluation on whether a given emotional state of the user has an impact on the
authentication performance. This is an aspect largely unexplored in literature describing
identity recognition using physiological signals in general and, even more so, using BR
systems. Despite the different experimental configurations explored herein, there are
multiple aspects that should be considered in subsequent research. From our post-hoc
reflection, the most relevant concerns are as follows:

1. The study of long term permanence, possibly by means of conducting a trial consisting
of a few weeks or even months, with no emotion induced;

2. Further studies on emotion variability should be pursued in order to better under-
stand the impact of this specific variable in the biometric template obtained, one
option being the use of a broader set of emotions;

3. The analysis of the impact that distance has on the biometric recognition accuracy,
possibly by collecting information from the same subject at different distances, as in
real-world conditions the subjects may not be confined to a single 3D volume;

4. Considering the factor of motion artefacts, since BR sensors are vulnerable to move-
ment, and evaluate how these impact the biometric template, and consequently, the
classifier’s performance;
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5. Understanding the features space’s information, in particular, determining which
features are specific to emotion variation, or possess temporal locality characteristics,
may be crucial from an authentication standpoint.

All things considered, one can state that the implementation of a BR biometric recog-
nition system was effectively achieved. The experimental results imply that the BR signals
are reasonably different across subjects. Moreover, with this work, it was possible to assess
the time and emotional variability of these systems.
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