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Abstract: Due to aging infrastructure, technical issues, increased demand, and environmental de-
velopments, the reliability of power systems is of paramount importance. Utility companies aim to
provide uninterrupted and efficient power supply to their customers. To achieve this, they focus on
implementing techniques and methods to minimize downtime in power networks and reduce main-
tenance costs. In addition to traditional statistical methods, modern technologies such as machine
learning have become increasingly common for enhancing system reliability and customer satisfac-
tion. The primary objective of this study is to review parametric and nonparametric machine learning
techniques and their applications in relation to maintenance-related aspects of power distribution
system assets, including (1) distribution lines, (2) transformers, and (3) insulators. Compared to other
reviews, this study offers a unique perspective on machine learning algorithms and their predictive
capabilities in relation to the critical components of power distribution systems.

Keywords: machine learning; artificial intelligence; parametric model; nonparametric model; power
system; predictive maintenance

1. Introduction

Machine learning (ML) is a subfield of artificial intelligence (AI) that aims to develop
mathematical models that mimic a human way of identifying and reasoning about de-
pendencies between data variables describing phenomena. Over the last decade, ML
techniques have gained enormous recognition for their modeling and prediction capabili-
ties. The main task of ML is to learn an unknown function f (·) based on input data (X) to
predict or explain Y. It yields an estimated function f̂ (·), such that Y ≈ f̂ (X). This function
can be descriptive, predictive, and prescriptive depending on the needs.

ML algorithms can be categorized in a variety of ways. The most common is to
classify them into supervised, unsupervised, and semi-supervised learning techniques.
The main difference between these approaches is using labelled and unlabeled data for
construction purposes. Another is based on the mechanisms applied to learn the f (·)
function: parametric and nonparametric ones. This categorization, explained in Section 2,
is primarily considered in this paper.

Due to the massive increases in power consumption and diversity of power gener-
ation, it has become a challenge for power companies to provide uninterrupted power
efficiently. Several factors can contribute to power interruptions such as adverse weather
conditions, vegetation and animal interferences, equipment failures, human errors, and
other operational reasons, often resulting in power outages. Forecasting and identifying
potential outages or fault events have always been a priority for researchers and power
utilities. Therefore, modern technologies like ML have been extensively used to increase
the power system reliability and customer satisfaction. Because of their powerful learning
ability, numerous studies have reviewed applications of ML in power transmission and
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distribution systems, such as forecasting, security assessment, risk analysis, identifying
and locating faults, condition monitoring and inspection of different assets, etc. Asset
management and predictive maintenance of different components of power distribution
systems have played a significant role in transforming the power industry. Predictive main-
tenance allows for the detection of various faults and failures in the network in advance,
while asset management focuses on maintaining the life cycle and condition monitoring of
individual assets.

Several reviews have been published addressing the application of ML techniques in
power systems. Jian et al. review different ML techniques, such as traditional ML, deep
learning (DL), and reinforcement learning (RL), to improve power system resilience [1].
They address the challenges and important issues associated with using ML. Similarly,
Alimi et al. focus on four domains of power system security and stability [2]. They target
SCADA network vulnerability and threats, analyses of power quality disturbances (PQDs),
voltage stability assessment (VSA), and transient stability assessment (TSA). Further, they
examine the benefits and limitations of various ML applications and present related research
gaps. Aminifar et al. provide an overview of power system protection schemes, different
types of faults, and issues associated with synchronous generators, power transformers, and
transmission lines [3]. The focus of this paper is to represent how ML methods overcome
traditional model-based techniques in terms of performance and accuracy.

Dashti et al. [4] present a detailed survey on the prediction and location of faults
in the power distribution network. The authors investigate different types of systematic
and unsystematic faults and the application of various ML algorithms in predicting and
locating them. Another survey includes a thorough overview of traditional and intelligent
conditional monitoring techniques for the health assessment of transformers [5]. This
study shows that the use of ML algorithms, such as artificial neural networks (ANNs),
support vector machines (SVMs), k-nearest neighbors (kNN), decision tree (DT), random
forest (RF), and regression, can effectively support the monitoring of transformers. It also
addresses some of the challenges associated with intelligent algorithms, suggests solutions,
and identifies future trends. Rajora et al. [6] provide a detailed survey on the application of
supervised, unsupervised, DL, and RL in asset management of power distribution system
assets. In addition to addressing the advantages and disadvantages of each technique used
in the literature, it also concludes that deep learning techniques are the most optimal for
the management of power system assets.

In contrast with the previous literature, this paper classifies ML algorithms into para-
metric and nonparametric techniques and reviews their applications in power distribution
systems. The contributions of this paper can be summarized as follows:

• Describing two categories of machine learning algorithms, parametric and nonpara-
metric techniques, providing their advantages, drawbacks, and limitations.

• Focusing on the application of machine learning techniques to power distribution
systems for their asset management, condition monitoring, and preventive and predic-
tive maintenance.

• Providing a comparative and descriptive analysis of machine learning-based models
for predicting maintenance-related issues in distribution lines, transformers, and
insulators to help in choosing the appropriate technique based on its performance,
advantages, and limitations.

• Offering useful references to select appropriate parametric and nonparametric tech-
niques for insulator inspection, fault diagnosis, and health assessment of transformers
and distribution lines.

This paper is organized as follows. Section 2 introduces the parametric and non-
parametric techniques and their advantages, disadvantages, constraints, and selection
criteria. Section 3 provides a detailed review of their applications to address various
problems related to the main components of power distribution systems: distribution
lines, transformers, and insulators. In Section 4, a comparison analysis and a conclusion
are provided.
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2. Parametric and Nonparametric Techniques

This section provides an overview of parametric and nonparametric techniques, in-
cluding their advantages, disadvantages, and limitations. It also addresses the issue of
selecting a suitable technique for a problem. A brief introduction to some of the popular
ML algorithms is presented.

2.1. Parametric Techniques

In statistics, parametric means that the population from which the sample is taken
follows a specified probability distribution with a finite number of parameters. A paramet-
ric technique makes assumptions about the functional form of f (·) and, based on these
assumptions, f (·) is estimated given as f̂ (·). The estimated function has a finite set of
parameters that are not affected by new data. These parameters can be estimated by fitting
the training data into the model. Let us assume that f (·) follows the distribution

Y = β0 + β1x1 + β2x2
2 + · · ·+ βpxp

p. (1)

To estimate f̂ (·), we only need to estimate p+1 coefficients, such that

Y ≈ β0 + β1x1 + β2x2
2 + · · ·+ βpxp

p. (2)

where β0, β1,+ · · ·+ βp are regression coefficients. Although (2) fits a nonlinear model,
the model itself is linear in parameters. Therefore, β0, β1, . . . , βp can be estimated using
ordinary least squares and maximum likelihood. Linear regression, polynomial regression,
naive Bayes, simple neural network, linear discriminant analysis, and linear support vectors
are examples of parametric techniques.

2.2. Nonparametric Techniques

Nonparametric means that data samples are collected from a population with no spe-
cific probability distribution. Nonparametric techniques make no assumptions regarding
the functional form f (·). Since no prior information is available, these models estimate f (·)
from the training dataset based on the trial–error method. In these techniques, the number
of parameters to estimate is not fixed and often increases with additional data.

Suppose that we have a training dataset with a binary response variable (yes and no)
and no prior knowledge regarding the relationship between input and response variable.
One way to classify a new data point is to check its proximity to the neighboring data
points, i.e., to calculate the distance between the new and other data points with the known
value of the response variable. The Euclidean distance shown is a commonly used distance
metric to form such decision boundaries.

Examples of nonparametric techniques are k-nearest neighbors, decision trees, random
forest, radial basis function (RBF) kernel support vector machines, and nonparametric
regressions.

2.3. Advantages, Disadvantages, and Limitations

Due to the defined functional form and a finite number of parameters to learn, para-
metric techniques require less computing power and training time. They provide a more
straightforward interpretation of results and do not have restrictions on the size of the
dataset. However, these models are not accurate representations of data and are more
prone to underfitting.

In the case of nonparametric techniques, since no assumptions are made regarding
the functional form, they can discover a functional form of f (·) from the provided data.
That leads to a better representation of data and prediction accuracy. These techniques
can manage complex data and can be used to make predictions and find patterns and
relationships within a dataset. As the learning parameters can be infinite, these models
require more training data and time. They are more computationally expensive compared
to the parametric methods.
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The choice between parametric and nonparametric techniques depends on a prior
functional form of information and error distribution. Statistical analysis is a valuable tool
to obtain initial knowledge about data. If the data are well defined and follow a particular
functional form, a parametric method is a more suitable choice than the nonparametric one.
For example, in Figure 1, the attributes X1 and Y1 tend to follow a linear relationship and
can be modeled using a linear parametric technique, while the attributes X2 and Y2 does
not follow any known or linear distribution; therefore, a nonparametric technique would
be a better choice [7].
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Parametric techniques are less flexible. The estimated f (·) is represented within a
small range of shapes. In contrast, nonparametric techniques can estimate f (·) within
a wide range of shapes. Thus, the nonparametric methods are considered more flexible.
The lower flexibility in developing models leads to better interpretability, which can help
solve interference problems. On the other hand, more flexibility in determining a suitable
model could result in increased complexity and difficulty in understanding the relationship
between inputs and response.

Another methodology for selecting a suitable model for the data is based on the
trade-off between bias and variance, which determines the model’s performance. Bias is an
error that defines how well the estimated function represents the data, while variance is
the variation in the estimated function with a different input dataset. The goal is to find
an optimal model with low bias and variance. It could be achieved in prediction analysis
by minimizing the prediction error [8]. Regarding the bias–variance trade-off, models
developed using parametric techniques have high bias and low variance. Since these
models are less flexible, they are better suited for more straightforward and well-defined
prediction problems. On the other hand, nonparametric approaches have low bias and
high variance, thus often resulting in overfitting.

For example, in regression setting, mean squared error (MSE) is used to estimate the
quality of fit of a model, where the MSE is the difference between the actual value and
estimated one. Let (3a) be the MSE obtained for training data.

MSE =
1
n∑n

i=1 (yi − f̂ (xi))
2 (3a)

where (xi , yi) is a training observation and f̂ (xi) is the prediction of the i-th observation.
The MSE obtained for a testing observation (x0 , y0) can be defined as (3b)

MSE0 = (y0 − f̂ (x0))
2 (3b)

where f̂ (x0) is the prediction at x0 observation. The training method which minimizes the
expected MSE calculated for the test dataset is selected. The relationship between squared
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bias, variance, and test set MSE is shown in Figure 2. In (4), Var
(

f̂ (x0)
)

is the variance of

f̂ (x0), [Bias
(

f̂ (x0)
)
]2 is squared bias, and Var(ϵ) is the variance of the error term.

Expected test MSE = Var
(

f̂ (x0)
)
+ [Bias

(
f̂ (x0)

)
]2 + Var(ϵ) (4)
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It can be seen in Figure 2 that as the flexibility of the model increases, the bias (red)
tends to decrease rapidly compared to the increase in variance (blue). In contrast, the test
MSE (black) tends to decline initially. At a certain point, increasing the model’s flexibility
does not affect system bias (red), but it significantly increases the variance and the test MSE
(black); this is referred to as the bias–variance trade-off. The challenge lies in finding the
optimal model with low squared bias and variance. Therefore, depending on the research
area and the problem statement, the parametric or nonparametric technique should be
selected considering the bias–variance trade-off [9].

2.4. Examples of Parametric and Nonparametric Techniques

A diagram representing different parametric and nonparametric ML algorithms is
shown in Figure 3. Brief descriptions of a few commonly used algorithms are provided
below. For more detailed information, cf. [10].

2.4.1. Regression Models

Regression models are supervised ML algorithms to determine the relationship and
correlation between predictors and dependent variables. Linear regression is a straight-
forward and commonly used approach to predict quantitative responses in applications
with a single predictor variable, and their relationship can be linearly defined. However,
to accommodate multiple predictors, multiple linear regression is used. To predict the
qualitative response or classify the output variable in distinct categories, logistic regression
is considered. It determines the probability of belonging to a particular category. Linear
and logistic regression are based on the linearity assumption. In situations when data are
nonlinear, these models provide poor predictive performance. To overcome this, extensions
of linear models like polynomial, step function, splines, local regression, and generalized
additive models are more suitable options [9].
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Linear models are considered parametric because the parameters to be estimated are
predetermined and increasing training data size will result in changes in parameter values
only. However, nonlinear models can be parametric with an assumed functional form
or nonparametric with no specified function. Some examples of regression models are
presented below; for more details, see [9].

Linear regression : yi = β0 + β1xi + ϵi (5)

Polynomial regression : yi = β0 + β1xi + β2x2
i + · · ·+ βdxd

i + ϵi (6)

Multiple logistic regression : P(X) =
exp (β0 + β1x1 + β2x2 + · · ·+ βpxp)

1 + exp (β0 + β1x1 + β2x2 + · · ·+ βpxp)
(7)

Kernel regression : f̂h(x) =
∑n

i=1 K( x−xi
h )yi

∑n
i=1 K( x−xi

h )
(8)

where K is kernel function with bandwidth h.

Multivariate adaptive regression splines (MARS) : f̂ (x) = ∑k
i=1 ciBi(x), (9)

where Bi(x) is a basis function.
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2.4.2. Support Vector Machine

SVMs are supervised ML methods for classification and regression to analyze linear
and nonlinear data with better accuracy and performance. In SVMs, different kernel
functions, such as linear, polynomial, RBF, and sigmoid, are used to transform input data
to a high-dimensional feature space so a hyperplane can separate data points. Once the
optimal hyperplane is found, new data points can be classified. The kernel function is
chosen based on the type of data. In cases where data can be linearly separable, the linear
kernel function is a more suitable choice; since its parameters are not affected by the training
dataset, an SVM with a linear kernel can be termed a parametric technique. But an SVM
with a nonlinear kernel situation is different. For example, in an RBF SVM, the kernel
matrix depends on the training dataset; it is calculated by computing the distance between
training points. Thus, as the training data size increases, the model becomes more complex
and can be termed nonparametric. Some commonly used kernels are given below.

Linear kernel : k(x, y) = x·y (10)

Polynomial kernel : k(x, y) = (xTy + r)d (11)

Sigmoid kernel : k(x, y) = tanh(γ·xTy + c) (12)

Radial kernel k(x, y) = e−(γ∥x−y∥2) (13)

2.4.3. Artificial Neural Networks

Artificial neural networks (ANN)s are parallel distributed processors that simulate the
structure of the human brain. They are highly adaptive and have high fault tolerance and
computational power. An ANN consists of input, one or multiple hidden and output layers.
Depending on the neurons in the hidden layers, they can be parametric or nonparametric.
Nodes or neurons in different layers are information-processing units that define the opera-
tion of the neural network [11]. The input signals are assigned weights, and the summation
function sums the inputs multiplied by their respective weights. The activation functions
such as step, sign, sigmoid, and linear compute the output, which might become the input
of another node. Different types of ANN used for various purposes are feedforward neural
networks, multilayer perceptrons (MLPs), convolutional neural networks (CNNs), radial
basis function neural networks, and recurrent neural networks (RNNs).

Neural networks are considered parametric when their parameters, i.e., the number of
layers and nodes in each layer, are predetermined, and any increase in data size does not
increase the number of parameters. But if the parameters are not fixed, the neural network
can be interpreted as nonparametric. An example of a nonparametric neural network can
be a network with a RBF used as an activation function, as the number of neurons and
thus parameters can grow. A nonparametric neural network is introduced by Philipp and
Carbonell [12], where size of the ANN is obtained using Adaptive Radial–Angular Gradient
Descent or AdaRad optimizations.

2.4.4. Decision Tree

A decision tree (DT) is a nonparametric ML algorithm that can be applied to quanti-
tative and qualitative response problems. Trees are easy to interpret and are increasingly
used in decision analysis and knowledge discovery tasks. Since decision trees are highly
flexible models, they are more prone to overfitting, resulting in high variance compared to
other algorithms. They consist of a series of splitting or decision rules to form a hierarchical
tree-like virtual lookup table composed of root, internal, and terminal nodes connected
through branches. From the root node, the input data are fed into the internal nodes to split
the predictor space to form homogenous subsets or terminal nodes that list all possible
combinations within the data. There are different types of DTs, such as classification and
regression trees (CARTs), iterative dichotomiser 3 (ID3), M5, C5.0, C4.5, conditional deci-
sion trees, and chi-squared automatic interaction detectors (CHAIDs). DTs are also used
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in ensemble configurations, such as random forest, bagging and boosting ensemble DTs,
rotational forest, and light gradient-boosting machine (LightGBM), to improve classification
rate and accuracy. All decision tree-based methods are considered nonparametric. Their
decision rules rely on training data to make predictions. As training data increases, more
decision rules are needed, and the complexity and depth of the trees increase.

3. Machine Learning in Reliability Assessment

The primary goal of electricity providers is to maintain a reliable and stable power sys-
tem that supplies uninterrupted electricity service to its customers. Therefore, in addition
to traditional reliability assessment techniques such as Monte Carlo, researchers are now
opting to apply ML techniques to the reliability assessment of power distribution systems.
This section presents an overview of the parametric and nonparametric ML algorithms
used for asset management in power distribution systems, condition monitoring, and
preventive and predictive maintenance.

3.1. Power Distribution Lines

Power distribution lines are a distribution network’s most vulnerable and critical
components. Different types of lines, such as overhead and underground (or subterranean),
are subject to various internal and external factors that cause failures and power outages,
affecting the system’s reliability. The leading causes of outages in distribution systems are
vegetation, weather, animals, and equipment failure. Therefore, researchers, regulators,
and distribution system operators opt for predictive maintenance and condition monitoring
of these assets so that electricity service can be provided to customers without interruptions.
The application of various parametric and nonparametric ML algorithms used for fault
diagnosis and maintenance on power distribution lines is addressed in this section.

3.1.1. Weather-Caused Faults

The relationship between overhead distribution line outages and weather conditions
such as wind gusts and lightning strikes is analyzed in [13]. Four types of regression models
are used to evaluate linear and quadratic relationships between outage and predictor
variables. This study considers two datasets representing lightning strikes within 200 m
and 400 m around the overhead distribution line. Only two input variables, daily wind
gust speed and lightning strokes in kA, are used to train the regression models. Based on
the mean square error, R2, and average absolute error, the regression model representing
a linear relationship for lightning and a quadratic relationship for wind performs well in
estimating the effect of wind and lightning on outages compared to other proposed models.
It is also concluded that the use of two different datasets does not affect the performance
and prediction accuracy. Therefore, a dataset of lightning strikes within 200 m is sufficient
to observe the effect of lightning on outages. In another study [14], weather-related power
outages on overhead distribution lines are predicted using linear regression and a one-layer
Bayesian network.

A feedforward ANN is used to calculate lightning flashover rates and to differentiate
between direct and indirect lightning strikes on unshielded overhead distribution lines [15].
When a lightning strike hits the line (direct) or ground (indirect), it produces overvoltage,
causing insulation flashover. Overhead distribution lines should be shielded to increase
their protection from external sources. In the proposed study, ANN with two hidden
layers of 14 and 12 neurons efficiently distinguished between different types of strikes and
predicted flashover rates. Sarajcev [16] proposes a bagging ensemble classifier to predict
lightning flashovers on medium voltage overhead distribution lines as an extension of
previous work [15]. In the proposed bagging ensemble model, multiple SVM classifiers are
trained on bootstrap samples, and their predictions are combined by weighted averaging.
The result shows that the bagging ensemble classifier performed better than an ANN in
performance, training time, and the ability to deal with noisy and imbalanced data.
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3.1.2. Vegetation and Animal Caused Faults

Radmer et al. [17] present a comparative study between three different regression
models (linear, exponential, multivariate linear) and ANN for predicting failure rates of
overhead distribution lines due to vegetation growth. This study uses weather variables
and historical outage data to predict time-varying, vegetation-related failure rates. The
experimental results indicate that ANN with one hidden layer provides a better fit for
the data. However, for predicting unknown failure rates, the multivariate linear model
proved more suitable with the lowest generalization root weighted mean square error
(RWMSE) of 0.2427. The generalization error of the linear model was slightly higher than
the multivariate, where ANN has the worst generalization error.

Melagoda et al. [18] use parametric and nonparametric ML algorithms, i.e., ANN,
decision tree, and random forest, to predict vegetation-related power distribution system
outages. The input datasets consist of previous outage information, and weather data (such
as temperature, precipitation, humidity, wind speed, and sun hours) are used to train the
prediction models. Based on the performance of the models, the random forest can predict
the probability of occurrence of an outage with the highest F1 score, that is, 0.94. The
random forest prediction result is mapped to the risk map to show the risk associated with
the distribution feeder. The output probability of the model is color-coded in five risk levels,
which is helpful for priority-based maintenance of the feeders. Kankanala et al. [19] study
weekly animal-related outages in overhead distribution lines based on a neural network
combined with two boosting algorithms, AdaBoost.RT and AdaBoost+. Based on different
performance measures, mean square error (MSE), mean absolute error (MAE), correlation,
and best fit between the estimated and observed outages, AdaBoost+ outperforms neural
network and Adaboost.RT with the lowest MSE and MAE and highest correlation between
estimated and observed outages.

3.1.3. Short Circuit Faults

The MLP neural network is used by Aslan and Yağan [20] to classify and locate shunt
faults on a 34.5 kV MV overhead distribution line. The experimental results show that ANN
is able to classify all faulty conditions, and its performance is not affected by different fault
types, inception angle, remote end source capacity, and fault resistance. Chunju et al. [21]
propose a technique to locate a single line-to-ground fault (SLG) in a distribution line using
a wavelet fuzzy neural network. The authors extract a high-frequency component from the
fault transient signal using wavelet transform and integrate it with a fuzzy neural network
to locate the fault. The results suggest that the proposed technique is beneficial for power
system fault analysis. Different fault types in power distribution lines, such as line-to-line
and line-to-ground faults, are predicted using a decision tree [22].

Min et al. developed a model to predict faults in 10 kV distribution lines based on
a light gradient-boosting machine (LightGBM) and CNN [23]. LightGBM uses tree-like
models for learning. In this study, multiple sub-models of LightGBM are employed to
overcome the imbalance in the fault dataset. The dataset used for this study consists of
both discrete and continuous features such as line and equipment information, weather
data, operational characteristics, and depth time series features. CNN is employed based
on stacking ideas to extract the time series features. The extracted time series and discrete
features are then used to train multiple LightGBM models to predict fault probability. The
outputs of these sub-models are combined into an ensemble classifier to determine the
final fault probability. The results show that by utilizing both parametric and nonpara-
metric techniques, the proposed method gives satisfactory performance compared to the
LightGBM classifier without CNN.

Ngaopitakkul et al. [24] use SVMs with discrete wavelet transform (DWT) to classify
faults in underground distribution cables. First-scale high-frequency components are
extracted using DWT from stimulated fault signals. They are used to train five different
SVM models. Various fault inception angles and faulty phases are assessed by considering
the location of the underground cable. The proposed algorithm performs better than the
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method developed by Apisit et al. [25], which uses only DWT for fault classification in
underground cables.

Oliveira et al. [26] employ the extreme gradient boosting (XGBoost) algorithm to
predict future failures and their location in high-voltage (HV) and medium-voltage (MV)
distribution lines. The distribution line dataset is segmented into two groups corresponding
to the HV and MV lines. The MV dataset is further segmented based on installation styles
such as overhead, subterranean, and hybrid. For each segment, the most significant
variables are selected based on stepwise (forward and backward) and ridge regression,
which are used to train the prediction model. The proposed methodology is compared with
the naïve and historical mean approaches for performance analysis. In the naïve approach,
failure predictions are based on the most recent failure records. In contrast, for the historical
mean, predictions are based on an average number of failures. Based on weighted error
(WE), weighted absolute error (WAE), and weighted absolute percentual error (WAPE), the
proposed techniques outperform other approaches with the lowest prediction error and an
accuracy of more than 0.80.

The causes of distribution line faults and failures, along with the ML methods used to
address them, are summarized in Table 1.

Table 1. Different causes of failure and faults in distribution lines.

Common Causes of
Distribution Line Failure

Machine Learning Algorithms
(P—Parametric, NP—Nonparametric)

Weather [13,14]
Lightning flashover rate [15,16]

Linear and quadratic regression model (P)
ANN (P)
Bagging ensemble classifier–support vector
machines (SVM)m (P)

Vegetation [17,18]

Regression (P)
Artificial neural network (ANN) (P)
Decision trees (NP)
Random forest (NP)

Animal [19] Neural network-AdaBoost (P)

Shunt fault [20]
Single line-to-ground fault (SLG) [21,24]
Line-to-line fault [22,24]
Double line-to-ground [24]
Three-phase fault [24]

ANN (P)
Fuzzy neural network, SVM (P)
Decision tress (NP), SVM (P)
SVM (P)

3.2. Insulators

Insulators are other core components of power distribution systems. They support
line conductors and electrically isolate them from the ground. Typically, insulators are
made of glass, polymers, porcelain, and ceramics. The different types of insulators and
their common usage areas are listed in Table 2.

Table 2. Insulators and their applications.

Insulator Usage
Pin Insulator Distribution system
Suspension Insulator Overhead transmission lines
Strain Insulator Overhead transmission system
Shackle Insulator Overhead distribution system
Post-Insulator Substation
Stay Insulator Distribution lines
Disc Insulator Both transmission and distribution lines
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Over time and under certain conditions, insulators may lose their insulating properties.
This may lead to line-to-ground (L-G) faults that affect the reliability of the power system.
The most common defects found in insulators are breakage, self-explosion, string falling,
fouling, cracks, burns, erosion, and contamination. Outdoor insulators are more prone to
contamination due to different environmental elements. Over time, these contaminated
insulators produce a leakage current, resulting in flashover or system failure. Therefore,
various ML-based strategies are used to monitor defects and contamination levels. These
defects and damage can be detected using different insulator inspection techniques listed in
Table 3. They are often combined with ML algorithms to improve the quality of inspections.
Such solutions result in the better detection of insulator defects.

3.2.1. Condition Monitoring Using Images

Traditional methods for monitoring the condition of the insulators are based on visual
inspection and aerial surveillance. More recently, video surveillance methods with remote
terminal units (RTUs) combined with ML algorithms have become the tools of choice for
the real-time monitoring of insulators. Because of their ability to capture various types of
surface defects under different backgrounds and weather conditions, they often outperform
traditional methods.

This section reviews several parametric and nonparametric techniques used in the
maintenance and condition monitoring of insulators deployed in power distribution sys-
tems. Prasad and Rao [27] propose a classification method to evaluate the condition of
the distribution line insulators using an SVM. In the proposed approach, 80 images of
electric poles taken at regular time intervals are captured using remote terminal units
(RTUs). K-means clustering is used to identify insulators in pictures, and the local binary
pattern-histogram Fourier (LBP-HF) is used to extract insulator features. The generated
feature vectors are then input into the SVM model to classify whether the insulator is in a
healthy, marginal, or risky state. The result shows that SVM can be an effective tool for the
condition monitoring of insulators with 93.33% accuracy.

Reddy et al. use an adaptive neuro-fuzzy inference system (ANFIS) to locate and
classify the condition of overhead distribution line insulators [28]. Images with the plain
background taken by RTUs are clustered using the k-means algorithm to extract informa-
tion about the pole, cross-arm, insulators, and conductors. ANFIS detects the insulators in
the bounding boxes drawn over the images. Reddy et al. [29] extend their previous work
and introduce SVM and ANFIS for the condition monitoring of insulators with complex
backgrounds. In both studies, discrete orthogonal S-transform (DOST) extracts insulator
characteristics. The experimental results show that SVM performed better in correctly
locating insulators in bounding boxes and identifying insulators’ health conditions with
complex backgrounds. Similar techniques of conditional monitoring and determining
the health of insulators are mentioned in [30]. Here, the wavelet transform is used to
extract the features, and the SVM is used to classify the insulators’ conditions. A review
of different types of techniques used to monitor and classify the state of overhead distri-
bution insulators is described by Murthy et al. [31]. The authors perform a comparative
analysis between various feature extraction techniques such as modified Hough transform,
wavelet transform, discrete orthogonal S-transform and LBP-HF, and several classification
techniques such as SVM, ANFIS, and hidden Markov model (HMM).

The ANN and CNN are used to evaluate and classify the surface erosion levels of
the insulator (silicon rubber) in laboratory settings [32]. In this study, various image
enhancement and feature extraction techniques are considered. Visual inspection of silicone
rubber (SIR) samples classifies them as healthy, moderately eroded, and severely eroded
insulators according to the IEC-60587 standards [33]. A total of 1240 images of SIR taken
at different angles and lightening settings have been collected and preprocessed using
image enhancement techniques such as contrast adjustment (CA), contrast-limited adaptive
histogram equalization (CLAHE), and fast local Laplacian filtering (FLLF). Based on these
images, features are extracted using raw features (Raw) and histogram-of-gradient (HOG).
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They are inputted to ANN and CNN for classification purposes. Experimental results
show that with 89.5% accuracy, CNN outperforms the two-hidden-layer ANN with image
enhancement and feature extraction techniques. The proposed method can also be applied
to outdoor insulators to inspect and detect their health condition.

3.2.2. Condition Monitoring Using Ultrasound

Several optimization methods, such as gradient descent, resilient backpropagation,
quasi-Newton, and Levenberg–Marquardt, are used to train ANN to identify faulty insula-
tors in a laboratory setting [34]. This study compares different optimization methods for an
ANN regarding processing capacity and performance. Four-pin type porcelain insulators
with different conditions (new, broken, laboratory-drilled, and contaminated) are consid-
ered to acquire ultrasonic data using an ultrasound detector. An MLP with one hidden
layer of five neurons is used to evaluate the performance of different optimization methods.
Under this setup, gradient descent gives unsatisfactory training time and accurate results.
Therefore, conjugate gradient backpropagation (CGB) is presented with other gradient
updating techniques such as Powell–Beale restarts, Polak–Ribiére, Fletcher–Reeves, and
scaled CGB. The result shows a trade-off between accuracy and training speed: an accuracy
of 99.99% was obtained using scaled CGB; however, its training time was longer than that
of the other proposed methods.

An MLP was also used to classify different conditions of ceramic insulators using
an ultrasound detector [35]. Two different backpropagation MLPs were built. The first
classifies insulators as contaminated or non-contaminated, and the second as perforated
and non-perforated. The result shows that the proposed method can detect perforated
insulators more accurately (82.00%) than contaminant insulators (68.25%). The double-
check technique is utilized to further improve the accuracy of the prediction. An adaptive
neuro-fuzzy inference system (ANFIS) with wavelet packet transform is introduced to
predict insulator conditions using an ultrasound detector [36]. ANFIS is a hybrid system
that uses ANN and fuzzy inference. It can handle complex data [37]. Time series data
from the 25 kV class insulator is filtered using wavelet packet transform, which is used as
input to the model for time series forecasting. Three fuzzy inference structures, grid parti-
tion, fuzzy c-means clustering, and subtractive clustering, are considered for building the
ANFIS model. Based on training time and accuracy, fuzzy c-mean clustering outperforms
other inference structures. In addition, this approach is further compared with different
neural network-based techniques, such as a nonlinear autoregressive (NAR) model, and a
nonlinear autoregressive with exogenous input (NARX) model. Still, the proposed system
predicts faulty insulators with better accuracy.

3.2.3. Detecting Leakage Current

Khafaf and El-Hag [38] apply an ANN to predict the value of leakage current (LC) in
an outdoor polymer insulator. In the proposed approach, three different ANN models are
implemented: the nonlinear autoregressive (NAR), input–output (I–O) neural network, and
nonlinear autoregressive with exogenous (NARX) with different input time series. Bayesian
regularization is used to overcome overfitting in a neural network. Regarding prediction
error, the NAR neural network outperforms other models when there is no correlation
between the fundamental and third-harmonic components of LC. However, in the presence
of correlation, NARX performs better. Furthermore, this study concluded that the NAR
neural network is more suitable than SVM and kNN for time series prediction. In other
work, the solid-layer method artificially contaminates disc-type porcelain insulators at
different contamination levels [39]. A dataset of 2000 samples of leakage current is recorded
at different voltage levels. The dimensionality of the dataset is reduced by principal
component analysis and separated into four distinct clusters using k-means clustering to
evaluate the health of insulators.
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3.2.4. Detecting Partial Discharge

Partial discharge (PD) pattern recognition is addressed by Abubakar et al. [40]. The
authors propose an ensemble neural network. The network is formed by combining the
prediction of different neural networks trained for the same purpose. In this paper, the
ensemble network is constructed using three different models: MLP and RBF network
(RBFN), both with a single hidden layer and 60 neurons, and Elman recurrent network
(ERNN) with one hidden layer and 30 neurons. These models are trained on statistical
parameters such as skewness, kurtosis, and discharge factor (Q) to classify various PD
patterns. With bootstrap resampling, this ensemble neural network gives better prediction
accuracy than individual neural networks. Mas’ud et al. published a review of multiple
applications of ANN to detect and recognize partial discharge (PD) faults and patterns [41].

The k-nearest neighbors (kNN) algorithm is applied by Corso et al. [42] to classify con-
taminated insulators. For this study, five 15 kV pin-type porcelain insulators are artificially
contaminated in a laboratory, and their images capture different contamination levels. After
image preprocessing and feature extraction, k-NN is built using different data separation
techniques and distance calculation functions. A comparative study of parametric and
nonparametric ML algorithms, such as decision trees, ensemble (subspace), SVM, and
multilayer perceptron models, is also conducted. kNN with 9-fold cross-validation and
Mahalanobis function performs well compared to other proposed methods and techniques.

Different defect inspection techniques and applications of ML algorithms to insulator-
related problems that are described in this section are presented in Table 3.

Table 3. Insulator inspection techniques and application of ML methods.

Inspection
Techniques Detection Procedure Machine Learning

Algorithms

Visual inspection [32] Physically inspecting insulators to find defects
but unable to detect small defects. CNN, ANN (P)

Ultrasound detector
[34–36] Capturing sound emitted from partial discharge. MLP (P)

ANFIS (NP)

Leakage current (LC)
[38,39]

Prediction of leakage current and flashover
under contamination conditions.

NAR neural network (NP)
(I–O) neural network nonlinear
Autoregressive with exogenous (NARX)
Neural network (NP)
K-means clustering (NP)

Partial discharge (PD)
[40,41]

By identifying patterns of electric discharge (PD)
in a high-voltage system.

Ensemble neural network (P)
ANN (P)

Image processing
[42]

Capturing images of insulators and extracting
information using feature extraction techniques.

K-nearest neighbors (NP)
Decision tree (NP)
SVM, and MLP (P)

3.3. Distribution Transformers

As one of the most critical components, utilities and researchers are keenly interested
in evaluating transformer losses, monitoring their operational conditions, and predicting
their faults or failures. A transformer’s failure can significantly impact the system’s opera-
tions. Therefore, various intelligent models are introduced in the predictive maintenance
of transformers.

Many internal and external factors could affect the working conditions of transformers,
for example, equipment age, electrical and thermal stress, oil leakage, and environmental
aspects. Table 4 lists some of these factors and modifier components that could cause faults
or failures.
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Table 4. Fault types and failures of transformers [43].

Factors/Components Types of Failure/Faults

Age factor Wearout failure

Weather/external

Lightning strike
Overloading
Short circuit
Switching
Transportation

Core
DC magnetisation
Core deformation
Ungrounded or multiple grounding

Winding

Short circuit due to low oil level or hotspot creation
Open circuit
Transient overvoltage due to wrong connection
Buckling

Tank
Rupture due to internal arcing
Excessive corrosion
Oil leakage

Insulation Water accumulation and thermal degradation of oil/paper
Aging of oil/paper

Bushing
Electrical flashover
Short circuit due to damage or material
Thermal expansion

Transformer oil Oil contamination
Short circuit due to failure of oil insulation

Different techniques are used to monitor a transformer’s health status. Table 5 provides
various preventive tests and condition-monitoring methods. These techniques are chosen
based on the problem and component being assessed. A detailed description can be found
in [44].

Table 5. Transformer health assessment and condition-monitoring techniques [43].

Techniques Types Detecting

Chemical diagnostic
techniques

Dissolved gas analysis (DGA)
Physical and chemical tests of
oil quality

Evolving damages (implicit faults)
Insulating liquid degradation

Electrical diagnostic
techniques

Partial Discharge test (PD)
Short-circuit impedance (SCI)
Frequency Response
Analysis (FRA)

To monitor insulation condition for
bushing, HV and LV insulation, and
inter-turn insulation.
Mechanical defects in
transformer windings.
Winding deformation
and displacement

Miscellaneous
techniques

(1) Signal-based techniques

- Vibration analysis;
- Optical fibers;
- Acoustic emission;
- Thermography.

(2) Data-based techniques

- Health index;
- Finite element analysis.

Aging assessment and provide
online monitoring capability.
Assessing the health condition of
transformers using statistical and
mathematical analysis.
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Dissolved gas analysis (DGA) is one of the most popular techniques for detecting
fault types in transformers, where paper insulation is immersed in insulating oil. Here,
hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2)
are produced due to oil decomposition, and carbon monoxide (CO) and carbon dioxide
(CO2) are produced due to paper decomposition [45]. Transformer faults can be divided
into thermal and discharge faults. The thermal defects are low-temperature overheating
and high-temperature overheating or sparking. Discharge faults can be divided into high-
energy discharge faults or arcing and low-energy discharge faults or partial discharge and
corona. Depending on the type of gases and their amount, different types such as partial
discharge, arcing, corona, and cellulose condition can be predicted using the IEC three-ratio
method [46], four-ratio method [47], ANN, and fuzzy logic. However, this review focuses
on applying ML techniques to fault diagnostics. This section presents some parametric and
nonparametric ML algorithms used to maintain transformers.

3.3.1. Failure Prediction and Discharge

Binary SVM classification was applied to predict failure in distribution transformers
due to burning [48]. Based on the prediction results, maintenance activities were planned
to reduce operating expenses and power interruption. According to the results, the most
common causes of burning events are atmospheric discharge, short circuits due to low
voltage, and overload. Another study used predictor variables such as burn rate, insulation
type, transformer location, and keraunic levels to predict transformer failure. The dataset
used in this study [49] covered 16,000 distribution transformers for 2019 and 2020. The
result demonstrates that a binary SVM can be applied to detect transformer failure with a
lower prediction error and can save corrective maintenance expenses.

A database of 700,000 distribution transformers with 72 predictor variables was used
to construct random forest and random undersampling with AdaBoost (RUSBoost) to
predict failures [50]. Included were weather-related, transformer-specific, transformer
loading, and location variables. To reduce the dimensionality of the data, various feature
selection methods were deployed, such as sequential forward, backward selection, and
mutual information-based filtering. The matching of the top N (MITN) metric was used
to assess the performance of the algorithms. RUSBoost performed better than random
forest in terms of the metric. The proposed algorithms are cost-effective and outperform
traditional fault prediction methods based on DGA diagnostics.

In another published work, a multiclass SVM is proposed to detect fault types in
power transformers [51]. A dataset of 223 samples of different fault types is considered.
Using transformer dissolved gas analysis, five types of gases, hydrogen (H2), methane
(CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2), are used as inputs.

Different types of faults are predicted using a one-against-one multiclass SVM. Because
of the nonlinear nature of the data, the RBF is used as the kernel function to map the data
into higher dimensions. This study shows that the proposed model can predict transformer
fault types with 94.79% accuracy. A hierarchical SVM is presented in [52] to predict faults
in distribution transformers. A binary decision tree is built where each node represents an
SVM. Various thermal and discharge faults are predicted with an overall accuracy of 92%.
This paper demonstrates the advantages of using SVMs over neural networks and the ICE
ratio method with respect to diagnostic accuracy.

3.3.2. Fault Diagnosis

Based on DGA, Zhang, Ding, and Liu [53] present a two-step ANN with 10-fold
cross-validation. Its goal is to diagnose transformer failure under cellulose conditions. In
the first step, five different gases, H2, CH4, C2H6, C2H4, and C2H2 (without cellulose), are
used as inputs to construct an ANN for diagnosing a type of fault. Multiple neural network
topologies are built and compared to achieve higher accuracy. In the second step, an ANN
is constructed to determine cellulose involvement in the fault. The experimental result
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shows that the two-step ANN, each with two hidden layers, gives the most promising
results in terms of diagnostic accuracy.

On the other hand, Dong, Yang, and Li [54] developed a backpropagation neural
network (BPNN) to predict faults in transformers, where the parameters of the BPNN were
optimized using the bat algorithm [55]. With DGA data, Bat-BPNN with one hidden layer
(ten neurons) significantly increased fault diagnosis accuracy. The proposed Bat-BPNN was
compared with other optimized models such as BPNN, PSO-BO, and GA-BP. This study
shows that the proposed approach performs more accurately in classifying faults, requires
less memory, and provides fast convergence with 95.22% accuracy of diagnosis. BPNN
is also used in [56] for detecting faults, while a comparison study between random forest
and BPNN is given in [57]. According to the results, random forest, with 98.62% accuracy,
performs better than BPNN in terms of diagnostic accuracy, class stability, generalization
ability, and pattern classification.

In addition, the classification of faults and the evaluation of the transformer insulation
condition using DGA data are discussed in [58]. Multiple ML algorithms are compared,
such as decision tree, BPNN, adaptive boosting (AdaBoost), k-nearest neighbors (kNN),
bagged and boosted ensemble, and SVM. The result shows that the decision tree algorithm
performs well in classifying faults with less training time, high prediction speed, and better
accuracy than kNN and SVM. Furthermore, the adaptive boost algorithm outperforms all
other algorithms with 88.6% accuracy. Similarly, in [59], logistic regression, SVM, kNN,
decision tree, random forest, AdaBoost, and extreme gradient boosting (XGB) are imple-
mented to predict magnetic oil gauge faults in distribution transformers. The experimental
results show that the decision tree with a training accuracy of 100% and testing accuracy of
98.78% performs well under the given conditions compared to other models.

3.3.3. Health Assessment

A feedforward ANN with two hidden layers (four and two neurons) was in one
study used to assess transformer health [60]. A dataset representing 88 transformers
with 11 predictor variables, such as total solids in oil, water content, breakdown voltage,
and acidity, was used to predict the transformer’s condition based on the value of the
AMRA health indices. The proposed model obtained 96.55% accuracy and can be used
in asset management to improve the reliability of a power system. Also, in [61], an
ANN was used to determine the health status of a transformer. A strategy for the real-
time conditional monitoring of distributed transformers combining k-nearest neighbors
(kNN) with clustering and the Gaussian mixture model (GMM) was proposed in [62].
The operation map and the health index were used to assess the operational condition
of the distribution transformers. In another study, four different ML algorithms, SVM,
kNN, decision tree, and random forest, were used to monitor remotely located distribution
transformers online [62]. The top oil temperature, vibration, and transformer loading were
system indicators to assess transformer health. The result of this study indicates that the
health index varies with the transformer loading.

A summary of the reviewed applications of ML algorithms is presented in Table 6.

Table 6. Transformer failure analysis and different ML algorithms.

Fault Diagnosis and Health Assessment Machine Learning Algorithm

Due to burning [48]
Aging infrastructure [50]
Low-energy discharge [51,52,54,56,58]
High-energy discharge [51–54,58]
High- and low-temperature overheating fault [51–54,58]
Corona [52,53]
Overloading, lightning, switching, short circuit,
transportation [56]
Health index [60–63]

SVM (P)
Random forest, AdaBoost (NP)
SVM, ANN (P)
Decision tree, kNN, AdaBoost (NP)
SVM, ANN (P)
Decision tree, kNN, AdaBoost (NP)
SVM, ANN (P)
Decision tree, kNN, AdaBoost (NP)
SVM, ANN (P)
ANN (N)
SVM, ANN (P)
Decision tree, kNN, random forest (NP)
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4. Challenges, Trends, and Future Directions

While analyzing the results and methods presented in the reviewed papers, we identi-
fied several issues and challenges.

• A lack of benchmark datasets: The most significant challenge associated with compar-
ing the ML models and identifying the best ones is non-availability and insufficient
datasets; to address that issue, researchers used stimulation or proprietary data, which
means even when they focused on the same problems, comparison of models was difficult.

• The diversity of input features: The presented models used very different input
(dependent) variables processed differently during model development processes,
which caused a huddle in direct comparison between models.

• Low replicability: The development of ML models requires extensive, time-consuming
experiments and a high level of knowledge to tune models’ (hyper)parameters. Un-
fortunately, the research papers did not contain detailed descriptions of the model
development processes, which very much limits the replicability of the proposed solutions.

Notwithstanding the challenges, parametric and nonparametric ML models have
gained significant attention in recent years for the predictive maintenance of power systems.
This interest stems from their ability to manage intricate datasets and effectively capture
nonlinear relationships. The main trends and future directions in this area can be organized
into three main categories: extended models, model interfaces, and advanced ML. Each
group is briefly described in the following subsections.

4.1. Extended Models

Parametric and nonparametric models can be combined to form hybrid models, which
can provide more accurate predictions and improve robustness. Researchers are exploring
hybrid models that integrate the strengths of both approaches, such as combining Gaussian
processes with deep neural networks or using random forests with Bayesian inference [64].
ML models often struggle to quantify uncertainty in predictions, which is critical in predictive
maintenance. Researchers are developing methods to estimate uncertainty in machine
learning models, such as Monte Carlo dropout, Bayesian neural networks, and ensemble
methods such as bagging and boosting [65]. These techniques can improve the reliability of
predictions and help in decision making. Power system data often involve time series data,
which require specific techniques to handle complex temporal relationships. Researchers
are applying time series forecasting methods such as ARIMA, LSTM, and GRU to predict
equipment failures and optimize maintenance schedules [66].

4.2. Model Interfaces

The integration of multi-modal sensor data is becoming increasingly important in
predictive maintenance. Researchers are exploring the use of sensor fusion techniques to
combine data from different sensors, such as accelerometers, temperature sensors, and
acoustic sensors, to improve fault detection and diagnosis [67]. With the proliferation of
IoT devices and edge computing, researchers are exploring ways to perform machine learning
tasks on edge devices, reducing latency and improving real-time performance [68]. This
trend is expected to continue, enabling faster and more efficient predictive maintenance in
power systems. Some approaches also use digital twins to simulate the components of the
power system and predict potential failures before they occur [69]. This area is expected to
see significant growth in the coming years.

4.3. Advanced Machine Learning

The increased use of DL models such as CNN and RNNs has shown promising results in
image recognition, natural language processing, and time series forecasting tasks. They
can also be applied to predictive maintenance tasks such as fault detection, diagnosis,
and prognosis [70]. The lack of labeled data is a major challenge in applying machine
learning to predictive maintenance. Transfer learning and domain adaptation techniques
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enable researchers to leverage pre-trained models and adapt them to new domains with
limited data. These approaches have been used in various applications, such as image
classification, object detection, and speech recognition [71]. With the increasing use of
black-box models, there is a growing need for explainability and interpretability of model
predictions. Explainable AI techniques aim to provide insights into how models make
decisions, which can help build trust and improve model performance [72].

5. Analysis

The examined ML-based approaches used for analyzing and monitoring of the condi-
tions of different assets in power distribution systems are summarized in Table 7. Most of
the applications focused on analyzing outages and identifying faults and failures.

Table 7. Summarized overview of parametric and nonparametric ML algorithms mentioned in
Section 3.

Application Parametric ML
Algorithms Reference Nonparametric ML

Algorithms Reference

Distribution
Lines

Fault
analysis and
prediction

Linear regression,
artificial neural
network (ANN),
simple support vector
machine (SVM)

[13,14]
[15,16]
[17,18]
[19,20]
[21,24]

Decision tree,
random forest,
LightGBM,
XGBoost

[18,22]
[23,26]

Insulators

Condition
monitoring

Simple support vector
machine (SVM)

[27,29]
[30,31]

Adaptive neuro-fuzzy
inference system (ANFIS)

[28,29]
[31]

Fault
analysis

Artificial neural
network (ANN),
convolutional neural
network (CNN),
multilayer perceptron
(MLP) network

[32,34]
[35,40]
[41]

Adaptive neuro-fuzzy
inference system (ANFIS),
nonlinear autoregressive,
k-means clustering,
k-nearest neighbors,
decision tree

[36,38]
[39,42]

Transformers

Fault and failure
analysis

Support vector
machine (SVM),
artificial neural
network (ANN),
logistic regression

[48,52]
[53,54]
[56,57]
[58,59]

Random forest.
AdaBoost,
RBF SVM,
decision tree,
k-nearest neighbors (kNN),
bagging and boosting
ensemble

[50,51]
[57,58]
[59]

Condition
monitoring

Artificial neural
network (ANN),
support vector
machine (SVM)

[60,61]
[63]

k-nearest neighbors (kNN),
decision tree,
random forest

[62,63]

Nonparametric techniques are more efficient than parametric techniques regarding
performance and diagnostic accuracy. Due to their decision-making capacity and perfor-
mance, they can also be very beneficial in reducing maintenance costs. The nonparametric
models lead to more generalized and better-performed models. Yet, they come with some
difficulties and limitations. They are flexible and highly adaptable but often computation-
ally intensive. They do not make strong assumptions about the underlying data distribution
and rely on the data themselves to model relationships. Therefore, they need enough data
to accurately capture the underlying data structure and avoid overfitting. At the same
time, they face practical computational limits when dealing with massive datasets. This
creates a delicate balance in selecting the right amount of data sufficient for model accuracy
but still manageable regarding computational resources. Additionally, these models can
be challenging to interpret and sensitive to hyperparameter choices, posing hurdles in
practical deployments where clear understanding and fine-tuning are essential.
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To summarize, the nonparametric methods require more data than some of the targeted
scenarios in distribution systems can provide. Therefore, as much as they are more desirable
models, data-related limitations in many scenarios lead to the utilization of parametric
models. These models are less demanding regarding the sizes of datasets and are easier to
develop and utilize.

A simple summary of selected prediction accuracy values obtained using different ML
algorithms for transformer fault prediction, which are reviewed in this paper, is shown in
Figure 4. Decision trees, as a nonparametric technique, perform better than other models to
predict different fault types.
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types [51,53,54,57–59].

It becomes evident that utilities, power providers, and researchers are increasingly
inclined to use ML methods to address various maintenance issues directly or indirectly
related to the reliability of power systems. The learning ability of these methods has shown
exceptional potential for the developed models and techniques to improve the operations
and reliability of power systems. The presented review is focused on applying ML methods
to address issues with distribution lines, insulators, and transformers. It reveals that various
parametric and nonparametric techniques are commonly used. Ultimately, based on the
cited literature, nonparametric techniques appear to be better suited for fault analysis and
monitoring purposes.

The taxonomy of faults for three critical components of the distribution system, illus-
trated in Figure 5, provides another perspective of the surveyed literature. The broad gray
box in the figure encapsulates all the types of faults we have discussed. A notable point
is that these faults can be analyzed using data-driven methodologies. For transmission
line faults, most of the studied methods employed numerical data to develop predictive
models. In the case of insulators, the approaches predominantly involved image processing
and frequency analysis techniques. Regarding transformers, many research studies have
concentrated on dissolved gas analysis (DGA), which aids in estimating a transformer’s
health index (indicated by the dark gray box in Figure 5).

This exploration reveals that the application of machine learning techniques in fault
prediction addresses the most frequent and natural causes of faults. However, there remains
a significant scope for further research to develop comprehensive systems for predicting
faults in system components and enhancing their reliability.
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Figure 5. Types of faults covered in the survey in the context of faults in the three essential
components of distribution systems. Legend for references; Distribution Lion: [A]—[20,22–26];
[B]—[13–16]; [C]—[17,18]; [D]—[19]; Insulator: [E]—[27,28,30,34,35]; [F]—[29,32,34–36,42];
[G]—[38,39,41]; [H]—[40,41]; Transformer: [I]—[60–63]; [J]—[45,52–54,56,58]; [K]—[51–54,58];
[L]—[50]; [M]—[51–54,58].
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