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Abstract: Recent findings demonstrate how database technology enhances the computation of formal
verification tasks expressible in linear time logic for finite traces (LTLf). Human-readable declarative
languages also help the common practitioner to express temporal constraints in a straightforward and
accessible language. Notwithstanding the former, this technology is in its infancy, and therefore, few
optimization algorithms are known for dealing with massive amounts of information audited from
real systems. We, therefore, present four novel algorithms subsuming entire LTLf expressions while
outperforming previous state-of-the-art implementations on top of KnoBAB, thus postulating the
need for the corresponding, leading to the formulation of novel xtLTLf-derived algebraic operators.

Keywords: temporal formal verification; columnar databases; verified artificial intelligence; linear
time logic for finite traces

1. Introduction

Grounded in formal methods, verified artificial intelligence [1] is concerned with
defining, designing, and verifying systems represented mathematically. In context-free
data, this focuses on a system S to be verified through properties described in Φ, while the
model of the environment E is neglected. In this regard, a formal verification task ascertains
whether a given system complies with a specification S � Φ. In the context of business
process management, we can consider model [2], conformance [3], or compliance [4,5] checking
as all synonyms of the former. Concerning temporal data, we focus our attention on systems
described as logs, a collection of temporally ordered records (i.e., traces) of observed and
completed (or aborted) labelled activities unravelling one possible run of a process. These
real-world processes might include the auditing of malware in terms of system calls being
invoked [6,7], records describing patients’ hospitalization procedures [8–10], as well as
transactions between producers and retailers through a brokerage system [11]. As an
example, each trace of a log can describe three distinct patient registration events at an
emergency department (ED) [12] as given by the following log expressed in terms of the
activity labels associated to our events:

S = { 〈registration, examination, discharge〉 ,

〈registration, redirection, clinical test,

examination, discharge〉,
〈registration, redirection, examination,

discharge〉}

(1)

In all these contexts, a formal verification task returns whether the current instances
of the processes being collected as traces of a log S abide by specific temporal quality
requirements Φ while determining which temporal constraints in Φ are explicitly violated.
Linear Temporal Logic over Finite traces (LTLf, Section 2.1) [13] can be used to express
these temporal specifications Φ. This logic is defined as linear since it assumes there is only
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one future possible event immediately following a given event in a sequence of events of
interest. Such low-level semantics are then exploited to give the semantics of temporal
templates, expressing occurring temporal correlations of interest; the present paper will
discuss Declare [14].

The emerging area of temporal big data analytics, having data with time as a first-class
citizen, makes the need to efficiently process the aforementioned tasks more pressing [15,16].
In such real scenarios, adopting relational databases provides an ideal setting for dealing
with such temporal data [17]. This also includes the storage and querying of numerical
time series [18], or considering different versions in time of entities and relationships
represented in the relational model [19–22]. In recent years, researchers have demonstrated
that time series can be represented as traces via time series segmentation by discretizing
the variation in time series into discrete, observable, linear events that are distinct from
each other, enabling identification of a system’s transitional states [23] as well as variations
in the values associated with time series [24]. As a result of such segmentation, pattern
searches can now be run using streamlined approaches. LTLf has now been applied to
a widespread set of applications in real use case scenario contexts, such as controlling
actuation upon sensing the environment in Industry 4.0 settings [25] as well as for the
verification of smart contracts [26], for which this technology proved to be effective for
verified artificial intelligence. The large adoption of such formal language pushes us to
focus on this well-known and consolidated language [13,27].

In the context of formal specification tasks expressed in LTLf, recent research clearly
remarked on the inadequacy of off-the-shelf row-based relational databases and SQL as a
query language for expressing LTLf temporal constraints, as it clearly showed that a cus-
tomized relational algebra for expressing formal specification (eXTended LTLf, xtLTLf [28])
and query plan minimizing the running of sub-queries [29] running on customized column-
based storage (KnoBAB [28,30]) outperformed the previous solution. The main benefit of
this approach is that any LTLf can be directly expressed in terms of xtLTLf, while high-
level and human-readable temporal constraints expressed through temporal clauses can
be directly specified in a semantics query at warm-up, thus allowing the support of any
declarative temporal language (queryplan in Figure 1). As this line of research is in its
infancy, very few algorithms for efficiently running xtLTLf are known. We now remark on
two use cases addressed for the first time in the present paper.

〈A,B,C,B〉
〈A,B,A〉
〈A,D,B〉
〈C,B,A〉

Log

A. T. C.

A 0 1
A 1 2
A 2 1
A 3 1
B 0 2
B 1 1
B 2 1
B 3 1
C 0 1
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C 2 0
C 3 1
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D 1 0
D 2 1
D 3 0

A. T. E. P. N.

A 0 0 NULL 5
A 1 0 NULL 7
A 1 2 7 NULL
A 2 0 NULL 12
A 3 2 9 NULL
B 0 1 0 10
B 0 3 10 NULL
B 1 1 1 2
B 2 2 12 NULL
B 3 2 11 4
C 0 2 5 6
C 3 0 NULL 9
D 2 1 3 8
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Figure 1. High-level representation of the KnoBAB query plan for running a AltResponse(A, B) for
different specifications over a pre-loaded log within a columnar data-storage. After loading and
indexing some traces stored as a log, we obtain a columnar data storage. At warm-up time, we can
specify a queryplan which, at formal verification (model-check) time, converts a Declare specification
into a xtLTLf query plan. As KnoBAB supports multiple queryplans at once, we can run the same
formal verification task over different resulting query plans.
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First, due to their formulation, some of the logical operators such as the timed until
operator UNTILτ

True(ϕ, ϕ′) (ϕU ϕ′ in LTLf) are associated with very high computational
complexity, as it prescribes that the occurrence of at least one future event matching a ϕ′

condition per trace shall always be preceded by events matching ϕ. Under the occasions
that this temporal post-condition shall be considered only after determining the occurrence
of a first event ϕ′′, this could drastically reduce the amount of computation associated with
the overall task. This is not taken into account in our previous implementation in KnoBAB,
as it computed a union between the cases where ϕ′′ does not occur and the ones where ϕ′′

occurs, for which the evaluation of UNTILτ
True(ϕ, ϕ′) is extended to any event occurring of

the trace. Walking in the footsteps of relational algebra, where θ-joins are expressed as the
combination of natural joins [31] or cross-products [32] with θ-selections and join operations
can be streamlined through cogrouping [33], we then propose similarly derived operators,
combining the matching of a given pre-condition with the subsequent requirement that all
the intermediate events should meet the alternance requirements dictated by UNTILτ

Θ. This
paper will then contextualize the need for such derived operators for two specific Declare
temporal templates, AltPrecedence and AltResponse, thus substantiating the interest in these
temporal patterns from the current literature (Table 1).

Table 1. Declare templates as exemplifying clauses. A (B) represents the activation (target) condition
as an activity label.

Exemplifying Clause (cl) Natural Language Specification for Traces LTLf Semantics (JclK)

ChainPrecedence (A, B) The activation is immediately preceded by the target. �(©A⇒ B)

In
th

is
pa

pe
r ChainResponse (A, B) The activation is immediately followed by the target. �(A⇒ ©B)

AltResponse (A, B) If activation occurs, no other activations must happen until
the target occurs.

�(A⇒ ©(¬A U B))

AltPrecedence (A, B) Every activation must be preceded by a target without any
other activation in between

¬BW A ∧�(A⇒ ©(¬AW B))

N
ot

su
bj

ec
tt

o
op

tim
iz

at
io

n
in

th
is

pa
pe

r

Init (A) The trace should start with an activation A

Exists (A, n) Activations should occur at least n times ♦(A ∧©(JExists(A, n− 1)K)n>0)

Absence (A, n + 1) Activations should occur at most n times ¬JExists (A, n + 1)K

Precedence (A, B) Events preceding the activations should not satisfy the
target

¬BW A

Choice (A, A′) One of the two activation conditions must appear. ♦A ∨♦A′

Response (A, B) The activation is either followed by or simultaneous to the
target.

�(A⇒ ♦B)

RespExistence (A, B) The activation requires the existence of the target. ♦A⇒ ♦B

ExlChoice (A, A′) Only one activation condition must happen. JChoice(A, A’)K∧ JNotCoExistence(A, A’)K

CoExistence (A, B) RespExistence, and vice versa. JRespExistence(A, B)K∧ JRespExistence(B, A)K

Succession (A, B) The target should only follow the activation. JPrecedence(A, B)K∧ JResponse(A, B)K

ChainSuccession (A, B) Activation immediately follows the target, and the target
immediately preceeds the activation.

�(A⇔ ©B)

NotCoExistence (A, B) The activation nand the target happen. ¬(♦A ∧♦B)

NotSuccession (A, B) The activation requires that no target condition should
follow.

�(A⇒ ¬♦B)

Legend: Globally: �φ, Next: ©φ, Implication: φ⇒ φ′, Until: φ′ U φ, Weak Until: φW φ′, Future: ♦φ.

Example 1. AltResponse(A, B) requires that, when A occurs, B shall occur anytime in the fu-
ture while no other A shall occur in between. In xtLTLf, this can be expressed as �(¬A ∨ (A ∧
©(¬A U B))) (Original in Figure 1). On the other hand, the present paper shows that, by replacing
A ∧ ©(¬A U B) with a single operator, we obtain a significant reduction in running time by
reducing the amount of result scans and data allocations. This is possible by providing a different
(Proposed) xtLTLf queryplan while implementing AndAltFuture as a novel operator. This difference
is remarked in the two resulting query plans in Figure 1.

Second, temporal constraints requiring that events abiding by a ϕ specification shall
always precede (or follow) other events abiding by ϕ′ are currently implemented in KnoBAB
by equi-joining all the events matching ϕ with the ones matching ϕ′, while the predicate is
i = i′ ∧ j = j− 1 (or i = i′ ∧ j = j′ + 1), where i (or i′) and j (or j′) are, respectively, referring



Information 2024, 15, 34 4 of 22

to the trace id and event id associated to a record coming from the first (or second) operand
(see Andτ

Θ xtLTLf in Section 2.2.2). Even this implementation can be further boosted by
minimizing the data table access to just one operator (e.g., ϕ) for directly accessing the
immediately preceding or following events within the relational database and checking
whether they abide by ϕ′. Even this second observation is motivated by the existence
of ChainResponse and ChainPrecedence Declare templates, thus requiring the definition of
novel derived operators for performance purposes.

To support our research claims, we extend (https://github.com/datagram-db/knobab/
releases/tag/v2.3, accessed on 3 January 2024) the current implementation of KnoBAB [34],
a column-oriented main memory DBMS supporting formal verification and specification
mining tasks by defining relational operations for temporal logic and customary mining
algorithms. Despite this being a main memory engine, it currently supports intra-query
parallelism and hybrid algorithms (Section 2.2.1). To our knowledge, no other database
management system for temporal formal verification over LTLf provides these features,
for which we choose to extend such a system. Furthermore, KnoBAB already proved
to consistently outperform previous state-of-the-art algorithms on both tasks [35], thus
including competing approaches interpreting the same temporal constraints over SQL
and row-oriented relational database architecture [17]. After providing a brief literature
overview on the landscape of formal verification for temporal data (Section 2), we outline
the following main contributions leading to the our performance analysis result for our
newly proposed xtLTLf operators:

• We formally introduce the novel temporal operators optimizing the aforementioned
scenarios in the context of Declare as a declarative language for formal verification
(Section 3).

• We describe the implementation of the aforementioned operators over the KnoBAB
architecture leveraging columnar-oriented main memory storage (Section 4).

• We present experimental results to evaluate the effectiveness of such newly introduced
operators in the context of formal verification in Declare (Section 5).

2. Related Works
2.1. Languages for Temporal Formal Specifications
2.1.1. LTLf

Taking the possible worlds as finite traces, LTLf is a well-established extension of
modal logic with modalities referring to time; it assumes that all the events of interest are
fully observable and therefore deterministic and that, for each occurring event, they should
be immediately followed by at most one event. This entails that the i-th trace σi in a log S

can be considered as a sequence of n totally ordered events σi
0 . . . σi

n−1, where each event
σi

j is associated to a single activity label λ(σi
j ) ∈ Σ [3]. When events are associated to a

payload represented as a key-value association ς(σi
j ), we refer to such logs as dataful and

as dataless otherwise. In the eventuality of the former, such payloads can be represented
as finite functions VK, where K is the set of the keys and V is the overall set of non-NULL
values. Concerning our datasets of interest, we only consider ones where trace events are
not associated with a data payload, and therefore even such logs can be considered as
dataless. On the other hand, with reference to Equation (1), event payloads can store patient
information, thus registering the recorded medical condition being observed [28]; in the
context of good brokerage, such payload might contain the relevant contract information
between the supplier and the customer which are required to be respected (e.g., delivery
times), as well as the location of the goods, their number, and quality [11].

LTLf semantics is usually defined in terms of First-Order Logic [36]; more informally,
Next (©φ) requires φ to occur from the subsequent temporal step, Globally (�φ) that φ
always holds from the current instant of time, Future (♦φ) that φ must eventually hold,
and Until φ U φ′ that φ must hold until the first occurrence of φ′ does. Weak Until is a
derived operator for ϕWϕ′ := ϕU ϕ′ ∨�ϕ, while the logical implication can be rewritten

https://github.com/datagram-db/knobab/releases/tag/v2.3
https://github.com/datagram-db/knobab/releases/tag/v2.3
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as ϕ ⇒ ϕ′ := (¬ϕ) ∨ (ϕ ∧ ϕ′). Please observe that LTLf does not provide full support
for handing data correlation conditions between operands of binary operations, as it only
supports the declaration of data conditions that can be applied to one single event [3].
To the best of our knowledge, xtLTLf (Section 2.2.2) is the only extension of this language
supporting data payload correlation across events matched by both arguments of the binary
operator, thus providing a complete dataful support.

2.1.2. Declare

Declare [14,37] provides a human-readable declarative language on top of LTLf (first
column of Table 1), where each template is associated with a specific LTLf formula (third
column), which can be instantiated with arbitrary activity labels. We refer to the instanti-
ation of such templates via activity labels in a finite set Σ as (declarative) clauses. Declare
circumscribes the set of all the possible behaviors expressible in LTLf to the ones of interest
over a set of possible Σ; Table 1 recalls some of the most used templates while remarking
on the four templates of interest optimized in the present paper.

At the time of writing, Declare expresses specifications Φ as a set of clauses cl being
usually associated with an LTLf semantics Jcl ]]; in this context, a trace σ ∈ S satisfies a
Declare specification Φ if it jointly satisfies all the clauses associated to the specification.
If these clauses can be characterized by a precondition which, if satisfied by some event,
imposes the occurrence of a post-condition, then we refer to these as activation and target
conditions, respectively. Please observe that post-conditions are considered as such merely
in terms of causal implication (i.e.,⇒) and not necessarily in temporal terms, e.g., while
ChainResponse requires the target to immediately follow any existing activation, ChainPrece-
dence requires that the targeted event shall instead precede the activation. Please consider
that Declare clauses do not necessarily reflect association rules, as the latter do not provide
temporal constraints correlating the activation of activation and target conditions. In this
paper, we focus on Declare clauses only predicating over the events’ activity labels, which
are then referred to as dataless; on the other hand, dataful Declare clauses can express data
payload conditions over both activation and target conditions, as well as representing Θ
payload correlation conditions between activating and targeted conditions [28]. Thus, both
clauses and logs are referred to dataful otherwise.

Despite the fact that the four clauses of interest in Table 1 might appear to express
similar behavior, they express substantially different concepts. Table 2 provides four traces
distinguishing the behavior of such four templates, the validity of which can be easily
controlled by transforming the associated LTLf formulæ into a DFA (http://ltlf2dfa.diag.
uniroma1.it/dfa, accessed on 3 January 2024).

Table 2. Traces from the Log in Figure 1 distinguishing the temporal behavior of the Declare clauses
of interest in this paper, where each trace σi

0 . . . σi
n−1 is expressed in terms of their associated activity

labels, 〈λ(σi
0), . . . , λ(σi

n−1)〉. 3(and 7) remarks a trace satisfying (violating) a corresponding clause.

Traces ChainResponse(A,B)ChainResponse(A,B)ChainResponse(A,B) ChainPrecedence(B,A)ChainPrecedence(B,A)ChainPrecedence(B,A) AltResponse(A,B)AltResponse(A,B)AltResponse(A,B) AltPrecedence(B,A)AltPrecedence(B,A)AltPrecedence(B,A)

〈A,B,C,B〉 3 7 3 7
〈A,B,A〉 7 3 7 7
〈A,D,B〉 7 7 3 7
〈C,B,A〉 7 7 7 3

2.2. KnoBAB and xtLTLf

We now summarize our previous contributions on temporal formal verification tasks run over
our proposed main memory columnar database, KnoBAB.

2.2.1. KnoBAB

KnoBAB [28,34] is a column database store tailored for both loading dataful logs being
represented in XES [38] and dataless ones described as a tab-separated file. This outper-

http://ltlf2dfa.diag.uniroma1.it/dfa
http://ltlf2dfa.diag.uniroma1.it/dfa
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formed the previous state of the art in terms of both specification mining [39] and formal
verification [35] tasks on tailored non-database solutions.

Logical and Physical Model

The resulting column-based relational database is then represented through some
tables having fixed schema independently from its data representation. As the present paper
focuses on dataless datasets, we describe in this paper just two of those; Table 3 describes the
relational representation of the log presented in Equation (1). The ActivityTable (Table 3a)
lists each trace event of a given log, where records are sorted in ascending order for activity
label, trace id, and event id. Cells under the Prev (and Next) column store a pointer to the
record representing the immediately preceding (and following) event in the same trace if
any. After mapping each existing activity label in the log a to a unique natural number
β(a), we can define a primary dense and clustered index that can be accessed in O(1) time
as it is an array of offset pointers. We also define a secondary index structured as a block
of two records, associating each trace in the log to the first and last trace event; given that
all the traces are associated with a unique natural number, this index can also be accessed
on O(1) time by trace id. The CountTable (Table 3b), also created at loading time like the
previous, merely lists the number of occurrences of each activity label per trace and can be
used to determine the absence or presence of an event with a given activity label per trace.

Formal Verification Tasks over Query Plans

In spite of the ActivityTable also appearing in SQLMiner’s log representation [17]
(except for the Prev and Next columns), this still used an off-the-shelf relational database
engine and a translation of Declare specification into SQL for carrying out formal verifica-
tion tasks over a dataless log. KnoBAB showed a new pathway for enhancing temporal
queries over customary main memory relational database through the combined provision
of both ad hoc relational operators expressing LTLf over relational tables (xtLTLf) and
the definition of a query plan represented as a rooted DAG where shared subqueries are
computed only once [29]. This was sensibly different from competing approaches [40,41]
also relying on main memory engines where, instead, the query plan associated to a formal
verification task is always expressed in terms of trees, thus not allowing the detection of
shared sub-expressions to be merged to avoid wasteful recomputations. As vertices for a
DAG can be sorted topologically, we can obtain for free the scheduling order in which the
operators must be executed and, by associating each node a maximum distance value from
the root, we can safely run in parallel all the operators laying at the same depth level, as all
the previously called operators will pertain their information in an intermediate cache, thus
achieving intraquery parallelism as a free meal [28]. This parallelization approach greatly
differs from straightforward parallelization algorithms known in the Business Process Man-
agement area, where they simply run each declarative clause occurring in the specification
in a separate thread [35]. In addition to the former, KnoBAB guarantees efficient access
to the tables through the provision of specific indexing data structures such as primary
indices for directly accessing the blocks of the table concerning a specific activity label as
well as the provision of secondary indices mapping a specific trace id i and event id j for σi

j
into a table offset. KnoBAB outperformed SQLMiner run over PostgreSQL within two to
five orders of magnitude, thus demonstrating the inadequacy of using customary relational
operators for computing temporal tasks over relational databases.
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Table 3. KnoBAB representation for the dataless log in Equation (1). (a) ActivityTable; (b) CountTable.

(a)

ActivityLabelActivityLabelActivityLabel TraceIdTraceIdTraceId EventIdEventIdEventId PrevPrevPrev NextNextNext

Clinical Test 1 2 7 5
Discharge 0 2 4 NULL
Discharge 1 4 5 NULL
Discharge 2 3 6 NULL
Examination 0 1 9 1
Examination 1 3 0 2
Examination 2 2 8 3
Redirection 1 1 10 0
Redirection 2 1 11 6
Registration 0 0 NULL 4
Registration 1 0 NULL 7
Registration 2 0 NULL 8

(b)

ActivityLabelActivityLabelActivityLabel TraceIdTraceIdTraceId CountCountCount

Clinical Test 0 0
Clinical Test 1 1
Clinical Test 1 0
Discharge 0 1
Discharge 1 1
Discharge 2 1
Examination 0 1
Examination 1 1
Examination 2 1
Redirection 0 0
Redirection 1 1
Redirection 2 1
Registration 0 1
Registration 1 1
Registration 2 1

KnoBAB enables the specification of user-defined template names in terms of xtLTLf
operators through a queryplan “semanticsname” {. . .} query, thus allowing the co-
presence of multiple possible definitions of declarative clauses. Then, we can select the most
appropriate semantics while carrying out the formal verification task by specifying such a
name, e.g., model-check . . .plan “semanticsname” . . . This then enables us in this paper
to test multiple possible specifications of Declare clauses without necessarily recompiling
the database’s source code.

Walking in the footsteps of the BAT algebra for columnar databases [42], each of
the novel temporal operands for xtLTLf (Section 2.2.2) not requiring direct data access to
the aforementioned KnoBAB tables both accepts as an input and returns a uniform data
representation ρ with schema:

IntermediateRepresentation(TraceId, EventId, Witnesses(Tag)) (2)

where the first (and second) argument refers to the trace (and event) id matching a specific
temporal condition of choice, while witnesses represents the relevant activated or targeted
conditions occurring from the position EventId in a given TraceId trace onwards via a
tagged extension of semiring provenance [43]; such tags mainly refer to the distinction
between activated and targeted events, respectively A and T. Dataful matching occurring
between witnessed activated A(i) and targeted events T(j) certified via a Θ binary predicate
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are represented as M(i, j). Matches can be represented as semiring products, while the
listing of all the activated, targeted, and matched events can be represented as a semiring
sum; the latter is simply rendered as a list. As the table is sorted by trace id and event id
by design for any given activity label, such intermediate representation also returns trace
entities sorted by ascending trace id and event id.

2.2.2. xtLTLf

We now discuss some xtLTLf operators of relevance for the current paper. By using KnoBAB
as a computational model, we can also discuss the time complexity associated with such operators.
While LTLf operators can mainly be used to establish a yes/no question about whether a
single trace abides by some temporal specification, an xtLTLf expression returns all the
traces in the log conforming to a temporal specification by composing the trace events as
records through temporal operations. Furthermore, the latter can also be directly exploited
to express confidence, maximum satisfiability, and support metrics similar to association
rules. So to better support future explainable temporal AI tasks, xtLTLf also carries out
information concerning activated/targeted events justifying the algorithmics’ outcome,
while the cache associated to the leaves can be analyzed so as to check which events were
activated/targeted without necessarily satisfying the temporal requirements computed
through xtLTLf.

Table Access (“Leaf”) Operators

We determine all the events being associated with a specific activity label through the
ActivityLabel’s primary block index and express the outcome of this retrieval in terms of
intermediate representation:

ActivityS,τ
A/T(a) = {〈i, j, {A/T(j)}〉 |∃π, φ. 〈a, i, j, π, φ〉 ∈ ActivityTable}

where A/T provides the optional tags for remarking the matching event of interest as being
part of an activation/target condition. By associating each activity label a with a unique
natural number β(a), we can now seek the presence of events with label a in O(1) time and
retrieve all the events #a � |S| associated to such a label. If, on the other hand, we are
interested in events matching a specific data predicate q, we define the following operator:

AtomS,τ
A/T(B, q) = {〈i, j, A/T(j)〉 | q(σi

j ) ∧ λ(σi
j ) = B}

Despite the fact that this might appear as a simple selection operation, the atomization
of a predicate into mutually exclusive data conditions required for both minimizing the
data access to the tables holding the key-value payload associations within the dataful
events and merging multiple equivalent sub-expressions into one makes both its associated
query plan and its actual formal definition quite convoluted. As describing this is not the
major purpose of the paper, we refer to [28] for any further information. By accessing the
secondary index of the ActivityTable, we can collect the last events for each trace in linear
time over the log’s size O(|S|) using the following operator:

LastS,τ
A = {〈i, |σi|, {A(|σi|)}〉 |∃a, π. 〈β(a), i, |σi|, π, NULL〉 ∈ ActivityTable}

Unary Operators

We discuss the main difference between operators’ execution in xtLTLf from corre-
sponding ones in LTLf; the latter computes semantics from the first occurring operator
appearing in the formula towards the leaves, whereas the former assumes intermediate
results coming from the leaves. In this, the downstream operator is completely agnostic
about the semantics associated with the upstream operator, so it must combine the interme-
diate results appropriately. Therefore, the Next(ρ) (timed) xtLTLf unary operator returns
all the events σi

j witnessing the satisfaction of an activation, target, or correlation condition
being returned by a downstream operator as an intermediate result ρ, while ©ϕ will simply
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increment the internal time counter over ϕ, thus determining the time from which to assess
the specification in ϕ.

Due to this structural discrepancy in the order of computation, xtLTLf must distin-
guish timed operators (assessing the occurrence of a specification sub-expression anytime
in the trace) from the untimed operators (determining the properties holding from the
beginning of the trace). The aforementioned xtLTLf operator can therefore be expressed
as follows:

Nextτ(ρ) = { 〈i, j− 1, L〉 | 〈i, j, L〉 ∈ ρ, j > 0 }

This operator can then be computed in linear time over the size of the input, i.e., O(|ρ|).
On the other hand, the timed negation operator Notτ(ρ) subtracts from the universal
relation, being all the events occurring in any trace, the ActivityTables events appearing in ρ
while still guaranteeing the return of the records in ascending order for trace and event id.
Given ε, the maximum trace length, this operator takes at most O(|S|ε) time by assuming
|ρ| � |S|ε. The globally timed operator prescribes to return a 〈i, j, L〉 ∈ ρ if also all the
subsequent events within the same trace are in ρ, and can be computed in O(|ρ| log |ρ|)
time by starting scanning the events from the last occurring in the trace.

Binary Operators

We now stress further differences between xtLTLf and LTLf in terms of binary op-
erators. While xtLTLf can express dataful matching conditions between activation and
target conditions, LTLf can only express properties associated with one single event at a
time through atoms. In these regards, timed logical conjunction (Andτ

Θ(ρ, ρ′)) extending
the logical conjunction in LTLf with a binary match condition Θ over the event’s payloads
can be expressed as a nested Θ-join returning the records from both operands having the
same trace id and event id, while all the pairs of witnessed events satisfying an activation
A(i) and target T(j) conditions from the matching record shall satisfy the Θ matching
condition when provided; the matching is then registered with M(i, j). Timed logical dis-
junction (Orτ

Θ(ρ, ρ′)) can be similarly expressed through a full outer Θ-join. Given that the
ActivityTable is pre-sorted at indexing time, we can efficiently implement such algorithms
through sorted joins. As these can be computed with a joint linear scan of both operands,
both operators have at most a time complexity in O(|ρ|+ |ρ′|). The timed until operator
(UntilτTrue(ρ, ρ′)) for Θ = True is defined similarly to the corresponding LTLf operator; it
returns all the events within a given log trace in the second operand and the events from
the first operand if all the immediately following events until the first occurrence of an
event in the second operand also belong to the first:

UntilτTrue(ρ, ρ′) = ρ′ ∪
{
〈i, k, L ∪ L′〉

∣∣ ∃j > k. 〈i, j, L〉 ∈ ρ′, (∀k ≤ h < j. 〈i, h, L′〉 ∈ ρ)
}

This can be computed in O(|ρ|2|ρ′|) time in its worst-case scenario. The in-depth discussion
concerning the formal definition of such an operator when matching a non-trivially true
matching condition Θ is deferred due to its technicalities and can be retrieved from the
original paper [28].

2.3. Algebraic Specification for Queries

We now compare xtLTLf with other long-standing definitions of temporal operators regarding
database temporal representations.

Current research [17] outlined the possibility of loading logs composed of multiple
traces within row-based relational databases while providing a direct translation of data-
less Declare-driven formal verification and specification mining tasks into SQL [44]. Our
previous research remarked on the inefficiency of directly expressing temporal formal veri-
fication tasks on top of off-the-shelf relational databases, thus motivating the definition of a
novel query plan specification directly exploiting temporal algebra operators, xtLTLf [28].
As SQL queries are translated into query plans where each operator expresses an imple-
mentation of a relational algebra operator, this demonstrates the overall inefficiency of
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exploiting traditional relational algebra for representing temporal queries. Please observe
that LTLf temporal requirements cannot be expressed in traditional relational algebra
without aggregation operators while not naturally assuming a columnar database storage.
Therefore, traditional relational algebra cannot be directly exploited to predicate about the
necessity or the eventuality of a given event to occur without any further extension.

For all these considerations, our proposed algebra more resembles BAT from Mon-
etDB [42,45], where the intermediate result output for each operator records the table’s
record being selected, without necessarily carrying out values stored within the specific
row. Given the specificity of our scenario, our intermediate results carry the trace id and
the event id as unique record identifiers. We further had to extend this representation
to possibly carry out the activated and targeted events as witnesses of the computation’s
correctness, providing explainable justifications for the computation, and correctly express-
ing Θ predicates over dataful logs. xtLTLf then provides a required extension of such a
representation for new computation needs.

Concerning Allen’s algebra for temporal intervals [46], we can first see that such
algebra considers events as temporal intervals that might also be overlapping, while
xtLTLf inherits the same assumptions from LTLf and considers events as pointwise and
non-overlapping activities. Secondly, while the former only supports conditions on the
activity labels, xtLTLf also supports predicating on the conditions for the payload values
(expressed as key-value pairs) associated with the specific events [28], as well as supporting
binary predicates to be tested across activated and targeted conditions similarly to θ-joins.
Recent extensions of Allen’s algebra aimed at supporting single data conditions over single
events [40]. Thirdly, such algebra only expresses temporal correlations between two single
events, albeit expressed with a duration and a termination time, and can predicate natively
neither the eventuality nor the necessity of some properties to occur in a trace (e.g., globally
and future) from a given instant in time.

Concerning the temporal relational algebra [22] defined over temporal relational
databases [47] (also referred to as temporal modules [21]), it mainly proposes timestamp
transformation operations currently supported by Oracle Cloud [48] as well as windowing
functions, thus retaining the entities and relationships occurring within a window time
frame. This allows the slicing of a temporal module into a finite sequence of finite database
states, where such a snapshot sequence can be ascribed to a single trace and each event
can be mapped to a single database state [49]. Despite time being considered as a first
citizen within these operators, no operator of such an algebra temporally correlates entities
at different timestamps while also requiring the eventuality or the necessity for a specific
condition within a given lapse of time. An orthogonal contemporary approach attempted
at mapping LTLf to TSQL2 [50], a de facto extension of SQL for querying temporal mod-
ules [51]. Differently from the approach mentioned above, this preserved LTLf temporal
operators such as Until (U ); as the authors preceded the definition of LTLf extensions
considering data payload conditions [3,28], these are not considered in their transformation.
Furthermore, as these temporal modules represent one single distinct trace as a result of
temporal snapshotting of a single database into multiple distinct states, they cannot be
effectively used to run a single formal verification task over numerous traces as per our
proposed approach, as this would require running a single TSQL2 query over multiple
databases, one for each log trace. In fact, our solution can assess multiple traces simulta-
neously by leveraging an extended relational representation to the one initially described
in [17].

3. Proposed Derived Operators

Similarly to the definition of the derived operators in relational algebra, we now provide the
definition of our proposed operators extending xtLTLf by expressing those in terms of the ones
already known in such a temporal algebra. These are then defined in Equations (3), (5), (7) and (9).
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3.1. AndAltFuture

We want this operator to seek all the instants of time when an event activates the
Declare clause while the target follows anytime in the future, while requiring that no
further activation occurs between these two events. This operator aims to optimize the
AltResponse(A,B) clause and can be then expressed in terms of basic xtLTLf operators
as follows:

AndAltFutureτ
Θ(ρ, ρ′)

def
== Andτ

Θ

(
ρ, Next

(
UntilτTrue

(
Notτ(ρ), ρ′

)))
(3)

By implementing this operator from scratch, we want to avoid running the costly
computation of the timed Untilτ unless the activation condition associated with the interme-
diate result returned as ρ is satisfied. Furthermore, we want to avoid explicitly computing
the negation of the activation condition and express this by explicitly checking that, given
any activating event in σi

j in ρ with an immediately following targeting one σi
k in ρ′ with

|σi| > k > j, no other events σi
j+h in ρ with j + h < k shall occur. We can then express the

aforementioned Declare clause in terms of the recently defined operator as follows:

Globallyτ
(
Orτ

True
(
Notτ(ρ), AndAltFutureτ

True(ρ, ρ′)
))

(4)

where ρ = ActivityS,τ
A (A) and ρ′ = ActivityS,τ

T (B) under the dataless assumption.

Example 2. With reference to the log in Equation (1), AltResponse(redirect, examine) requires
that a patient redirected to a given department shall be examined before being further redirected. This
constraint satisfies all the traces within that equation. By considering only the events from the second
trace, in our previous xtLTLf solution we have intermediate results ρ = ActivityA(redirect) =
{〈1, 1, [A(1)]〉} for the activation condition and ρ′ = ActivityT(examine) = {〈1, 3, [T(3)]〉} for
the target one. The timed Until ρ′′ = UntilτTrue(¬ρ, ρ′) returns:

{〈1, 0, [T(1)]〉 , . . . , 〈1, 3, [T(3)]〉 , 〈1, 4, []〉}

as each event in xtLTLf can only witness a future event, and ρ′′′ = Nextτ(ρ′′) returns:

{〈1, 1, [T(3)]〉 , . . . , 〈1, 2, [T(3)]〉 , 〈1, 3, []〉}

Hence, Andτ
True(ρ, ρ′′′) returns just f = {〈1, 1, [M(1, 3)]〉}, while witnessing that, from that

time onwards, both activation A(1) and target T(3) condition will occur from the same event 1.
The rest of the events will be returned via ¬ρ, which are finally grouped-by temporally via untimed
Globally. Before running it, we previously ran the timed Until operator independently from the
occurrence of ρ′′ in a trace.

On the other hand, our new AndAltFuture operator directly returns f after taking as an
argument ρ and ρ′; this scans the events in ρ′ occurring after each occurrence of events in ρ while
immediately discarding the events in ρ containing another redirect event in between. This reduces
the memory footprint and the number of scans from our previous query plan.

3.2. AndAltWFuture

Reflecting upon the definition of AltPrecedence(A,B) which this operator is aiming to
optimize, we can observe that implementing an ad hoc operator AndAltWFuture for this
might provide even greater optimization, as we might as well avoid checking the global
absence of A-labelled events if no B occurs in a trace after an A. Therefore, this operator acts
as an extension of the former by either requiring an alternate occurrence between activation
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and target condition, as previously, or requiring the absence of any future activation if no
targeting event is expected to occur. AndAltWFutureτ

Θ(ρ, ρ′) can be then defined as follows:

Andτ
Θ

(
ρ, Next

(
Orτ

True

(
UntilτTrue

(
Notτ(ρ), ρ′

)
, Globallyτ(Notτ(ρ)

))))
(5)

We can now express AltPrecedence(A,B) by replacing, in the original xtLTLf Declare se-
mantics, the previous equation with the currently introduced operator, thus obtaining:

Orτ
True

(
Untilτ

(
Notτ(ρ′), ρ

)
, Globallyτ

(
Orτ

True

(
Notτ(ρ), AndAltWFutureτ

True(ρ, ρ′)

))
(6)

3.3. AndNext

This operator aims to optimize the ChainResponse operator by reducing the data access
by accessing the ActivityTable just for the activation condition. This makes this operator
intrinsically unary, as the target condition, both in terms of data predicate and activity label,
has to be provided as additional arguments for the operator alongside the Θ correlation
condition for dataful scenarios. To check whether the target condition occurs immediately
after the operand’s current event, we need to check whether it is associated with an activity
table and whether it satisfies a predicate q. This can be then expressed in xtLTLf in terms
of the following derived operator:

AndNextτ
B,q,Θ(ρ)

def
== Andτ

Θ

(
ρ, Nextτ(AtomS,τ

T (B, q))
)

(7)

At this stage, we can then express the semantics associated to the Declare template ChainRe-
sponse(A,B) as follows:

Globallyτ
(
Orτ

True

(
Notτ(ρ), AndNextS,τ

B,True,True(ρ)
))

(8)

where ρ = ActivityS,τ
A (A) in a dataless scenario.

3.4. NextAnd

The second operator aims at optimizing ChainPrecedence(A,B) similarly to the previous
one, but with a swapped temporal occurrence. Please observe that negating the fact that an
event shall occur after another can be expressed in terms of all the events occurring at the
end of a trace and all of the events not matching the activation condition a when occurring
in a non-first position. So, ChainPrecedence is usually represented as:

Globallyτ

(
Orτ

True

(
Orτ

True

(
LastS,τ , Nextτ(Notτ(ρ))

)
, Andτ

True

(
Nextτ(ρ), ρ′

)))

where ρ = ActivityS,τ
A (A) and ρ′ = ActivityS,τ

T (B) in a dataless scenario. After compactly
representing the subexpression in the second row of the previous definition, as follows:

NextAndτ
B,q,Θ(ρ)

def
== Andτ

Θ

(
Nextτ(ρ), AtomS,τ

T (B, q)
)

(9)

we aim to optimize this last declarative clause by using this last introduced operator by
rewriting the semantics associated to ChainPrecedence(A,B) as such:

Globallyτ

(
Orτ

True

(
Orτ

True

(
LastS,τ , Nextτ

(
Notτ(ρ)

))
, NextAndτ

B,True,True(ρ)

))
(10)
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Please observe that the intended optimization induced by these operators can be considered
as non-trivial, as these do not directly subsume the entire xtLTLf semantics associated to a
template, rather than optimizing a specific part.

4. Algorithmic Implementation

We discuss the implementation of the previously introduced operators outlined in Algorithm 1,
thus justifying their definition as novel derived operators. For each of them, we briefly discuss their
computational complexity and compare it to the expected theoretical speed-up not considering the
cost of memory allocation and page-faults.

Algorithm 1 Newly proposed xtLTLf operators.
1: function ANDALTFUTUREτ

Θ(ρ, ρ′)
2: for all 〈i, j, L〉 , 〈i, k, L′〉 ∈ (ρ× ρ′) s.t. j < k do
3: if 6 ∃h > 0. 〈i, j + h, L〉 ∈ ρ s.t. j + h < k then
4: if L′ 6= ∅ and L 6= ∅ and Θ 6= True then
5: L′′ ← {M(j′, k′)|Θ(σi

j′ , σi
k′), A(j′) ∈ L, T(k′) ∈ L′}

6: if L′′ 6= ∅ then yield 〈i, j, L′′〉
7: else yield 〈i, j, L ∪ L′′〉
8: end if
9: end if

10: end for

11: function ANDALTWFUTUREτ
Θ(ρ, ρ′)

12: for all 〈i, j, L〉 ∈ ρ do
13: for all 〈i, k, L′〉 ∈ ρ′ s.t. j ≤ k do
14: if 6 ∃h > 0. 〈i, j + h, L〉 ∈ ρ s.t. j + h < k then
15: if j = |σi| − 1 continue;
16: if L 6= ∅ and L′ 6= ∅ and Θ 6= True then
17: L′′ ← {M(j′, k′)|Θ(σi

j′ , σi
k′), A(j′) ∈ L, T(k′) ∈ L′}

18: if L′′ 6= ∅ then yield 〈i, j, L′′〉
19: else yield 〈i, j, L ∪ L′′〉
20: end if
21: end if
22: end for
23: if 6 ∃k, h. 〈i, k, L′〉 ∈ ρ′ ∧ 〈i, h, L′′〉 ∈ ρ ∧ j < k, j < h then
24: yield 〈i, j, L〉
25: end if
26: end for

27: function ANDNEXTτ
B,q,Θ(ρ)

28: if 6 ∃σi ∈ S, σi
j ∈ σi.λ(σi

j ) = B then return ∅

29: for all 〈i, j, L〉 ∈ ρ s.t. j < |σi| − 1 and λ(σi
j+1) = B do

30: L′ ← L ∪ {T(j + 1)}
31: if Θ 6= True then
32: if L 6= ∅ and 6 ∃A(k) ∈ L.θ(σi

k, σi
j+1) then continue

33: else L′ ← {M(k, j + 1)|A(k) ∈ L}
34: end if
35: if q 6= True∨ q(σi

j+1) then yield 〈i, j, L′〉
36: end for

37: function NEXTANDτ
B,q,Θ(ρ)

38: for all 〈i, j + 1, L〉 ∈ ρ s.t. j ≥ 0 and λ(σi
j ) = B do

39: L′ ← L ∪ {T(j)}
40: if Θ 6= True then
41: if L 6= ∅ and 6 ∃A(k) ∈ L.θ(σi

k, σi
j ) then continue

42: else L′ ← {M(k, j)|A(k) ∈ L}
43: end if
44: if q 6= True∨ q(σi

j ) then yield 〈i, j + 1, L′〉
45: end for

4.1. AndAltFuture

As all the intermediate results in the KnoBAB pipeline are always sorted by ascending
trace and event id, we can scan all the events within the same trace where the targets follow
the activations in linear time similarly to the timed and operator, despite this being expressed
in pseudocode with a cross product for simplifying the overall notation (Line 2). We then
consider all the events in the same trace having no immediate subsequent event in ρ prior
to the occurrence of the next event in ρ′; this can be simply checked in ρ by determining that
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the next record appearing in ρ after 〈i, j, L〉 has an event id less than k (Line 3). If there is a
non-trivially true Θ predicate, we also impose that at least one activation occurring after or
at σi

j and at least one target occurring after or at σi
k matches with Θ (Line 6). Otherwise, we

compute no match, and we straightforwardly collect the activation and target conditions
from both events (Line 7). In the code, we explicitly injected an early-stopping condition
avoiding testing subsequent events in ρ′ within the same trace as soon as we detect one
event in ρ, invalidating the condition at Line 3. By considering the time complexities for
each xtLTLf operator in Section 2.3, we can argue that the time complexity associated with
computing this operator as in the previous section without the aforementioned computation
is totalled to O(|ρ|+ (||S|| − |ρ|)2|ρ′|+ 2((||S|| − |ρ|) + |ρ′|)), where ||S|| = |S|ε. On the
other hand, by assuming to always scan each trace quadratically of length ε for each event
in ρ, we obtain the time complexity of O(|ρ|ε2/2 + |ρ′|) for the derived operator when
implemented as per the previous discussion. If we assume that ρ and ρ′ are associated
with a single activity label, as per the scenario in Declare, where the number of events and
the activity labels are uniformly distributed such that #a ≈ |S|ε/|Σ| for each a ∈ Σ, we can
derive that the provided algorithm always provides a positive speed-up if compared to the
original formulation in Equation (3).

4.2. AndAltWFuture

This algorithm works similarly to the previous, where we relax the until condition
with a weak until, thus also admitting an absence of activation conditions after the first
occurrence (of an activation) if no further target events are present (Line 23). Even in this
scenario, we have a similar time complexity to the previous, while the original formula-
tion in Equation (5) introduced an additional overhead to the previous by computing an
additional timed disjunction and the global computation over the negation of the possibly
activating events. Therefore, we expect an even greater speed up for this latest operator.

4.3. AndNext

As previously observed in the formal definition of this operator, we transformed this
into an unary operator where, instead of retrieving two sets of events associated with two
activity labels, we just scan one of the two. Before starting any form of scan, we immediately
return if, after a O(|S|) scan of the CountTable, we detect that no event is associated with
the target condition (Line 28). Otherwise, we consider only events both coming from traces
containing an event with activity label B and not being at the end of the trace, and for which
the immediately next event is associated to an activity label B as a target condition (T(j + 1),
Line 29); we implementationally further enhanced this by completely skipping any test
whether the event resides in a trace where no B event resides. If Θ 6= True, then we also
have to guarantee that each activation condition appearing in ρ should match with the
target event at time j + 1 (Line 33) and, upon provision of q, the target condition should also
match with this (Line 35). The computational complexity of this operator is in O(|ρ|+ |S|)
and, if we are taking into account the accessing time to the immediately following event,
if any, we obtain a time in 2|ρ|+ |S|. If compared to the time complexity of Equation (7)
of |ρ| + 2|ρ′|, we then obtain a positive speed up, i.e., |ρ|+2|ρ′ |

2|ρ|+|S| > 1, for |ρ′| > |ρ|/2 and
0 < |S| < 2|ρ′|+ |ρ|.

4.4. NextAnd

This other operator works similarly to the previous, where we are checking instead
the immediately preceding event instead of looking at the immediately following one,
thus requiring that each element of interest in ρ shall never be at the beginning of the
trace. The same considerations over speed-up and time complexity follow from the previ-
ous algorithm.

After associating each of the novel operators in the aforementioned algorithmic im-
plementation, Equations (4), (6), (8) and (10) will then provide the semantics generating
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the query plan as Proposed in this current paper, while the direct translation of the LTLf
expressions in Table 1 to the operators outlined in Section 2.2.2 provides the Original
formulation of the query plan also in [28], where none of the previous algorithms are used.

5. Empirical Evaluation

Given that the aim of our derived operators is to enhance formal verification tasks conducted
over temporal clauses expressed in Declare, we compare the different running times of carrying
out formal verification tasks over our previous set of operators as well as by replacing those with
our currently proposed derived ones, while focusing on benchmarking formal verification tasks
over specifications written in Declare. We discard from our evaluation the benchmark of the single
operator, as this is insufficient to remark on their adequacy in enhancing formal verification tasks in
Declare. Thus, we compare different query plans being generated from different Declare semantics
being specified at runtime through the queryplan “name” { . . .} query. With this, achieving a
positive speed-up in Declare formal verification tasks as in our previous work [28] by using the
proposed operators will tell us that, under specific data conditions, the original xtLTLf query plan
associated with the declarative clauses available in KnoBAB constitutes the major computational
bottleneck. Having a negligible speed-up will likely remark other components in the query plan
dominating the overall running time, while having a negative speed-up only on specific data
conditions will motivate some future work on hybrid algorithms, thus allowing us to choose between
different algorithms for specific temporal operators depending on the data distribution within the
loaded dataset [52].

Our benchmarks exploited a Dell Mobile Precision Workstation 5760 on Ubuntu
22.04: Intel® Xeon(R) W-11955M CPU @ 2.60 GHz × 16, 64 GB DDR4 3200 MHz RAM.
We took two real-world datasets and a synthetic one for our experiments, both being
dataless. The first real dataset (Hospital) monitors the patient flow and different medical
procedures to which the patients in question were subjected; each trace tracks a single
patient from his hospitalization to dismissal, and each activity label describes the name
associated to such phases [10]. The second one (Cybersecurity) provides the auditing
step of different malware, where each trace represents a single malware being audited,
while each activity label identifies one single system call event being audited as invoked
by the malware [6,7]. The synthetic dataset was derived from temporal graphs gener-
ated by FoodBroker [11] while describing trades and shipments of goods mediated by a
brokerage company. For each GraphTransaction, we sort all the vertices describing an
event occurring at a specific date, thus also including creation timestamps. For vertices
describing a ticket being filed by a client raising a complaint, we return an activity label
associated with the type of complaint (problem); otherwise, we keep the original vertex
label. We then collect the set of temporally ordered activity labels and represent those as
log traces. The updated FoodBroker codebase for generating event logs is also available
online (https://github.com/jackbergus/foodbroker/, accessed on 3 January 2024).

For each dataset, we then obtain the sampled trace length distribution, and we sample
sub-logs of various sizes while trying to abide by the trace distribution from the original
dataset, notwithstanding their skewness. For the first and third (or second) datasets, we
sample the logs so that their sizes are powers of ten (or nine) while always guaranteeing
that each sub-log |Sh| = 10h (or |Sh| = 9h) is always a subset of any larger sub-log. We
also keep the original log as the last sample dataset. This random sampling mechanism is
required to better assess the scalability of the proposed operator’s implementation while
guaranteeing an approximation of the original trace length distribution across the board to
guarantee similar running time conditions. Figure 2 reports the sample PDF trace length
for each of the sampled logs alongside the size of each sample. The FoodBroker synthetic
dataset contains the shorter traces (Figure 2a); all the sampled logs except the first one
have a maximum trace length of 24, while the first sublog has a maximum trace length
of 21. On the other hand, the first two smaller log samples of the real-world Hospital
dataset (Figure 2b) have traces with a maximum length of 1200, while the remaining two
have a maximum trace length of 1814. The Cybersecurity dataset (Figure 2c) contains the

https://github.com/jackbergus/foodbroker/
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longest traces, having a maximum trace length of 1.23× 106 for the smaller two sub-logs
and of 1.76× 106 for the remaining ones. This information will soon become relevant while
conducting our following analysis of the algorithmic speed-ups given by our proposed
derived operators while performing formal verification over the models described in the
following paragraph.

(a)

(b)

(c)

Figure 2. Sampled probability density function associated with the length of the traces for each
sub-log extracted from each original dataset: (a) FoodBroker, (b) Hospital, and (c) Cybersecurity.

Given that we aim to test these newly introduced xtLTLf operators in the context of
a Declare-based formal verification task when xtLTLf is used to represent its semantics,
we generate four specifications Φc

1, . . . , Φc
4 for each declarative clause of interest c, AltPrece-

dence, AltResponse, ChainPrecedence, and ChainResponse, where each Φc
i contains exactly

i binary clauses determined by instantiating an activity label among the most frequently
occurring ones within the smaller sub-log. We then use the same specifications generated
for the smaller log and the greater sub logs, thus comparing the running times for each
sub-log over the same Declare specifications. We then use the specifications to conduct a
formal verification task via a model-check. . . query. The resulting logs and specifications
are freely available online (https://osf.io/6y8cv/, accessed on 3 January 2024).

Last, as our previous work already showed that computing such queries on top of
relational databases such as PostgreSQL with shorter traces leads to a greater running time
than running similar queries over KnoBAB, we just focus on comparing the results from our
previous implementation with the ones after applying the changes discussed in this paper.

https://osf.io/6y8cv/
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With reference to Figure 3, AndAltS operators can be deemed responsible for evi-
dently outperforming the proposed query plan if compared to the one from the previous
implementation, as they lead to an associated speed-up always strictly greater than one.
Our previous definition of the Declare operators is greatly affected by the number of clauses
within the model, which becomes even more apparent when the maximum and average
trace length ε per sampled log increases. On the other hand, running our former formal
verification query plan for AndAltS clauses over the Cybersecurity dataset always took
more than one 1H (3.6× 106 ms), thus demonstrating an increased running time for the
original query plan strategy when longer traces occur. We stopped recording the run-
ning time, as the overhead introduced by the intermediate operators for carrying out the
actual matching between activation and target conditions was strikingly evident, while
our proposed operators could instead carry out the formal verification task within one
minute. Although no out-of-memory exceptions were observed before the timeout, these
were clearly observed in larger specifications and log sizes, thus clearly demonstrating
KnoBAB’s limits as a main memory engine by not maintaining the query intermediate
results in secondary memory. Despite the code allowing the clearing of intermediate caches
to be run to free extra memory, this only partially addresses the out-of-memory failure
for larger specifications. Overall, this demonstrates that this proposed extension for An-
dAltS operators outperforms our previous query plan definition, as also expected from
our previous analysis concerning the overall theoretical time complexity.

(a)

(b)

(c)

Figure 3. Cont.
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(d)

Figure 3. Comparing the proposed implementation of the derived operators with the previous
implementation given in KnoBAB. (a) FoodBroker dataset; (b) Hospital dataset; (c) Cybersecurity
dataset. (d) Datasets’ speed-up: (left) FoodBroker, (center) Hospital, and (right) Cybersecurity.

ChainS operators provide a more convoluted scenario to be examined carefully. First,
we observe a clear trend correlating datasets with longer traces with an overall increase in
speed-up. In fact, the Hospital datasets exhibit more speed-ups compared to the FoodBroker
one, where the recently proposed operators yield comparable or underperforming running
times. Notwithstanding the former, we can clearly observe that the recently proposed
operators consistently outperform our previous solution over the Cybersecurity dataset.
Differently from our previous set-up, we can now observe that the original formulation of
the declarative clauses without the currently presented operators now runs out of memory
before hitting the 1H timeout for the larger sample, being the full dataset, while our solution
still manages to carry out some temporal formal verification tasks over specifications
containing fewer clauses. Last, we consistently observe that such operators still provide
greater speed-ups over datasets with smaller log sizes, thus providing theoretical validation
to our speed-up equations for such operators. This postulates the need for such operators
while dealing with massive datasets, while advocating the usage of hybrid algorithms for
switching between the previous solution and the currently proposed one.

6. Conclusions and Future Works

This paper proposes an extension to our previous work on KnoBAB by optimizing
our previously proposed query plan by introducing novel algebraic temporal operators
expressing formal verification tasks on column database storages in main memory. As a con-
sequence, we extended our temporal algebra xtLTLf with four novel operators, subsuming
entire xtLTLf expressions which before could only be represented in terms of combinations
of costly basic operators. Preliminary results over such operators provide non-negligible
speed-up to the formal verification tasks over realistic datasets, where several events are
audited and collected in a larger collection of traces.

Despite these experiments demonstrating the efficiency of carrying out formal ver-
ification computations on columnar databases implemented as a main memory engine,
the consistent out-of-memory faults that we experienced over larger collections of data
containing more events (i.e., longer traces) encourage us to store the intermediate query
results in secondary memory, as customary for off-the-shelf databases such as PostgreSQL.
We see this as the last required step for fully supporting real data alongside the orthogonal
operator optimization, as discussed in the present paper. Despite the fact that putting this
solution in place will come at the detriment of overall performance, this will guarantee
the carriage of the entire formal verification computation. This drawback might be allevi-
ated by determining at runtime whether to represent intermediate results in primary or
secondary memory depending on the log and trace size. Another possible way to alleviate
such a problem is to re-implement the overall pipeline using a pull-based strategy [33]
when operations are not run concurrently. Another way to challenge this primary memory
limitation would be migrating the proposed architecture over Oracle Cloud [48], which
already supports traditional time-transactional database operations compatible with the
aforementioned temporal modules. While doing so, we will be walking in the footsteps
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of previous literature [50] by attempting to rewrite dataful xtLTLf specifications into the
supported temporal extension of SQL.

The current experiment noted the optimality of the proposed operators when dealing
with datasets with longer traces (i.e., greater ε). Future work will consider the possibility
of defining hybrid algorithms [27] over the operators, optimizing ChainS clauses by
empirically determining the table size threshold over which we prefer the derived operators
over the original. As an orthogonal approach, we will also define the “dual” operators for
ANDNEXT and NEXTAND so as to start scanning from the target condition while moving
backwards towards any existing activation condition when the number of targets is deemed
to be fewer than the activations. Our future works will also aim to further benchmark these
operators in the context of dataful logs, where events are also associated with a payload
expressed as a key-value pair as in customary semi-structured data formats. These works
will then outline the overhead required to compute a Θ correlation condition between
activation and target event.

Previous research on temporal modules demonstrated the possibility of expressing
LTLf specifications when traces have multiple events occurring at one specific point in
time [50]; the current theoretical literature on conformance checking suggests that this is
actually possible by representing each single event as a conjunction of multiple mutually ex-
clusive events, thus obtaining the characterization of composite events. However, realizing
this in practice for events with distinct labels would require a drastic overhaul of KnoBAB’s
relational representation, as the current architecture is focused on the linear representation
of each individual trace. Future work will therefore contemplate the possibility of extending
the current relational model with an object-oriented one [53], better supporting the nesting
and composition of objects, a feature also required for coalescing multiple events in a single
instant in time.

Finally, an interesting outcome of these observations on relational databases would
be the application of such an algebra in the context of temporal graphs [54], thus enabling
the efficient temporal verification under this different data representation. Despite the
recent attempt at representing logs as temporal graphs [55], the aforementioned is still
a desideratum, as no graph temporal operator for expressing formal verification tasks
is currently known. Differently from the previously pursued approach [56], this will
then require us to define tailored temporal operators for graph query languages similarly
to xtLTLf.
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