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Abstract: This paper focuses on addressing the complex healthcare needs of patients struggling with
discordant chronic comorbidities (DCCs). Managing these patients within the current healthcare
system often proves to be a challenging process, characterized by evolving treatment needs neces-
sitating multiple medical appointments and coordination among different clinical specialists. This
makes it difficult for both patients and healthcare providers to set and prioritize medications and
understand potential drug interactions. The primary motivation of this research is the need to reduce
medication conflict and optimize medication regimens for individuals with DCCs. To achieve this,
we allowed patients to specify their health conditions and primary and major treatment concerns,
for example, costs of medication, interactions with current drugs, and weight gain. Utilizing data
gathered from MTurk and Qualtrics, we gained insights into healthcare providers’ strategies for
making/customizing medication regimens. We constructed a dataset and subsequently deployed
machine learning algorithms to predict optimal medication regimens for DCC patients with specific
treatment concerns. Following the benchmarking different models, Random forest emerged as the top
performer, achieving an accuracy of 0.93. This research contributes significantly to the enhancement
of decision-making processes, empowers patients to take a more active role in their healthcare, and
promotes more informed and productive discussions between patients and their care teams.

Keywords: complex chronic diseases; discordant chronic conditions; benchmarking; recommender
systems; machine learning; decision aids

1. Introduction

In the United States alone, one in four patients have multiple chronic conditions [1].
The increasing number of patients with chronic conditions exerts further pressure on an
already strained healthcare system. It is difficult for healthcare providers to thoroughly
understand the complex care-needs of these people in the limited time allotted in a medical
appointment [2]. This problem is even worse for patients with discordant chronic comor-
bidities (DCCs), a situation where a patient has two or more conditions with conflicting
treatment plans. Patients with DCCs often have to juggle multiple complex treatment plans
and interacting diseases/symptoms [3–5]. The discordant chronic comorbidities care (DC3)
model shows how a change in a patient treatment plan can negatively impact symptoms
and necessitate revisiting the plan [6]. These interactions make treatment decisions, pri-
oritization, and adherence for DCCs very complex and challenging for patients and their
healthcare providers. A treatment plan for DCCs must adapt as the patient’s conditions
evolves. Machine learning (ML) and artificial intelligence (AI) can support healthcare
providers when making these intricate and ever-changing decisions. When deciding on
medication, the majority of patients with multiple chronic conditions often are concerned
about whether (i) the price of medication is high, (ii) a medication will cause weight gain,
(iii) a medication will cause severe side effects, and (iv) a medication will interact/conflict
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with their other current medications [6]. Thus, it is essential for researchers looking to
support the treatment decision-making process for DCCs to consider these concerns when
making treatment recommendations. A plethora of research has been conducted for risk
prediction [7], disease diagnosis [8], managing treatment plans [9], and medication recom-
mendation targeting a single chronic disease [10]. We have yet to see the work targeting the
prioritization of complex needs experienced by patients with DCCs. Research is needed to
explore how to support patients with DCCs in navigating their complex care-needs and
prioritizing their treatment plans.

In this study, we trained and tested machine learning models to predict the optimal
medication regimens for individuals struggling with DCCs. Our approach leverages data
collected from MTurk and Qualtrics, which capture the strategies employed by healthcare
providers in prescribing medication regimens that address patients’ specific treatment
concerns, including cost, weight gain, and drug interactions. We started by distributing a
survey through MTurk and Qualtrics, aimed at gaining insights into the decision-making
process of healthcare providers when prescribing medications to their patients with com-
plex needs. Using the survey results, we constructed a comprehensive dataset comprising
medication-regimen for managing three prevalent DCCs (type 2 diabetes, arthritis, and de-
pression). These combinations of medication were meticulously crafted to accommodate
the primary treatment concerns of patients, namely cost, weight, and drug interactions.
Subsequently, we employed this dataset to train and test various multi-output models,
ultimately arriving at predictions for optimal medication combinations targeting DCCs.
This study not only presents the results of our predictive models but also establishes bench-
marks to evaluate the performance of each algorithm utilized. By doing so, it makes the
following contributions:

1. Enhanced Decision-Making—this research strives to empower healthcare profession-
als to tailor medication regimens more effectively for patients with DCCs, thereby
enabling them to make more informed and precise decisions.

2. Empowering Patients—the study aspires to provide patients with a deeper under-
standing of alternative medication options, allowing them to actively participate in
their healthcare decisions and receive more personalized treatment plans.

3. Facilitating Informed Discussions—patients equipped with knowledge from this study
will be better equipped to engage in meaningful discussions with their care teams
regarding medication options. This in turn, leads to improved treatment outcomes.

2. Related Works

In this section, we discuss the use of machine learning tools and algorithms to support
the management of a single chronic disease. We explore benchmarking suites, decision
support systems, and recommender tools.

2.1. Recommender and Decision Support Systems

Clinical decision support systems (CDSS) and recommender systems are designed to
assist physicians, nurses, patients, and other professionals in decision-making related to the
patient’s clinical condition [11]. For example, Lysaght et al. developed and implemented
AI-assisted support systems to support healthcare and clinical-practice decision-making
processes [12]. They used large datasets from electronic health records (EHRs) and algo-
rithms in CDSS. A CDSS typically employs computerized, predictive analysis algorithms
to filter, organize, and search for patterns in big datasets from multiple sources and provide
probability analysis upon which healthcare providers can make fast and informed decisions.
This research highlighted some of the ethical issues that may arise with the implementation
of these systems and the relevant values that decision-makers can draw on in the design
and implementation of AI-assisted CDSS into practice [12]. The decision support was
further enhanced with tools that could look for the common attributes and the nearest
neighbors of these attributes [13]. These tools could predict the most probable future
actions of patients and identify the disease (s) a patient would most likely develop in the
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near future. With some additional tweaks, these tools could also recommend educational
material for such diseases [14]. Many such varieties of these tools were developed to assist
patients and healthcare providers.

The majority of patients struggle to find useful resources, strategies, and information
when navigating their care and self-management [6,15]. Patients find it hard to identify the
most relevant and valuable materials for themselves [15,16]. A system that automatically
identifies and recommends appropriate care strategies to patients based on their needs or
preferences is needed. There is already research taking that direction, for example, health
recommender systems (HRS) are used to provide appropriate educational materials for
patients with chronic diseases [17]. Such a recommender system detects the similarities
between the patient and text vectors by using keyword extraction. They show how ontology-
vector spaces can be used to correlate patient data and educational material. However,
such systems do not capture the deep semantic meanings behind sentences or documents.

2.2. Machine Learning Tools and Algorithms for Healthcare

Several studies are currently exploring/implementing machine learning techniques to
support the care and wellness of patients. For example, Woldaregay et al. explored state-of-
the-art machine-learning strategies and their hybrid systems focusing on blood glucose
(BG) anomaly classification and detection [18]. In addition, ML algorithms such as artificial
neural networks, support-vector machines, Bayesian networks, decision trees, and back-
propagation algorithms, have been applied to create decision-aid systems for supporting
healthcare providers and nurses in their decision-making process [19]. Kavakiotis et al.
built predictive models using machine learning algorithms and data mining techniques for
diabetes prediction [10]. They used the k-means, application of tree algorithms, decision
tree algorithms, neural networks, K-means clustering algorithms, and visualization to
predict diabetes among patients. Logistic regression gave the highest accuracy of 96%. This
approach could also be applied to chronic comorbidities for prediction and recommenda-
tions to manage them. Furthermore, Singh et al. created a multi-output career prediction
tool that considers the person’s background history (i.e., work and education history) [20].

Apart from implementing ML algorithms, there exists a body of research dedicated to
performance of ML algorithms. For example, some studies have investigated and created
benchmarks of probabilistic matrix factorization, generative adversarial networks (GAN),
and attention-based sequence models. These investigations revealed that the factoriza-
tion method was relatively simple to interpret [21]. Additionally, they highlighted the
remarkable enhancements in medical predictive model performance attributed to deep
learning approaches [21]. In a separate study, Kumar et al. evaluated anxiety, depression,
and stress using machine learning models [22]. They conducted comprehensive bench-
marking, using five (n = 5) distinct algorithms, namely decision tree, random forest tree,
naive Bayes, SVM, and KNN. For classification, they employed logistic regression, cat
boost, naive Bayes, RFT, and SVM. The outcomes indicated superior performance by the
decision tree, followed by the random forest and then naive Bayes algorithms. These
studies show the potential for recommending both diseases and corresponding medica-
tions. However, it is worth noting that while the insights from this research could benefit
individuals with DCCs, the majority of machine learning models still struggle to accurately
estimate uncertainty and furnish well-calibrated predictions [23,24]. This deficiency can
result in overly confident recommendations in scenarios involving dataset shifts or distri-
butional changes [25,26]. To address this, further endeavors that mitigate uncertainty when
recommending medication combinations within real-world clinical settings essential.

3. Proposed Framework

This section provides an overview of our study design, including participant selection,
data quality and cleansing processes, as well as the attributes employed for predicting
optimal medication combinations. It also outlines our approach to iterative testing and
multi-model training scenarios.
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3.1. Study Design
3.1.1. Participant Selection

Our study employed a mix of data collection methods to recruit highly qualified
healthcare providers with self-reported expertise in managing type 2 diabetes and its
common discordant chronic comorbidities (DCCs), such as depression, chronic kidney
disease, and arthritis. We utilized Amazon Mechanical Turk (MTurk) and collaborated
with two healthcare centers. MTurk allowed us to access a diverse group of participants
and collect a large number of responses efficiently [27]. Our recruitment criteria were
meticulously tailored to the focus of our research, exclusively selecting providers with
relevant professional experience in managing conditions that aligned with our criteria.
To diversify our participant pool, we also utilized snowball sampling. Healthcare providers
who did not treat patients with type 2 diabetes and at least one of these specified DCCs were
excluded, ensuring our dataset comprised individuals with pertinent clinical experience in
DCC management (see Table 1). The study was reviewed and approved by the University
of Dayton Institutional Review Board.

Table 1. The Summary of study participants.

Category Attribute Number of Participant

Experience Knowledgeable 162
Very knowledgeable 64

Diseases Treated Type 2 diabetes (T2D) 226
T2D & one other disease 62

T2D & two other diseases 109
T2D & more than two diseases 55

Primary Specialization Family medicine 112
Endocrinologist 14

General internal medicine 63
General pediatrics 32

Gynecology 8
Nephrologist 12

Other 23
The study collected data from a total of 226 participant responses. All 226 participants self-reported treating
patients with type 2 diabetes. Among these, 62 participants reported caring for patients with at least two DCCs
(type 2 diabetes and depression or type 2 diabetes and arthritis). Additionally, 109 participants reported treating
patients with a combination of three DCCs including type 2 diabetes, depression, and arthritis. Furthermore,
55 participants had experience in attending to patients with type 2 diabetes alongside other health conditions,
including heart diseases, cancer, and more.

3.1.2. Participant and Data Screening

We employed several quality assurance measures to ensure data quality and reliability.
We utilized the Qualtrics survey platform to construct our survey. We initiated the survey
with four unpaid screening questions to filter out participants who did not meet our prede-
fined selection criteria. This strategic placement of screening questions at the beginning of
the survey minimized time commitment for disqualified participants, thus optimizing data
collection efficiency. Additionally, we provided clear instructions and detailed explanations
in each survey section and/or subsection of our survey to reduce potential sources of
ambiguity or misunderstanding among respondents. Finally, we validated the responses
gathered by enlisting five clinical experts (from the local hospital) who had also partici-
pated in the Qualtrics survey and were familiar with our research. Each expert played a
substantial role in assessing and confirming the professionalism of the participant (N = 20)
responses from MTurk that were randomly assigned to them. The clinical experts’ insights
were instrumental in pinpointing and flagging participants whose responses deviated
from the survey questions or contained nonsensical responses. They started by identifying
instances where responses appeared unrelated to the provided survey questions and there
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was nonsensical or incoherent language present. Furthermore, we asked them to look for
indications suggesting a participant may have misinterpreted the survey question. All
responses from any participants flagged during this validation process because of potential
relevance, coherence, or comprehension concerns were subsequently excluded from our
study, contributing to the data quality and accuracy obtained and confirming its reliability
for our research.

The following are questions we used to guide the validation process:

1. Are there instances in the responses that appeared unrelated to the provided question?
2. Do the responses contain nonsensical phrases or incoherent language?
3. Is there any indication from the responses that suggests participants might have

encountered difficulties in comprehending the questions?

3.1.3. Participant Data Quality and Cleaning

As mentioned above, clinical experts were recruited via targeted qualifications and
screening on Amazon Mechanical Turk (MTurk) to verify their domain expertise. A com-
prehensive multi-step selection process was utilized to identify healthcare providers with
expertise in treating patients with type 2 diabetes and sound understanding of complex
medication needs. The process commenced with a screening survey, followed by detailed
descriptions for each survey section, outlining the specific objectives and expectations for
participants. After completion, participants’ responses were verified by a member of the
research team and validated by clinical experts before the data was collected for analysis.
This strict recruitment and survey process ensured the engagement of expert participants
possessing the required knowledge and skills, thereby enhancing the quality and precision
of the collected data. Following data collection, a rigorous data cleaning process was initi-
ated, aimed at enhancing the quality and reliability of our dataset. Initially, we conducted
a thorough examination to identify and rectify missing data, eliminating any incomplete
responses from our dataset. Subsequently, a comprehensive data quality assessment was
carried out to identify and address outliers, inconsistencies, and errors. This meticulous
data cleaning procedure was instrumental in ensuring the validity and reliability of our
dataset, which ultimately consisted of 3931 rows (see Table 2). We used the cleaned dataset
to train and test a carefully selected set of algorithms and models. Each model was treated
as a single-output classification problem, producing a singular medication node as the
output, which was a concatenated string of medications for the specific diseases under
consideration. To facilitate this approach, our data format incorporated binary inputs to
represent the presence or absence of particular features in each sample. This binary input
format was utilized to focus on distinct aspects of the problem and enabled the develop-
ment of classification models utilizing machine-learning techniques with an emphasis on
average accuracy. Additionally, an alternative strategy involved the representation of our
data with multiple output values corresponding to medications for various diseases. This
format integrated binary inputs for diseases, along with text-based features and factors,
offering a comprehensive view of the dataset.

We then used a correlation matrix to show how features in our dataset relate to one
another or to the goal feature/attributes. The heatmap is a graphical representation of
the correlation matrix such that the variables are displayed on both the x-axis and y-axis,
with the correlation coefficients represented by color gradients in the cells [28].

3.1.4. Feature Selection

Major patient medication concerns, including effects on sex drive, weight gain, medi-
cation cost, easy-to-stop medication, and interactions with existing medications, are well
founded and supported by Mayo Clinic research. Mayo Clinic’s extensive work on decision
aids highlights how these concerns play significant roles in healthcare decision-making
and patient outcomes. Our dataset captures weight gain, cost, and drug interactions
because these three factors directly impact treatment adherence, access to medication,
and treatment outcome.



Information 2024, 15, 31 6 of 17

Table 2. Data with single outputs.

Diabetes Arthritis Depression Cost Weight Interaction Medicine

1 0 0 1 1 0 Metformin
1 0 0 1 1 0 Victoza
1 0 0 1 1 0 Metformin
1 0 0 1 1 0 Victoza
1 0 0 1 1 0 Victoza
1 0 0 1 1 0 Metformin
1 0 0 1 0 1 Victoza
1 0 0 1 0 1 Metformin
1 0 0 1 0 1 Victoza
1 0 0 1 0 1 Metformin
1 0 0 1 0 1 Metformin
1 0 0 1 0 1 Metformin

During data cleaning, each variable forms a column, and each observation forms a row. One cell data creates
one row in the cleaned data. The processed data are free of irregular and non-selected values. The medicines are
mapped to combination of DCC diseases and patients’ major concerns (a diabetic patient who cares about the cost
of medication and weigh gain).

3.2. Exploring the Potential Machine Learning Algorithms

We selected random forest, k-nearest neighbors (KNN), AdaBoost, and XGBoost as
the machine learning models for predicting medication recommendations for patients
with complex chronic conditions, primarily because they are popular machine learning
algorithms and commonly used algorithms in the healthcare context [29,30].

3.2.1. Technical Backgrounds of Machine Learning Algorithms Adapted in This Study

• Random Forest: Random forest is a widely used ensemble learning algorithm known
for its ability to create robust and accurate models. Operating as an ensemble of
decision trees, each trained on a random subset of data and features, it combines their
predictions for enhanced accuracy and robustness [31]. Random forest has been used
in medical recommender systems for disease diagnosis, medication recommenda-
tions [32], treatment planning [33], patient outcome prediction [34], and drug–drug
interaction prediction [32,35,36]. Its capability to handle heterogeneous medical data
and generate interpretable results makes it a valuable tool for developing effective
medical recommender systems.

• K-Nearest Neighbors (KNN) K-nearest neighbors (KNN) is a supervised machine
learning algorithm used for classification and regression tasks [37]. It operates by
assessing the similarity of data points in a multi-dimensional space and making
predictions based on the majority class of its k-nearest neighbors. KNN has been
widely applied for type 2 diabetes diagnosis [38], medication recommendations [32],
personalized treatment planning [33], and drug interaction detection [32,35,36]. Such
applications use similarities in patient data to enhance healthcare decision-making
and outcomes. Thus, proper selection of distance metrics, as well as addressing issues
such as feature selection and missing data, are crucial when using such applications.

• AdaBoost: AdaBoost, short for adaptive boosting, is an ensemble learning method
developed to enhance the performance of weak learners [39]. It operates by assigning
weights to training instances, giving more weight to misclassified examples in each
iteration. Sequential iterations build an ensemble of weak classifiers, with each subse-
quent classifier correcting the errors of its predecessors. Classifier weighting is based
on accuracy, and a final ensemble classifier is formed by combining the weighted base
classifiers [39]. AdaBoost has been used in medication and treatment recommendation
systems [40] to provide personalized health advice and brain MR image classification
and analysis [41,42].

• XGBoost: XGBoost, or extreme gradient boosting, is a highly efficient and versatile
machine learning algorithm known for its proficiency in structured and tabular data
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tasks [43]. It operates on the gradient boosting framework, sequentially building an
ensemble of decision trees to correct errors, and includes L1 and L2 regularization
terms to prevent overfitting. XGBoost has been applied in type 2 diabetes predic-
tion and diagnosis [44], personalized treatment recommendation, drug interaction
prediction [45], and health behavior recommendations [44]. These applications use
XGBoost’s structured data handling capabilities and efficiency for improved clinical
decision-making and patient outcomes.

3.2.2. Predicting Optimal Medication Combination

We utilized the created dataset to predict medication combinations for patients dealing
with DCCs, each with specific health concerns. For instance, a patient with DCCs who
is primarily concerned about managing their weight may initially receive a medication
recommendation that includes Victoza and Hydroxychloroquine (the attributes we aim
to predict). However, if the same patient later expresses concerns about the cost of their
treatment, the recommended medication combination shifts to Empagliflozin and Aspirin.
This exemplifies how the medication combination adapts in response to the incorporation
of additional factors. See Figure 1 for additional factors.

Figure 1. Classes for the multi-output model. This figure illustrates how medication recommendations
may evolve for a patient with multiple concurrent conditions (DCCs) based on their changing
concerns. A patient whose primary concern is weight management is prescribed to take Victoza and
Hydroxychloroquine. However, if they add cost to list of their concerns, their prescribed medication
combination shifts to Empagliflozin and Aspirin.

In the subsequent subsections, we outline our methodology for conducting comprehen-
sive testing through multiple test cases (iterations). Our predictions provide approximate
results based on the selected factors/concerns and combinations of diseases. See Figure 2.
During the testing phase, we present a comparative analysis of predictions generated by
various trained models. Furthermore, we investigate the medication recommendations
provided by these different models, shedding light on the effectiveness of each approach.

3.3. Iteration 1: Base Classification Models

We adopted an iterative approach (three iterations) to train and test a selected number
of classifiers. This approach allowed us to improve the performance by changing the
models’ nature and parameters, introducing wrapper classes, and changing the data format.
In our first iteration, we focused on developing a standard model using a single output
machine learning approach. This approach is specifically designed to recommend or
categorize a single target variable or output. For the implementation of our base model, we
utilized the widely acclaimed scikit-learn library [20,46]. In this segment, we will unveil
the data format, classifiers, and parameters used for the benchmarking suite.

3.3.1. Data Format

During the first iteration phase, we represented data to have multiple features and
a single output. The target values were set to be a concatenated value of all the selected
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medication. See Table 3. We used these concatenated data to train our models. Since the
data had multiple data types, we identified the need to implement encoders to our dataset.
By using various encoding methods, we transformed our dataset from categorical or text
data into numerical representations that can be processed by machine learning algorithms.

Figure 2. Correlation matrix showing how features related to one another. The intensity of the
color represents the strength of the correlation between the variables, with darker colors indicating a
stronger correlation and lighter colors indicating a weaker correlation. See figure heatmap, Medicine
2 has a high correlation with Arthritis, and Interaction has a high correlation with Weight.

Table 3. The data population from survey response.

Diabetes Arthritis Depression Cost Weight Interaction Medicine

1 0 0 1 1 0 Metformin
1 0 0 1 1 0 Victoza
1 0 0 1 1 0 Metformin
1 0 0 1 1 0 Victoza
1 0 0 1 1 0 Victoza
1 0 0 1 1 0 Metformin
- - - - - - -
- - - - - - -
1 1 1 1 1 1 V + H + Es
1 1 1 1 1 1 M + H + Es
1 1 1 1 1 1 Em + I + S
1 1 1 1 1 1 Em + H + Es
1 1 1 1 1 1 M + I + Es

In this table, we show a sample of classes for the multi-output model, each representing a distinct combination of
medications. These classes include V + H + Es (Victoza, Hydroxychloroquine, and Escitalopram); M + H + Es
(Metformin, Hydroxychloroquine, and Escitalopram); Em + I + S (Empagliflozin, Ibuprofen, and Selegiline);
Em + H + Es (Empagliflozin, Hydroxychloroquine, and Escitalopram); M + I + Es (Metformin, Ibuprofen,
and Escitalopram). These classes serve as a categorization framework for the medication combinations used in
the study.
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3.3.2. Algorithms

We evaluated classification algorithms with random forest, KNN, AdaBoost, and XG-
Boost for a single output machine learning model. Let us dive into the classifiers and the
settings that influenced the base model.

• Random Forest: We utilized a random forest classifier and implemented it as our
classification model. We instantiated the classifier with 100 decision trees and a
maximum depth of 12. We set the random state to 2 for consistent results during
model training and then fitted the model. After training the model, we assessed
its accuracy on the training set using the ‘score’ method. The accuracy score was
calculated by comparing the recommendations made by the trained model to the true
labels in the training set. In Figure 3, we can see how tree construction starts from
the root node, and at each step, the algorithm selects the best split point based on
certain criteria, usually maximizing information gain. The obtained results, in terms
of accuracy, were not high.

Figure 3. Random forest decision tree. The first decision point “Cost <= 0.5” exhibits a Gini impurity
of 0.749 and consists of 200 samples with values [72.265, 82.875, 76.455, 72.8]. The second layer, the left
subtree, has a threshold of “0.72”, 57 samples, and values [36.706, 17.672, 20.851, 36.4], while the right
subtree is determined with “Interaction <= 0.5,” and has a Gini impurity of 0.733 and encompasses
143 samples with values [35.559, 65.203, 55.604, 36.4]. Further, the third layer shows the right subtree,
evaluated by “Weight <= 0.5,” with a Gini impurity of 0.733 and 99 samples returning values [28.676,
43.266, 36.297, 20.8].

• K-Nearest Neighbors Classifier: KNN classifier is a non-parametric and instance-based
learning method that makes recommendations based on the similarity of the input
data to its neighboring data points [47]. We configured the model with the following
parameters: ‘algorithm’ set to ‘kd_tree’, ‘leaf_size’ set to 10, ‘metric’ set to Euclidean,
‘n_jobs’ set to 10, ‘n_neighbors’ set to 4, ‘p’ set to 3, and ‘weights’ set to ‘uniform’. We
performed the tuning by implementing both Euclidean and Minkowski distance. We
achieved the best results using the Euclidean distance paired with uniform weights,
3 neighbors.

• Extreme Gradient Boosting (XGBoost) Classifier: The XGBoost classifier is an imple-
mentation of the gradient boosting algorithm, which is known for its effectiveness in
various machine learning tasks [48]. We instantiated with specific hyperparameters
including 200 estimators, a maximum depth of 4, a learning rate of 0.1, subsampling
and feature subsampling rates of 0.2, regularization parameters of 0.01 for both L1
and L2 regularization, a gamma value of 0.05, and a random state of 32. Finally, we
used the trained classifier to predict the labels for the testing data, and the predicted
labels are stored in the ‘preds’ variable for further analysis or evaluation.
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• Adaptive Boost (AdaBoost) Classifier: To instantiate the AdaBoost classifier, we con-
figured the following parameters: ‘n_estimators’ set to 128, ‘learning_rate’ set to 0.001,
and ‘random_state’ set to 42. These parameters control the number of weak classifiers
to combine, the learning rate of the model, and the random seed for reproducibil-
ity. The use of a single output classifier in the initial iteration of the project had its
limitations. While this approach is designed to predict or categorize a single target
variable, it may not be the optimum solution for problems involving multiple output
variables or complex dependencies among the variables. Additionally, the single
output classifier may have limited complexity, hindering its ability to capture intricate
patterns in the data. The choice of a single output classifier also restricted the modeling
of the concatenated target values representing multiple medications. These limitations
highlight the need to explore alternative approaches that can better handle multiple
output variables and capture the complexity of the problem at hand.

3.4. Iteration 2: Multi-Class Multi-Output Classification Models

With the need to improve the performance of the base model, we proceeded to the
next iteration, where we expanded our approach to handle multiple classes and outputs
simultaneously. It is an extension of the traditional multi-class classification problem, where
the goal is to assign an input instance to one of several predefined classes. This advancement
allowed us to tackle more complex classification tasks and provide a comprehensive
analysis of the data. Table 4 shows the classification problems and the number of targets
that they can achieve.

Table 4. The number and dimensions of targets according to classification type.

Classification Number of Targets Targets Cardinality

Multiclass 1 >2
Multi-label >1 2 (0 or 1)

Multiclass and multi-output >1 >2

3.4.1. Data Format

In order to capture complexities within our dataset, we introduced a pivotal enhance-
ment to the data format. This enhancement and transformation differentiated our dataset
from the previous approaches that featured only a singular output variable. We included
the incorporation of manifold output variables aligned with distinct disease criteria. Addi-
tionally, our novel data structure consisted of a multi-class configuration wherein individual
classes corresponded to specific disease categories. As such, the multi-class scheme was
now accompanied by a plurality of associated outputs. Table 5 shows the visual exposi-
tion of the output categorizations. Through this strategic modification, the model gained
the capacity to concurrently address multiple target variables. Consequently, the analyt-
ical and predictive capabilities pertaining to disease criteria attained a heightened level
of comprehensiveness.

3.4.2. Algorithms

In the second iteration, we performed an evaluation of classification using the same
set of algorithms as in the first iteration. This allowed us to compare and assess the
performance of these algorithms on the given task. By applying these algorithms to the
data and analyzing their results, we aimed to gain insights into their effectiveness in
capturing the patterns and making accurate predictions.

• Random Forest with Multi-Output Classifier: To enable multi-output functionality,
the random forest classifier is wrapped inside a multi-output classifier. This wrapper
allows the random forest classifier to handle multiple target variables simultaneously.
We updated the classifier to have 100 decision trees and a maximum depth of 12. We
set the random state to 2 for reproducibility. We updated the n_jobs parameter to 2,
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indicating the number of parallel jobs to use for model training. As a result of these
modifications, we observed an improvement in the accuracy score. The accuracy score
provides a measure of the model’s performance, and the increase in accuracy sug-
gests that the multi-output random forest classifier can better capture the underlying
patterns and make more accurate predictions on the given task.

• K-Nearest Neighbor with Multi-Output Classifier: The KNN algorithm works by
finding the K-nearest neighbors to a given input data point in the feature space
and then averaging their corresponding target variable values to make a prediction.
We instantiated a K-nearest neighbors regressor (KNN) with the following config-
uration: algorithm = ‘kd_tree’, leaf_size = 20, metric = ‘minkowski’, n_jobs = 15,
n_neighbors = 2, and weights = ‘uniform’. Then, we wrapped this regressor inside a
multi-output classifier, allowing it to handle multiple target variables simultaneously.
To assess the accuracy of the regressor on the training set, we used the ’score’ method,
which calculates the coefficient of determination (R-squared score). The R-squared
score represents the proportion of variance in the target variables that can be explained
by the regressor.

• Extreme Gradient Boosting (XGBoost) with Multi-Output Classifier: XGBoost (ex-
treme gradient boosting) is an advanced machine learning algorithm that belongs
to the gradient boosting family of models. We instantiated an XGBoost classifier
(XGBClassifier) with the provided hyperparameters. We set the number of estimators
to 200, the maximum depth of each tree to 2, the learning rate to 0.1, the subsample
ratio to 0.5, the column subsampling ratio to 0.5, the L1 regularization term to 0.01,
the L2 regularization term to 0.01, the minimum loss reduction required for a split
(gamma) to 0.05, and the random state to 32 for reproducibility. To enable multi-output
functionality, we have wrapped the XGBoost classifier inside a multi-output classifier.
This approach leveraged the boosting technique and ensemble learning, enabling us
to make accurate predictions for multiple target variables.

• Adaptive Boosting (AdaBoost) with Multi-Output Classifier: AdaBoostClassifier is
a powerful algorithm that can improve the performance of classification models by
combining multiple weak classifiers into a strong ensemble classifier. We instantiated an
AdaBoost classifier with specific hyperparameters, including the number of estimators
set to 64, the learning rate set to 0.01, and the random state set to 128. To enable multi-
output functionality, we wrap the AdaBoostClassifier inside a multi-output classifier.

Table 5. Data with multiple outputs.

Diabetes Arthritis Depression Cost Weight Interaction Med1 Med2 Med3

1 0 0 1 1 0 Metformin None None
1 0 0 1 1 0 Victoza None None
1 0 0 1 1 0 Metformin None None
1 0 0 1 1 0 Victoza None None
1 0 0 1 1 0 Victoza None None
1 0 0 1 1 0 Metformin None None
1 1 1 1 1 1 V H Es
1 1 1 1 1 1 M H Es
1 1 1 1 1 1 Em I S
1 1 1 1 1 1 Em H Es
1 1 1 1 1 1 M I Es

Although the accuracy of the multi-class classifying algorithms showed improvement
compared to the previous iterations, it is worth noting that the obtained accuracy scores
were not the highest possible. This indicates that there is still room for further optimization
and improvement in the performance of the classification models. Continuous evaluation,
experimentation, and refinement of the algorithms can lead to achieving higher accuracy
and better overall performance.
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3.5. Iteration 3: Classification Model Optimization

Building upon the foundation laid in Iteration 2, in Iteration 3, we further optimize our
models by tuning parameters and making additional changes. Parameter tuning plays a
crucial role in improving the performance of machine learning models, allowing us to find
the optimal configuration that maximizes accuracy and minimizes errors. The parameter
tuning process involves testing different combinations of parameter values to determine
which combination yields the best performance. We used a technique called grid search,
which involves testing all possible combinations of parameter values within a defined
range. The combination tests included changing the depth of the tree, the random state,
estimators, and even gamma values. The combination that yielded the best performance
on our evaluation metrics was selected as the optimal parameter values for the model.

4. Results and Discussion

In our work, we aimed to design a tool powered by a machine learning model to predict
optimal medication for patients with discordant chronic comorbidities, specifically type 2
diabetes, arthritis, and depression. To achieve our goals, we implemented several machine
learning algorithms, including random forest, K-nearest neighbors (KNN), AdaBoost,
and XGBoost. Table 6 reports results for iterations 1, 2 and 3 and we discus them favor in
this section.

Table 6. Priority of medications/treatments for each concern.

Algorithm/Model Iteration 1 Iteration 2 Iteration 3

Random Forest 65.5% 83.5% 93.3%
KNN 60.2% 67.4% 78.5%

AdaBoost 35.8% 36.4% 67.3%
XGBoost 53.8% 62.4% 76.4%

The results from iterations 1, 2, and 3 offer insights into our prediction and performance evaluation based on
accuracy. Accuracy serves as a transparent and easily interpretable metric, assessing the model’s proficiency in
correctly classifying instances by determining the ratio of accurate predictions to the total predictions made. Our
next step involves the inclusion of additional metrics, such as recall, precision, F1 score, and AUC-ROC, to provide
a comprehensive evaluation of our model’s predictive capabilities.

4.1. Analysis of Iterations 1, 2, and 3
4.1.1. Iteration 1

We started out by training all four multi-output algorithms using default hyperparam-
eters to establish a baseline performance for single output. The random forest algorithm
for a single output showed promising results, achieving an accuracy of 65.5%. However,
KNN, AdaBoost, and XGBoost achieved lower accuracies of 60.2%, 35.8%, and 53.1% re-
spectively. These standard ML models, which were primarily designed for simpler tasks,
struggled to effectively handle the intricacies of the dataset, resulting in lower accuracies
and time-consuming training procedures. To overcome these challenges, we embarked on
a thorough study of alternative approaches and methodologies. After carefully exploring
diverse options, we made the decision to transition towards utilizing a multi-output clas-
sifier. This choice offered a promising solution, as it specifically caters to the challenges
presented by datasets with multiple outputs.

4.1.2. Iteration 2

By adopting a multi-output classification, we were able to leverage its inherent capa-
bility to handle multiple outputs simultaneously. The multi-output regression allowed us
to model the dependencies between the 11 inputs and 3 outputs more accurately, yield-
ing improved predictions and reducing the code complexity. The standard models when
wrapped in the multi-output classifier resulted in better performance. The random forest
multi output classifier model yielded the highest accuracy of 83.5%, followed by XGBoost,
KNN, and AdaBoost with the accuracies 67.4%, 62.3%, and 36.4%, respectively.
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4.1.3. Iteration 3

In the final iteration, we adopted grid search techniques to fine-tune the parameters
of our multiclass classification approach. This approach allowed us to define an array of
parameter values and search through all possible combinations to determine the optimal
parameter configuration. Following this comprehensive process, we successfully identified
the best parameter set to train our classifiers and assess their performance. The resulting
accuracy scores for our classification algorithms were as follows: random forest achieved
93.3%, KNN demonstrated 78.5%, AdaBoost scored 67.3%, and XGBoost reached 76.4%.
These results reflect the effectiveness of our approach in solving the multiclass classification
problem. These performance variations can be attributed to several factors. The first factor
includes the inherent complexity of each algorithm and how they interact with the specific
dataset. Random forest excelled in capturing complex data relationships, adapting well
to multi-class problems and robustly handling noisy data. KNN’s simplicity may have
limited its performance, particularly with high-dimensional data and complex decision
boundaries. We discuss the performance of each of these algorithms below.

4.2. Assessing Algorithms’ Performance

In this study, we conducted a comprehensive assessment of four machine learning
algorithms in a multi-class classification model (Iteration 3), focusing on their accuracy
scores as performance metrics among these algorithms. Random forest emerged as the
top-performing algorithm, achieving an accuracy of 93.3%. Its strength lies in its ability to
effectively classify instances across multiple classes by combining multiple decision trees,
and it exhibits robustness against overfitting, rendering it a dependable choice for a wide
range of applications. K-nearest neighbors (KNN) performed decently, with an accuracy
score of 78.5%, although its sensitivity to parameters such as ‘k’ and distance metrics
suggests potential for improvement through fine-tuning. AdaBoost, with an accuracy of
67.3%, showcased its characteristic power in boosting weaker learners. However, AdaBoost
may benefit from a closer look at base classifiers and hyperparameters, which indicates the
need for further exploration and parameter adjustments. XGBoost recorded an accuracy of
76.4%, which demonstrates good efficiency in structured tabular data tasks, albeit slightly
trailing behind random forest and KNN. The scope for performance enhancement in
XGBoost was associated with hyperparameter settings and feature engineering.

In summary, random forest excelled with the highest accuracy, while KNN and XG-
Boost also performed well, warranting potential improvements through hyperparameter
adjustments. AdaBoost, while a powerful algorithm, has room for improvement in this spe-
cific context. It is important for future studies looking at similar problems to consider not
only the accuracy but also other metrics such as precision, recall, and F1-score, AUC-ROC,
and to conduct further analysis to understand the specific strengths and weaknesses of
each algorithm for a given dataset.

4.3. Benchmarking Suite

Our results indicate that the random forest algorithm is the most suitable for rec-
ommending medications for patients with type 2 diabetes, arthritis, and depression (See
Figure 4). By achieving an optimal accuracy of 93.3%, it outperformed the KNN, AdaBoost,
and XGBoost algorithms. The decision to utilize random forest in addressing the multiclass,
multi-output problem was motivated by its remarkable capabilities. By employing an
ensemble of decision trees, random forest efficiently tackles the issue of overfitting and
skillfully captures intricate relationships present in the data. Its robustness in handling
noisy data points further enhanced the model’s reliability. Random forest offers a notable
advantage in dealing with non-linear relationships, which proves to be highly advanta-
geous, particularly considering the complex nature of the underlying data distribution.
Furthermore, the algorithm’s minimal data preprocessing requirements simplify the experi-
mentation process, saving significant time and resources. In a research study conducted by
Singh et al., they found that random forest performed exceptionally well for their specific
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needs, which involved multiple classes and multiple outputs [20]. Similarly, our own
results align with theirs, confirming that random forest is also the most effective choice for
handling our multiclass, multi-output requirements.

Nevertheless, it important to note that performance of any machine learning algorithm
is tied to the unique attributes of the dataset and the complexities inherent to the problem
domain. Consequently, we conducted an exhaustive examination of multiple algorithms
and carried out comprehensive assessments to validate that random forest was the pre-
ferred selection. This determination was based on its inherent strengths and compatibility
with the specific challenges presented by our multifaceted, multiclass, and multi-output
task within the domain. Further, we show how an interactive interface can be valuable in
addition to machine learning tools looking to enable and empower healthcare professionals
and patients with (DCCs) to choose the diseases and specify factors that are important for
them when prioritizing the DCCs’ treatment regimen. However, it is important to recognize
that the performance of machine learning algorithms is intricately linked to the distinct
characteristics of the dataset and the inherent complexities of the problem domain. As a re-
sult, we conducted an evaluation of multiple algorithms, performing thorough assessments
to affirm that random forest emerged as the best performing algorithm. This determination
was based on its inherent strengths and compatibility with the specific challenges presented
by our multifaceted, multiclass, and multi-output task within the domain.

Figure 4. Algorithm performances and their accuracy.

As a part of the testing phase, we compared the results of various trained models.
With the help of this tool, we can explore the medication suggestions made by different
models. The improved accuracy of the random forest model can be attributed to its ability to
handle complex interactions among features and effectively deal with noisy and correlated
data. The ensemble nature of random forest, which combines multiple decision trees,
enables robust recommendations and reduces the risk of overfitting.

In this work, we trained and tested a select set of models to recommend optimal
combination medication for patients with DCCs. We then compared how each of these
algorithms performed. Below, we discuss the two best performing classifiers (random
forest and XGBoost). The dataset used for this study consisted of various features related
to patients’ prescriptions and concerns for multiple DCCs. The random forest classifier,
known for its ensemble nature and use of decision trees, demonstrated superior perfor-
mance in comparison to the XGBoost classifier. Random forests exhibited higher accuracy
metrics than XGBoost when suggesting optimal medication recommendation. The random
forest algorithm has an ability to handle complex interactions among features (concerns)
and reduce overfitting. On the other hand, while the XGBoost classifier also exhibited
competitive performance, it fell slightly short in terms of overall accuracy and robustness.
Despite its gradient boosting technique and advanced regularization methods, the XGBoost
model faced challenges in capturing certain intricate patterns present in the medication
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recommendation dataset we created. In addition, our results show that the random forest
algorithm demonstrated greater resilience, making it our favorable choice when dealing
with heterogeneous and multidimensional medical data. Based on this specific medication
recommendation task, the random forest classifier outperformed the XGBoost classifier in
terms of accuracy. Its stronger performance was attributed to its ability to handle complex
relationships, mitigate overfitting, and handle missing data more effectively.

5. Conclusions

In this paper, we address the problem of how patients with DCCs often experience
multiple obstacles when prioritizing treatment plans and prescriptions. Treatment sug-
gestions and medication interactions can be provided by a variety of machine learning
(ML) or deep learning (DL) techniques by resolving the problem of conflicting drugs. We
collected the data for the dataset from the survey responses of the patients. The dataset
consisted of a single disease (type 2 diabetes) with three treatments, depending on the
replies of the individuals. There are 74 samples in this dataset, with 6 independent fac-
tors (sleep, cost, weight, symptoms, addictiveness, and impacts on sexual performance)
and 1 dependent variable (class) (that is the medication). Regarding the evaluation, we
investigated different machine learning algorithms such as random forest, KNN, AdaBoost,
and XGBoost in the above dataset. Following the benchmarking, random forest achieved
the highest performance with an accuracy of 93%. Our exploration centered on formulating
a machine learning framework tailored to recommend suitable medications for discordant
chronic comorbidities (DCCs)—encompassing type 2 diabetes, arthritis, and depression. We
took into account a multitude of factors influencing patient treatment, striving to address
the intricacies and challenges tied to managing patients with multiple chronic ailments.
The study underscores the potential of AI in aiding healthcare professionals and patients
in making well-informed decisions about treatments. As we look ahead, there is room for
enhancements and further research to refine the model’s accuracy and extend its utility
within analogous contexts.
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