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Abstract: Within the domain of architectural urban informatization, the automated precision recog-
nition of two-dimensional paper schematics emerges as a pivotal technical challenge. Recognition
methods traditionally employed frequently encounter limitations due to the fluctuating quality of
architectural drawings and the bounds of current image processing methodologies, inhibiting the
realization of high accuracy. The research delineates an innovative framework that synthesizes
refined semantic segmentation algorithms with image processing techniques and precise coordinate
identification methods, with the objective of enhancing the accuracy and operational efficiency in
the identification of architectural elements. A meticulously curated data set, featuring 13 principal
categories of building and structural components, facilitated the comprehensive training and assess-
ment of two disparate deep learning models. The empirical findings reveal that these algorithms
attained mean intersection over union (MIoU) values of 96.44% and 98.01% on the evaluation data set,
marking a substantial enhancement in performance relative to traditional approaches. In conjunction,
the framework’s integration of the Hough Transform with SQL Server technology has significantly
reduced the coordinate detection error rates for linear and circular elements to below 0.1% and
0.15%, respectively. This investigation not only accomplishes the efficacious transition from analog
two-dimensional paper drawings to their digital counterparts, but also assures the precise identi-
fication and localization of essential architectural components within the digital image coordinate
framework. These developments are of considerable importance in furthering the digital transition
within the construction industry and establish a robust foundation for the forthcoming extension of
data collections and the refinement of algorithmic efficacy.

Keywords: semantic segmentation; two-dimensional paper; component recognition; coordinate
extraction; image processing

1. Introduction

Prior to the establishment of Computer-Aided Design (CAD) technologies, architec-
tural design relied heavily upon the manual creation of blueprints—a practice that has
become increasingly obsolete in the era of progressive urban informatization. The inte-
gration of CAD systems has markedly advanced the discipline of architectural design;
however, the assimilation of pre-existing structures into contemporary urban information
management systems poses significant challenges [1,2]. The static locations and intricate
configurations of these structures require modifications to meet the dynamic technical and
social demands, thereby imposing advanced requisites on extant technological solutions.
The precision of CAD blueprints is imperative for the development of accurate Building
Information Models (BIM) [3], which not only enhance the informatization retrofitting of
pre-existing structures, but also serve as a cornerstone for intelligent building management
systems. The transformation of analog blueprints into digital BIM frameworks, however,
is fraught with complexity and inefficiency, primarily due to the difficulty in accurately
extracting component classifications and pivotal coordinates from these documents. The
predominant method involves the digitization of physical blueprints via scanning, followed
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by labor-intensive manual adjustments within CAD software, a process that is both time-
consuming and susceptible to human error. In light of this, the urgent development of an
algorithm capable of swiftly and precisely discerning component categories and essential
coordinates from paper blueprints has emerged as a critical imperative.

In the realm of computer vision, the implementation of deep learning methodologies
has engendered profound breakthroughs, with wide-reaching implications across multiple
scientific domains, including architecture, medicine, and materials science [4–9]. Semantic
segmentation, deemed a pivotal endeavor within computer vision, endeavors to delineate
images and assign semantic labels to each constituent pixel, drawing upon an established
taxonomy of tags [10]. This task transcends the capabilities of mere image classification
or object recognition by furnishing a granular perspective on the image content, thus
facilitating an advanced level of interpretative analysis. A plethora of algorithms, such as
FCN, PSPNet, U-Net, SegNet, the Deeplab series, Transformer, and notably SegFormer,
have been developed to address this intricate task [11–18]. Within the sphere of civil
engineering, and more specifically in the identification of structural defects, the application
of semantic segmentation algorithms has demonstrated superior performance [19–25]. The
research presented herein utilizes the SegFormer network, which is predicated on the
Transformer design paradigm, expressly conceived for the exigent task of pixel-level image
segmentation. Empirical studies corroborate that the SegFormer model, in conjunction
with other transformative enhancements upon the Transformer framework, plays a critical
role in propelling the evolution of semantic segmentation models towards heightened
efficiency [9,26].

The fidelity of blueprint identification is imperative for influencing the extraction
of architectural parameters and the caliber of downstream applications. The scholarly
discourse to date has predominantly addressed the delineation of component outlines
within blueprints, resulting in the advent of assorted recognition methodologies. Methods
predicated on the discernment of contours and edges have been shown to proficiently
capitalize on the inherent regularity of line segments and the salient edge details present in
bidimensional blueprints [27–29]. The application of graph theory, moreover, has facilitated
the transposition of architectural drawing components into actionable spatial and topolog-
ical data [30]. In the realm of facade blueprints, investigative efforts have been directed
toward the analysis and taxonomy of stratified content, including the accurate discernment
of elevations, thereby yielding a suite of innovative categorization techniques for architec-
tural stratification [31]. The pervasive deployment of deep learning modalities, especially
within the recognition of three-dimensional CAD models, has demonstrated considerable
promise for augmenting the precision of twofold blueprint detection [32,33]. Recent in-
terdisciplinary investigations have seen a surge in the confluence of machine vision and
architectural engineering schematics. A novel approach by Zhao et al. [34] amalgamates
hybrid image processing, targeted detection, and Optical Character Recognition (OCR)
to extract entity information from structural imagery. Concurrently, Pan et al. [35] have
pioneered a technique that integrates instance segmentation with semantically augmented
image processing, specifically tailored for the identification of pipeline blueprints and the
restoration of BIM frameworks in the IFC standard.

While foundational research has established a platform for blueprint recognition,
these incumbent methodologies are marred by inefficiencies. Presently, deep learning has
exhibited notable utility in two-dimensional blueprint detection, yet its practical deploy-
ment is constricted, with particular deficits in the detection of component coordinates—a
domain where the efficacious harnessing of deep learning remains inadequately addressed.
Therefore, the present investigation introduces an innovative approach that synthesizes
the SegFormer semantic segmentation network model with advanced image processing
techniques, endeavoring to actualize the potential of sophisticated deep learning appli-
cations in the semantic segmentation of architectural blueprints. Empirical evaluations
substantiate that the proposed methodology facilitates the precise and efficient extraction
of CAD components and their coordinates from scanned blueprints, markedly refining the
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intricacy and temporal efficiency associated with the recognition and transformation of
bidimensional blueprints.

The structure of this manuscript is organized in the following manner. Section 2
delineates the research methodology with comprehensive detail. Section 3 constructs the
experimental framework and furnishes the pertinent data sets. In Section 4, the findings are
elucidated, and an analysis of the conclusions is undertaken, coupled with an examination
of potential variables influencing the outcomes. The concluding section synthesizes the
investigation, articulating the merits and scholarly contributions of this endeavor, and
suggests trajectories for prospective inquiry.

2. Methodology

This section delineates the architecture of the SegFormer semantic segmentation
network and the generation of a novel data set, examining the processing of semantic
information in identified images and methods for coordinate extraction. The methodology
is implemented in four distinct stages, as detailed in Figure 1.
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Figure 1. Schematic diagram illustrating the comprehensive implementation of the proposed approach.

2.1. SegFormer Network

Figure 2 illustrates the SegFormer network’s utilization of a lightweight Transformer
architecture for semantic segmentation. Key advantages involve the following: generating
multi-resolution features through Overlap Patch Embedding; incorporating positional
data using Mix-FFN, obviating position encoding and maintaining stable performance
across resolution variations; and employing a simple MLP decoder for feature fusion
and prediction. Empirical evidence confirms the network’s proficiency and resilience in
semantic segmentation tasks.

2.2. Data Set

Semantic segmentation assigns distinct semantic meanings via diverse color labels, as
illustrated in Figures 3 and 4. The study categorizes 13 types of architectural and structural
elements, comprising 12 architectural and 4 structural categories, with categories (G), (I),
and (K) being common to both classifications.

The data set blueprints undergo conversion from two-dimensional formats into high-
resolution pixel images, matching the deep learning network’s input size and computational
limits to prevent overfitting due to resolution discrepancies. Images are resized as necessary
using the Resize method with a gray bar to avoid distortion. The Labelme tool annotates
these images, aligning labels precisely with component boundaries to produce images
suitable for the semantic segmentation network.
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2.2.1. Image Noise Reduction Processing

The data set’s original images undergo denoising to remove superfluous interference,
termed ‘noise’, in the image data. Non-Local Means filtering, a denoising algorithm [36], is
applied to prepare images for subsequent processing. The post-processed images comply
with the established definition:

u(i) = ∑
j∈I

w(i, j)v(j) (1)

In Formula (1), I represents the search area, and w(i, j) represents the weight, that is, the
similarity between the i, j area blocks, usually represented by the Euclidean distance formula:

w(i, j) =
1

n(i)
exp

(
−
∥ V(i)− V(j) ∥2

2,a

h2

)
(2)

In Equation (2), n(i) is the normalization factor, defined as the sum of all weights,
while h acts as the filtering coefficient. This coefficient modulates the influence of Euclidean
distance by controlling the rate of exponential decay. The term ∥ V(i)− V(j) ∥2

2,a signifies
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the Gaussian-weighted Euclidean distance between adjacent regions i and j, where α
denotes the standard deviation of the Gaussian kernel. The algorithm’s efficacy lies in its
capacity for full-image denoising, proficiently eliminating Gaussian noise across the image.

2.2.2. Adaptive Augmentation for Image Data Set Optimization

Adaptive image augmentation, which randomly transforms the original image to
expand the training data set, enhances model robustness and mitigates overfitting. Changes
in the original image’s size, flip, or rotation necessitate corresponding adjustments to the
labels, whereas the label map remains invariant to image parameter alterations. The
methods for this augmentation are detailed in Table 1.

Table 1. Overview of image augmentation techniques applied to the data set.

Methods Operation Execution

Rotation Clockwise Angel = 90o, 180o, 270o

Brightness Enhancement factor = 1.2
Sharpness Enhancement factor = 2.3

Chrominance Enhancement factor = 1.2
Contrast Enhancement factor = 1.3

Flip Up and Down, Left and Right

2.3. Coordinate System Processing

In the pixel map, pixel count represents length, whereas a separate coordinate system
quantifies actual distance. A point on the pixel map is denoted by coordinates (u, v), while
its equivalent on the actual blueprint is expressed as (x, y). The procedure to determine the
conversion ratio between these systems is outlined as follows:Scalex =

∣∣∣ u2−u1
x2−x1

∣∣∣
Scaley =

∣∣∣ v2−v1
y2−y1

∣∣∣ (3)

In Equation (3), Scalex and Scaley denote the X and Y coordinate conversion ratios,
respectively. The coordinates (u1, v1), (x1, y1) correspond to the initial points on the pixel
map and the actual plane, while (u2, v2), (x2, y2) represent the terminal points. To reduce
errors, a minimum pixel-to-actual-length ratio (px:mm) of 1:1 is required, with higher ratios
yielding more precise conversions.

A discrepancy exists between the image coordinate system, which primarily operates
in the fourth quadrant, and the actual coordinate system, which is centered on the first
quadrant. The coordinate conversion methodology is depicted in Figure 5 and detailed
in Equation (4): {

u0 = x0 × Scalex
v0 = (ymax − y0)× Scaley

(4)

The term ymax is defined as the total width of the image measured in millimeters. Co-
ordinates (u0, v0) and (x0, y0) refer to the positions on the pixel map and the corresponding
actual planar distances, respectively.

2.4. Image Processing
2.4.1. Semantic Segmentation Using the “Edge Expansion Sliding Window
Cropping Method”

This study addresses semantic segmentation for high-resolution images. Standard
cropping to facilitate prediction often neglects edge effects, risking errors when image
borders cut through components. Disproportionate component sizes within the image also
skew predictions. The introduced “Edge Expansion Sliding Window Cropping Method”
combats these issues by extending image edges and padding with a white background,
ensuring complete component capture. The method is detailed in Figure 6.
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The image, once expanded, is processed using a sliding window crop of 2048-pixel
steps, yielding windows of 6144 by 6144 pixels. This window size optimizes component
area ratios, with expansions being step size multiples. Direct semantic segmentation is
precluded by the sliding window technique, necessitating a resizing step. Resizing is
achieved through nearest neighbor interpolation [37], assigning output pixel grayscale
values based on their nearest input pixel counterparts. The transformation employs the
following formula: {

Srcx = Dstx × Srcw
Dstw

Srcy = Dsty × Srch
Dsth

(5)

In Formula (5), Dstx and Dsty correspond to the pixel’s x and y coordinates, respec-
tively, while Dstw and Dsth denote its width and height, respectively. Similarly, Srcw and
Srch pertain to the original image’s dimensions, and Srcx and Srcy indicate the original
image’s coordinates that map to the point (Dstx, Dsty) in the target image.

Images are downscaled to 512 × 512 pixels for the network model input as shown in
Figure 7. Predicted outputs are then upscaled to 6144 × 6144 pixels using nearest neighbor
interpolation, from which a 2048 × 2048-pixel central segment is extracted. The sliding
window advances one step horizontally, and the procedure is repeated to secure a new
central segment, which is immediately adjoined to the previous one. Upon reaching the
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image’s right boundary, the window descends a step and resumes leftward; this cycle
continues until coverage is complete. The central segments are concatenated to form the
final high-resolution semantic segmentation image, depicted in Figure 8.
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The method provides clear advantages. The expansion step in the image enlargement
process ensures the original image’s initial frame is centered in the first sliding window,
effectively preventing issues related to incomplete edge contours and maintaining the
quality of the segmented image edges.

2.4.2. Classification and Contour Extraction Using Color Space

Semantic segmentation assigns unique colors to labels representing various semantics,
with these values being predetermined. The present study applies these labels to extract
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particular features, ensuring that the resulting image maintains only these features at their
original pixel locations.

The “Edge Expansion Sliding Window Cropping Method” ensures alignment between
the coordinates of the original and the semantic segmentation images, allowing for their
integrated processing. Through the Alpha Blending Method, the images are merged
by modulating the blend ratios, yielding a composite image. In this process, the color
semantics of the pixels within the original image’s contour are modified. Extraction of
pixels is then performed in color space, with non-contour pixels removed, leaving only
the desired component contours intact. Semantic segmentation thus acts as a means to
delineate target contours from the original image without altering pixel coordinates.

For component integrity, lines and arcs must be contiguous. Semantic segmentation may
not fully capture contours, leading to inaccuracies like “dents” or “protrusions” (Figure 9).
To address this, a dilation operation [38] fills gaps around the contour, ensuring complete
coverage over the original contour. This operation replaces each pixel with the maximum
value from its vicinity, with the dilation coefficient determined by component type.
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Figure 9. Enhancement of semantic information areas via the dilation algorithm.

The process delineates the full contour of the target component. Contours are extracted
globally and cropped locally to facilitate coordinate detection. Establishing the cropped
image’s coordinate origin in relation to the full image is critical for precise detection. The
process is depicted in Figure 10.
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2.5. Hough Transform
2.5.1. Probabilistic Hough Line Detection

In two-dimensional blueprints, contours comprising line segments are critical for
defining component positions. The Probabilistic Hough Line Detection method, an adapta-
tion of the Hough Transform [39], efficiently detects these segments by sampling random
edge points and filters out lines under a specified threshold, thereby optimizing detection
precision for blueprint analysis.

Prior to Probabilistic Hough Line Detection, images are converted to grayscale to
detect edges. For each edge, line parameters like slope and intercept are determined,
and the most significant peak in the Hough space indicates the detected line, which is
overlaid on the original image. The algorithm outputs coordinates, slopes, and intercepts
of line segments; lines with zero or infinite slopes are handled by an SQL query algorithm.
Key component coordinates are then extracted by importing data into the SQL Server for
processing with the SQL algorithm.

2.5.2. Hough Circle Detection

The Hough Circle Transform [40] is extensively utilized for circle detection in image
processing. By analyzing pixel data, it accurately annotates circles that adhere to established
parametric criteria. In blueprint analysis, this method proves particularly effective for
identifying circular elements, including grid networks and cylindrical structures.

2.6. Querying and Outputting Coordinates Using SQL Server

This study utilizes SQL Server database services to retrieve line segment contours and
intersections processed by the Hough Transform and to identify essential coordinates of
components, accurately defining their positions. Key coordinates and parameters for each
component type are detailed in Table 2.

Table 2. Compendium of key coordinate and parameter definitions for various component types.

Category Key Coordinate Definition Definition of Key Parameters

Door Intersection Points between the Door
and the Adjacent Walls Width of Door

Rectangular Column Center Point Coordinates of the Rectangular Column Length and width of Rectangular Column
Cylindrical Column Center Point Coordinates of the Cylindrical Column Radius of the Cylindrical Column

Wall Starting and Ending Points of the Wall Length and width of Wall
Beam Starting and Ending Points of the Beam Length and width of Beam
Axis Center Point Coordinates of the Axis Network Head Connecting lines of the axial network on both sides

Window Coordinates of the Four Corner Points of the Window Width of Window

In Cartesian coordinates, line detection addresses slopes of zero, infinite, or nonzero
values. This study introduces the “Quantity Threshold Processing Method,” applied to
parallel lines with zero or infinite slopes, using a pixel count threshold. As illustrated
in Figure 11, the Y coordinates for one-pixel-wide line segments a and b are queried.
When these segments are aligned parallel to the X-axis, points along a given Y value are
collectively assessed. Exceeding the threshold triggers the output of the ya and yb values.
The method then retrieves the extreme X coordinates for these Y values and calculates the
wall endpoints as their average. The wall width is derived from the Y interval, adjusted
by a conversion ratio. This process efficiently defines the endpoints and width for walls
indicated by segments a and b, thereby optimizing Cartesian line analysis.
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Figure 11. Illustrative diagram of line segments exhibiting zero or infinite slope.

For lines with nonzero and non-infinite slopes, intersection points are computed, and
essential coordinates are isolated. The Probabilistic Hough Line Detection method, using
SQL Server queries, identifies endpoints of these line segments based on their slopes and in-
tercepts. This method, inapplicable to the “Quantity Threshold Processing Method,” neces-
sitates an alternative for identifying intersections of vertical lines. As depicted in Figure 12,
a wall with varied directional surfaces, including windows, is segmented by the Probabilis-
tic Hough approach. When analyzing walls such as Wall 1 and Wall 3, managing parallel
lines is crucial. Trigonometry determines wall width from the difference in intercepts, as
shown in Figure 12b. Segments fall into a group if their intercept variances lie within two
predetermined thresholds, calculated by the following designated formula:

minthr < b < maxthr (6)
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Figure 12. Illustrative diagram of component coordinates derived from line segments with constant
slope detection: (a) Three walls with residual profiles and windows; (b) Target blocking and parameter
definition; (c) Coordinate detection.

In the formula, minthr denotes the minimum threshold value and maxthr the max-
imum. Line segments with intercept differences that reside within these bounds are
grouped together.
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The study introduces the ‘Coordinate Local Extremum Method’ for pinpointing critical
coordinates of structural elements with consistent slopes, like walls and stairs. For such
elements, one of the key coordinates (X or Y) is invariably the extremum among the
component’s vertices. This principle is delineated as follows:

(x, y) =


(x, ymax)
(xmax, y)
(x, ymin)
(xmin, y)

(7)

“The ‘Vertical Line Intersection Detection Method,’ as shown in Figure 12c, extracts
Wall 3’s coordinates. Trend lines, running parallel to the component’s projected direction,
and intersecting perpendicular vertical lines are considered. Segments not intersecting
with trend lines, such as Wall 1’s left segment, are excluded. The method discerns the
wall’s vertices at five intersection points using the ‘Coordinate Local Extremum Method’.
Endpoints are computed as the mean of adjacent intersections. The width of the wall is
derived from the trigonometric relation of the trend lines’ intercept differences and the
angle, detailed in Figure 12b, according to the following stated formula:

α = arctan k (8)

d =
|b2 − b1|

cosα
(9)

In the aforementioned formulas, α is the angle of inclination k for Wall 3’s line seg-
ments, and b2 and b1 correspond to the intercepts of these segments, respectively. d denotes
the pixel width of the wall, and the actual width is calculated by multiplying d by a
conversion ratio.

In circular analyses, Figure 13 illustrates a streamlined SQL query. The Hough Circle
Detection algorithm detects circular perimeters, outputting central coordinates and radii.
These parameters, stored on an SQL server, are retrievable through optimized queries.
Multiplication of these results by a conversion factor yields the cylinder’s exact position
and radius.
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Figure 13. Illustrative diagram of applying the Hough Circle Detection method for circular contour
detection.

In the coordinate detection approach, line segments wider than a pixel, as shown
in Figure 14, yield numerous intersections. For n-pixel-wide segments, up to n2 intersec-
tions may result, hindering precise coordinate identification. To resolve this, an averaging
process replaces these segments with single-pixel counterparts. Segments closer than a
set threshold and with similar slopes are combined, their extremities averaged, thereby
reducing segment width to one pixel and optimizing coordinate extraction.

In conclusion, combining Hough Transform with SQL server improves image-based
line segment coordinate detection’s efficiency and precision and extends its use.
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3. Experiments
3.1. Experimental Environment

Semantic segmentation, image processing, and coordinate extraction were performed us-
ing an Intel Core i7-12700K processor (Intel Corporation, Santa Clara, CA, USA), 128 GB RAM
(Kingston Technology Company, Inc., Fountain Valley, CA, USA), and Nvidia GeForce RTX
3090 GPU (Nvidia Corporation, Santa Clara, CA, USA). The SegFormer network was devel-
oped with the PyTorch-GPU, a specialized deep learning framework. SQL Server databases
were deployed on Windows for efficient data management.

3.2. Characteristics and Partitioning of the Data Set

A comprehensive data set with annotated images is critical for training an effective
semantic segmentation model. Due to the limited availability of open-source data, a
specialized data set was compiled from Shanghai residential building blueprints, complying
with national standards and classified into architectural and structural types. The network
processes images at a resolution of 512 × 512 pixels, with the data divided into training,
validation, and test sets at an 8:1:1 ratio. Training, validation, and testing facilitate model
development, hyperparameter optimization, and performance evaluation, respectively.
The data set includes varied categories to ascertain the model’s recognition accuracy:

1. Independent Single-Target (13%): Isolated entities such as columns and walls;
2. Single-Target Intersecting (8%): Overlapping elements of a single category, e.g., inter-

secting beams;
3. Double-Target Intersecting (51%): Common combinations like walls with doors

or columns;
4. Multi-Target Connected (28%): Complex intersections involving multiple component

types, such as walls with doors and windows.

3.3. Characteristics and Partitioning of the Data Set

The confusion matrix, composed of True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN), quantifies the model’s test set accuracy, as de-
tailed in Figure 15. In semantic segmentation, pixels are treated as discrete data points
for classification.

The confusion matrix facilitates the derivation of metrics to evaluate semantic segmen-
tation performance, specifically Mean Intersection over Union (MIoU) and Pixel Accuracy
(PA), whose formulas are provided:

MIOU =
1
n∑n

i=1
TPi

TPi + FPi + FNi
(10)

PA =
∑n

i=1 TPi

∑n
i=1 (TPi + FPi)

(11)
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confusion matrix.

In the formulas presented, n represents the count of pixel classification categories.
MIoU gauges semantic segmentation efficacy by averaging the IoU for all categories, com-
paring the overlap of predicted and ground truth labels per category. The cumulative mean
of these comparisons yields an image’s MIoU. PA evaluates the correct pixel correspon-
dences between predictions and ground truth.

3.4. Hyperparameter Settings

The SegFormer model’s performance is contingent on hyperparameters: learning rate,
batch size, optimizer, pre-trained weights, learning rate decay, weight decay, loss function,
and epoch count. Optimal configurations, identified through comparative analysis, are
detailed in Table 3.

Table 3. Configuration of hyperparameters for deep learning training.

Parameter Operation Execution

Init learning rate 1 × 10−4 (Min = 1 × 10−6)
Batch size 24 (freeze), 12 (unfreeze)
Optimizer Adamw
Backbone SegFormer-b2

Learning rate decay type cos
Weight decay 0.01

Loss Cross-entropy loss
Epochs 100 (freeze), 100 (unfreeze)

3.5. Drawing Selection and Coordinate Detection

Detection is categorized into two approaches based on the contour line’s slope. One
approach uses the raw image, the other the enlarged and rotation-filled image. It is
established that one millimeter translates to 1.076 pixels in the raw image.

3.5.1. Components Composed of Line Segments with Zero or Infinite Slope

The ‘Quantity Threshold Processing Method’ is applied to analyze components. Figure 16,
from a Shanghai villa’s blueprint, is the detection experiment subject. The blueprint
includes line segments with horizontal or vertical orientations, representing essential
architectural features like walls and openings. The case study focuses on detecting wall
coordinates in a specific section, where the wall’s width is 240 mm, which is equivalent to
258.24 pixels.
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Figure 16. Confirmation image of components constituted by line segments exhibiting zero or
infinite slope.

3.5.2. Components Composed of Line Segments with Constant Slope

The ‘Coordinate Local Maximum Method’ and ‘Vertical Line Intersection Detection
Method’ are applied to these components. Figure 17 illustrates the original image rotated
counterclockwise by a θ angle (0◦ < θ < 90◦), here 45◦, rendering line segment slopes
uniform at 1 or −1. Image corners post-rotation are filled (blue) and expanded (orange),
utilizing the remainder method from Figure 6 to streamline image segmentation and
coordinate detection. The processing complies with the subsequent formula:

Width∗ = (xmax − xmin) (12)

Height∗ = (ymax − ymin) (13)

Width = Width∗ + Width∗ mod Step (14)

Height = Height∗ + Height∗ mod Step (15)
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In the aforementioned formulas, Width∗ and Height∗ denote the pixel dimensions
post-rotation, whereas Width and Height refer to the dimensions of the expanded image.
The term ‘mod’ signifies the modulus operation.
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3.5.3. Circular Components

The investigation focuses on coordinate detection for circular elements in a Shanghai
school’s architectural drawing. Figure 18 shows the initial layout, component intersections,
and dimensions, with a conversion scale of 1 mm to 1.105 pixels.
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coordinate detection.

4. Results and Discussion
4.1. Performance Analysis of Deep Learning
4.1.1. Comparison of Deep Learning Models

The study assesses SegFormer against established semantic segmentation networks:
PSPNet, U-Net, Deeplabv3+, and HRNet, underscoring SegFormer’s superior performance.
Network descriptions consider baseline functionality using default backbones as detailed
in Table 4. Models maintain original architecture, standard hyperparameters, and consis-
tent data sets in training evaluations.

Table 4. Selection matrix for backbone networks across different deep learning architectures.

Model Deeplabv3+ U-Net SegFormer PSPNet HRNet

Backbone Xception Resnet-50 b2 MobileNet W-32

Semantic segmentation models are trained on a consistent architectural data set and
tested with a corresponding set of architectural images. Results are tabulated in Table 5.

Table 5. Comparative performance of custom data set across various network architectures.

Evaluation Metrics Deeplabv3+ U-Net SegFormer PSPNet HRNet

MIoU (%) 93.41 95.09 96.44 89.25 94.45
PA (%) 97.39 97.82 98.69 94.58 97.67

Training Time 20 h 35 min 36 h 40 min 42 h 17 min 23 h 40 min 25 h 54 min

Using 200 training iterations, SegFormer demonstrates superiority in MIoU and PA
metrics due to its effective encoder-decoder configuration and complex feature extraction
network. With the exception of PSPNet, all models achieve over 90% MIoU and 95% PA,
attesting to the custom data set’s quality and uniformity. Despite SegFormer’s longer
training duration, this aspect is not critical to the study. The overall assessment validates
the choice of SegFormer, suggesting that advanced feature extraction networks, despite
increasing training times, improve performance.

4.1.2. Training Monitoring Analysis with Established Hyperparameter Configuration

Figure 19 presents the variation in MIoU and Loss for two specialized drawing data
sets under consistent network settings and hyperparameters. Training incorporates an
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initial 100-epoch phase with frozen layer weights, followed by 100 epochs with active
weight adjustment. Owing to the expansive, high-quality data set, the network achieves a
substantial MIoU within roughly five epochs and continues to improve until it stabilizes.
Loss for both data sets converges quickly during the initial frozen phase. Subsequent weight
unfreezing accelerates MIoU gains due to varying update velocities. Loss discrepancies
between data sets are pronounced, with simplified category counts linked to reduced
classification and detection errors. Loss peaks temporarily at the 100-epoch threshold as
layers adapt to new data distributions and parameter settings. Training progression sees
these layers recalibrate, with normalization stabilizing values and leading to a reduction
and stabilization of Loss.
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ture; (b) Structure.

Table 6 reports the model’s performance on the test set, with MIoU and PA exceeding
96% and 98%, respectively, denoting high accuracy. The superior results from professional
data sets, despite their smaller size relative to architectural ones, are attributed to their
lower component diversity. This simplicity allows for more focused learning on specific
category features and reduces the incidence of classification errors.

Table 6. Comparative performance of the SegFormer network across diverse domain-Specific data
sets.

Discipline MIoU (%) PA (%) Categories Data Volume (Sheet)

Architecture 96.44 98.39 12 13,979
Structure 98.01 98.99 4 2619

4.1.3. Training Monitoring Analysis with Established Hyperparameter Configuration

Tables 7 and 8 reveal low misclassification rates among identified categories, with
‘BG’ representing the background and ‘A’ to ‘M’ corresponding to the component types
from Figures 3 and 4. Minor alignment issues in semantic segmentation, due to occasional
component-background misclassifications, are acceptable given the task’s complexity,
category diversity, and the applied contour dilation in subsequent processing.
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Table 7. Outcome of the confusion matrix from model training within the structural domain.

Class BG M G I K

BG 0.998 0.002 0 0 0
M 0.01 0.99 0 0 0
G 0.006 0.008 0.986 0 0
I 0.009 0.002 0 0.991 0
K 0.004 0 0 0 0.996

Table 8. Outcome of the confusion matrix from model training within the architectural domain.

Class BG A B C D E F G H I J K L

BG 0.997 0 0 0 0 0 0 0 0 0 0 0 0.001
A 0.009 0.982 0.004 0 0.003 0 0 0 0 0 0 0 0.001
B 0.011 0 0.988 0 0 0 0 0 0 0 0 0 0.001
C 0.009 0 0 0.991 0 0 0 0 0 0 0 0 0
D 0.009 0.001 0 0 0.982 0.006 0 0 0 0 0 0 0.002
E 0.012 0 0.006 0 0 0.981 0 0 0 0 0 0 0.001
F 0.007 0 0 0 0 0 0.991 0 0 0 0 0 0.002
G 0.006 0 0 0 0 0 0 0.993 0 0 0 0 0
H 0.015 0.001 0 0 0 0 0 0 0.982 0.001 0 0 0.001
I 0.012 0 0 0 0 0 0 0 0.002 0.983 0 0 0.003
J 0.009 0 0 0 0 0 0 0.004 0 0 0.987 0 0
K 0.006 0 0 0 0 0 0 0 0 0 0 0.994 0
L 0.019 0 0 0 0 0 0 0 0 0.001 0 0.001 0.977

Tables 7 and 8 indicate that components with simple linear designs are more prone to
misclassification, with beams often mistaken for columns and walls for other categories due
to their basic line structures. These patterns highlight the challenges of classifying simple
contours and the importance of using large, augmented data sets for effective training.

4.2. Conclusions and Analysis of Component Coordinate Detection
4.2.1. Detection of Component Coordinates with Segments Formed by Slopes of Zero
or Infinity

Figure 20 shows a 2048 px × 2048 px image obtained through sliding window cropping,
with an origin at (7168, 0) in the global coordinate system. To map line coordinates from
this image to the full image, add the origin coordinates to each localized coordinate set.
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Table 9 displays keypoint detection outcomes in terms of pixel, distance, and actual
coordinates for two orthogonal walls, allowing for error assessment through distance
comparison. Wall 1 runs parallel to the X-axis and Wall 2 to the Y-axis.

Table 9. Analytical review of coordinate detection in components comprising line segments with zero
or infinite slope.

Corner Point Index Detected Pixel
Coordinates

Detected Actual
Coordinates True Coordinates Error in X Direction (‰) Error in Y Direction (‰)

Wall (1) P1 (7510, 192) (6979.55, 9338.29) (6982, 9336) 0.351 0.245
Wall (1) P2 (7510, 449) (6979.55, 9099.44) (6982, 9096) 0.351 0.345
Wall (1) P3 (9216, 192) (8565.6, 9338.29) (8567, 9336) 0.163 0.245
Wall (1) P4 (9216, 449) (8565.6, 9099.44) (8567, 9096) 0.163 0.345
Wall (2) P5 (8187, 449) (7608.74, 9099.44) (7611, 9096) 0.297 0.378
Wall (2) P6 (8446, 449) (7849.44, 9099.44) (7851, 9096) 0.199 0.378
Wall (2) P7 (8187, 2048) (7608.74, 7613.38) (7611, 7616) 0.297 0.344
Wall (2) P8 (8446, 2048) (7849.44, 7613.38) (7851, 7616) 0.199 0.344

Detection errors for wall keypoints remain below 0.05% on both the X and Y axes,
impervious to distortion from unrelated component contours. These results satisfy practical
application demands despite real-world challenges.

4.2.2. Coordinate Detection of Components with Segments Formed by Constant Slopes

The case study, using the detection method shown in Figure 17, presents a
2048 × 2048-pixel image in Figure 21, cropped using a sliding window technique with
a starting point at (4096, 7680). Coordinates within this image require adjustment by this
offset for accurate positioning.
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Figure 21. Example of component coordinate detection constituted by line segments exhibiting
constant slope.

Figure 21 identifies six window line segments and eight intersection points. The
‘Coordinate Local Extremum Method’ isolates the window’s four key points (1, 4, 5, 8) for
comparison with true coordinates, detailed in Table 10.

Detection results show less than 0.06% error on the X and Y axes, demonstrating
high precision. Unaltered by extraneous contours, these findings comply with practical
precision standards.
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Table 10. Example of component coordinate detection constituted by line segments exhibiting
constant slope.

Corner Point
Index

Detected Pixel
Coordinates

Detected Actual
Coordinates True Coordinates Error in X

Direction (‰)
Error in Y

Direction (‰)

Window P1 (5445, 7858) (5060.41, 11,539.03) (5063, 11,545) 0.512 0.517
Window P4 (5626, 8039) (5228.62, 11,370.82) (5231, 11,375) 0.455 0.367
Window P5 (4306, 9000) (4001.86, 10,477.70) (4003, 10,485) 0.285 0.696
Window P8 (4486, 9180) (4169.14, 10,310.41) (4171, 10,315) 0.446 0.445

4.2.3. Detection of Component Coordinates with Segments Formed by Slopes of Zero
or Infinity

Figure 22 outlines a process for detecting coordinates to ascertain the image’s center
of the circle (COC) and cylinder pixel radius.
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Figure 22. Process for implementing circular component coordinate detection.

The detected pixel center coordinates and pixel radius, when multiplied by the conver-
sion ratio and compared to actual values, yield the error margin listed in Table 11. These
findings corroborate the precision of the Hough Circle Detection method, aligning with
results from the line segment detection approach.

Table 11. Evaluation and error analysis of detected circular components.

Category Detection COC Detection
R

Actual
COC

Actual
R Error COC X(‰) Error COC Y(‰) Error R(‰)

Column2 (3049.77, 4156.56) 299.55 (3053, 4160) 300 1.06 0.827 1.5

Detection methods incur errors primarily from three sources: rounding in representing
actual distances in pixel coordinates, inaccuracies when pixel-to-distance conversion ratios
are inexact, and precision loss in vector image transformations, such as scaling or rotation,
due to interpolation.

4.3. Limitation

The presented method efficiently handles most coordinate detection cases, yet a few
scenarios may present challenges.

The inflation technique may resolve certain issues but has potential drawbacks in
specific contexts. A standard inflation rate can lead to excessive expansion of some compo-
nents, obscuring their contours. This effect is particularly marked when the component
to be detected is shorter than surrounding non-target structures, increasing coordinate
detection difficulty. Figure 23a shows that an ill-suited inflation ratio can disproportionately
affect coordinate detection where shorter line segments, such as in a merlon’s wall, are
overshadowed by the dominant contours of adjacent features like a door.
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Figure 23. Challenging examples encountered in applying coordinate detection algorithms: (a) Short
wall; (b) Short line and arc.

In some instances, short key line segments may increase detection difficulties. As
shown in Figure 23b, the door panel’s narrow key line segment, intersecting with the wall,
could be problematic. A low detection threshold might identify this segment correctly
but could also falsely detect multiple segments in the door arc. This could lead to the
misidentification of the door arc as several minor segments with different slopes and
intercepts in pixel images, reducing the accuracy of coordinate detection.

5. Conclusions

The study introduces a framework for recognizing components and pinpointing key
coordinates in paper-based 2D blueprints, utilizing semantic segmentation and image
processing. It examines the potential for accurate multi-category recognition and assesses
the detection efficacy. Key findings include the following:

1. The framework classifies components in two-dimensional blueprints using semantic
data. Analyses include deep learning network selection, data set training, and error
rates across categories. Notably, the ‘Edge Expansion Sliding Window Cropping
Method’ was effective in high-resolution semantic segmentation, with the networks
achieving IOU scores of 96.44% and 98.01%. Generally, prediction errors for compo-
nent categories were below 0.5%, indicating standardized data sets and the precision
and robustness of the models;

2. By extracting semantic information, inflation and blending techniques effectively
separate the target component’s contour in two-dimensional blueprints, minimizing
irrelevant contour noise. Semantic segmentation’s classification properties refine
coordinate detection on the processed blueprint, curtailing interference and errors;

3. The integration of the “Quantity Threshold Processing Method” with SQL Server
and algorithms such as the “Coordinate Local Extremum Method” and “Vertical Line
Intersection Detection Method,” both incorporating the Hough Transform, yields
improved coordinate detection accuracy. For line segment components, detection
errors remain below 0.1%, and for circular components, within 0.15%, indicating
exceptional performance.

This study initiates the exploration of coordinate recognition within two-dimensional
blueprint components. Future work will aim to achieve the following:

1. Employ higher-resolution blueprints to reduce coordinate detection errors by improv-
ing the pixel-to-dimension ratio;

2. Enhance blueprint complexity and variety to broaden the study’s applicability;
3. Refine coordinate detection techniques to address the identification of complex com-

ponent contours;
4. Leverage coordinate data to facilitate BIM model reconstruction and urban digitalization
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With the progressive informatization of construction, deep learning is expected to
become increasingly integral to the intelligent management and maintenance of structures.
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