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Abstract: In this paper, we propose a deep learning-based approach to predict the next event in
hospital organizational process models following the guidance of predictive process mining. This
method provides value for the planning and allocating of resources since each trace linked to a case
shows the consecutive execution of events in a healthcare process. The predictive model is based
on a long short-term memory (LSTM) neural network that achieves high accuracy in the training
and testing stages. In addition, a framework to implement the LSTM neural network is proposed,
comprising stages from the preprocessing of the raw data to selecting the best LSTM model. The
effectiveness of the prediction method is evaluated through four real-life event logs that contain
historical information on the execution of the processes of patient transfer orders between hospitals,
sepsis care cases, billing of medical services, and patient care management. In the test stage, the LSTM
model reached values of 0.98, 0.91, 0.85, and 0.81 in the accuracy metric, and in the evaluation of the
prediction of the next event using the 10-fold cross-validation technique, values of 0.94, 0.88, 0.84,
and 0.81 were obtained for the four previously mentioned event logs. In addition, the performance
of the LSTM prediction model was evaluated with the precision, recall, F1-score, and area under
the receiver operating characteristic (ROC) curve (AUC) metrics, obtaining high scores very close
to 1. The experimental results suggest that the proposed method achieves acceptable measures in
predicting the next event regardless of whether an input event or a set of input events is used.

Keywords: LSTM; deep learning; predictive model; next event; healthcare process

1. Introduction

Healthcare services continuously adopt technological advancements to overcome grow-
ing challenges regarding quality of care, cost reduction, efficiency, sustainability, and trans-
forming data into knowledge. In the medical field, significant attention has been devoted
to the methods and effectiveness of e-healthcare to improve the quality of care and service
recipients’ well-being (particularly patients) [1]. The technological field tends to generate
solutions for e-healthcare and its impacts on the medical and healthcare system [2]. Therefore,
the main goal set forth by both governments and organizations is to increase the effectiveness,
accuracy, and service quality of healthcare for citizens (users) [3] through the development,
management, and monitoring of schemes based on information technologies (IT).

In this context, patient information exchange between healthcare service providers is
essential in hospital information systems (HIS). Healthcare information exchange (HIE)-
based approaches allow the sharing of patient’s medical information electronically, im-
proving the speed, quality, safety, and cost of patient care [4,5]. These approaches can
be incorporated into electronic health record (EHR) systems; it is recommended to use
standards for data management, such as Health Level Seven (HL7) [6], Clinical Document
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Architecture (CDA) [7], and Fast Healthcare Interoperability Resources (FHIR) [8] in these
systems, both in clinical document design and in the exchange of clinical data between
healthcare service providers. The direct exchange of information (documents), laboratory
orders and results, patient referrals, or discharge summaries can be discussed.

The enhancement of business processes is a growing concern and a challenge to advanc-
ing efficiency and service quality in health institutions worldwide [9]. In this way, business
process management (BPM) approaches have been applied in different areas of healthcare in-
stitutions to reduce patient waiting times, reduce service costs, maximize patient care, balance
resource utilization, improve the quality of service, and minimize risk (i.e., reduce patient
morbidity and mortality) [10,11]. A business process in the healthcare domain (healthcare
process) is understood as the means institutions use to deliver a service to their users (pa-
tients) [12], which is defined by a set of elements, such as the sequence of activities and events,
decision points, interactions between participants (people, organizations, software systems,
equipment), and where the execution of the business process leads to one or several outcomes
(business goals) [12], to deliver healthcare to patients.

Healthcare processes can be classified into clinical and organizational processes [10,13].
The clinical processes are related to the patients and implemented through a previously
defined diagnostic-therapeutic cycle [13]. Organizational processes are administrative
processes that can follow behaviors that support medical treatment processes to coordinate
medical treatment between users, providers, and organizational units [14]. Patient transfer
orders between hospitals, medical patient management, and exam requests are examples
of organizational processes. Healthcare processes are usually considered patient-centered,
complex, constantly developing and updating, adaptable, and multidisciplinary [15,16].
Consequently, extracting knowledge and acquiring insight into the dynamics of these
processes can be expensive and complex tasks. The management of healthcare processes
is very complex due to their variability, dynamism, fast-changing ad hoc nature, and
increasingly multidisciplinary scope [17].

Healthcare process execution through HIS process-oriented registers a large number
of events. From these events, knowledge can be extracted to verify and validate the flow
performed in the execution of the healthcare process [11,14]. An event log contains a history
of the actions and activities that occurred during the execution of a business process. This
log can be analyzed using an approach based on process mining techniques [18]. Then,
process mining can discover, verify, and improve business processes by analyzing the event
logs generated by process-oriented information systems [19]. Therefore, institutions can
discover what behaviors are followed in the execution of a process, verify that business rules
are applied, and identify possible bottlenecks in the business process flow [20]. Likewise,
they can determine the distribution of resources, consumption of time to execute an activity,
and aspects related to the exchange of business documents.

Process mining through predictive methods exploits events contained in the traces to
predict events of the present and future, allowing us to obtain a global and comprehensive
point of view of the behavior of a process [21,22]. Predictive monitoring approaches
incorporated into business process management systems can generate intelligent systems
capable of predicting the behavior of processes in operation [23]. In the health domain,
the prediction is probably more important than the explanation due to the high cost that a
delay in diagnosis and treatment can cause [24]. The capability to predict the healthcare
process’s future behavior is a significant challenge in process management and process
mining. Namely, monitoring healthcare process instances and predicting their behavior
can enable medical supervisors or hospital administrators to act proactively in anticipation
of an event [25].

The predictive analysis applied to health data is emerging as a tool to collaborate in
more proactive and preventive treatment options [24] and improve healthcare processes.
In this way, compared to other machine learning methods, deep learning techniques have
shown their ability to improve the discriminative function of the selected inference model.
Well-known approaches based on deep learning architectures have been proposed to
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address complex problems, for example, remote sensing segmentation of dense buildings
after an earthquake in urban areas using an improved Swin transformer [26] or a model to
evaluate the structural health of long-span bridges, establishing a relationship between the
vertical deflection of the beam and the cable tension, in cable-stayed bridges [27]. Recurrent
neural networks (RNNs) are a deep learning technique considered the most efficient time
series prediction method. An RNN allows the use of a sequence of input data with cyclic
connections between blocks, where neurons are interconnected in the same hidden layer.
Then, a training function is repeatedly applied to the hidden states [28]. Long short-term
memory (LSTM) is based on an RNN with the capability to solve memory and forgetting
problems by adding multi-threshold gates. This neural network has been successfully
applied to many sequence and time series prediction problems. Hence, a model based on
LSTM to predict the next event from a set of cases or traces can be considered an essential
strategy in the supervised process mining environment.

Motivated by these requirements, we propose a deep learning-based approach to
predict the next event in a healthcare process. The predictive model is based on the LSTM
neural network cell structure. A framework is proposed to manage the preprocessing and
categorization of the neural network input data and the design, training, and selection of
the LSTM network model. The LSTM model can predict the next event from an input event
or a set of input events. The validation performed on the LSTM model shows that it can
predict the next event of a new process model instance, with the highest precision metric of
0.98, confirming the feasibility and usefulness of this approach. Our experiment addresses
the challenges of data analytics in healthcare and public health. The performance of the
LSTM predictive model was evaluated using four data sets (event logs) from different
business processes running within the daily operations of a hospital. The model reaches
values of 0.95, 0.90, 0.85, and 0.82 in the F1-score metric for the event logs of the patient
transfer between hospitals, sepsis care cases, billing of medical services, and health care
management of patients, respectively. In evaluating the prediction model’s performance
through the area under the receiver operating characteristic (ROC) curve (AUC), average
values between 0.953 and 1.00 for micro-average ROC-AUC and between 0.899 and 0.958
for macro-average ROC-AUC are obtained. The experimental results based on key metrics
suggest that the proposed method achieves the highest measures on a healthcare dataset
and can be applied when models have high complexity in their behavior and extension.

2. Materials and Methods

The framework for predicting the next event in a healthcare process model comprises
data pre-processing, binarization, and model training phases, as shown in Figure 1. Most
state-of-the-art investigations of prediction problems using neural networks do not describe
an implementation method and usually perform a manual implementation. For this reason,
a framework is required to support the development of a technological solution based on
an LSTM neural network with the ability to predict future events.

Figure 1. Next event prediction framework overview.
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2.1. Data Pre-Processing

The pre-processing of an event log consists of analyzing the raw data to identify its
attributes, extracting the traces with its events, and applying separation criteria to the
selected data. This phase is composed of the following stages:

2.1.1. Data Extraction

The data extraction stage consists of diverse tasks that are executed sequentially. First,
the attributes contained in an event log are identified. The eXtensible Event Stream (XES)
standard has emerged as the principal storage format for event logs [29]. This standard
defines a structure to manage and manipulate logs containing traces and events and their
attributes. The XES standard format is based on the XML language, formed by a hierarchical
structure. The root node corresponds to the event log, and each child (intermediate node)
corresponds to the traces contained in an event log. Each intermediate node can have
several children representing each event within a trace. Each event node has several
children, representing the attributes belonging to the events, and each attribute has a name
and a value.

The first task’s output allows the selection of the required attributes to predict the
next event in a healthcare process model. In the Results section experiments, the selected
attribute in each event contained in the event log (XES file) was work f lowmodel element :
name. This attribute stores as a value the name of the activity executed in the healthcare
process and recorded in the event log. Next, a normalization task is applied to the data
contained in the dataset’s attribute. Afterward, the corrupt or inaccurate instances are
detected and removed from the event log.

Then, a trace identification task is applied: searching, recognizing, selecting, and
recovering the traces with their events and attributes. This task is performed by sweep-
ing the event log’s hierarchical structure content. The attribute value of each of the
events contained in a trace is collected when the condition attribute_event = b is ful-
filled, where b corresponds to the attribute selected in the previous task (in this case, it is
the work f lowmodelelement : name attribute), as shown in line 4 of the Algorithm 1. Each
recovered trace is stored in a text file (see lines 11–12 of the Algorithm 1), respecting the
order in which the trace is extracted.

Algorithm 1 Get_traces.

Input: a = log (file.xes), b = selected attribute
Output: file = file.txt with all traces and events

1: get_traces(a,b) :
2: create file.txt
3: for trace ∈ log do
4: for event ∈ trace do
5: if attribute_event = b then
6: e← remove_punctuation(attribute_event)
7: add e to event_list
8: end if
9: end for

10: add event_list to trace_list
11: end for
12: write trace_list to f ile
13: return text f ile

2.1.2. Segmentation

The segmentation stage provides a basic structure to the traces that can later be used
by downstream phases, enabling the prediction of the next event. This stage consists of
dividing traces into segments, each segment being topically coherent, and cutoff points
indicate a change in an event. A cutoff point separates each event included in a trace. Then,
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a vocabulary with unique acronyms is created from the dataset generated in the previous
stage, transforming these selected acronyms into single integers. Subsequently, the events
are transformed into single integers using the previously created vocabulary as a reference.
Each event in the trace is transformed into a single integer, constructing the trace as a
sequence of integers.

Next, a list of valid n-tuples is constructed for each sequence of integers. For which,
the following should be considered, given an ordered n-tuple of integers (events) of a
trace, the number of permutations is the number of possible ordered n-tuples, applying
the next rules: (1) the ordering of the events cannot change, (2) the position of an event
cannot be modified, (3) the first event and the last event of a trace cannot be grouped. For
example, given the trace t1 = {1, 3, 5, 9, 2}, the possible tuples to be calculated {1, 3}, {3, 5},
{5, 9}, {9, 2}, {1 3, 5}, {3 5, 9}, {5 9, 2}, {1 3 5, 9}, {3 5 9, 2}, {1 3 5 9, 2}. Then, the tuple
list generated must be divided into two sub-datasets, which will be used in the neural
network training and testing phases. This task requires defining the percentage of the tuple
list allocated for the training sub-dataset, and the remaining records will automatically be
allocated to the test sub-dataset. The instances of the training sub-dataset are automatically
selected by a random method.

The next actions are performed in parallel for the two sub-datasets. (1) The input (X)
and output (y) activity lists are created for each sub-dataset. (2) The last integer is extracted
from each tuple, allowing the output activity list to populate (y). (3) An antecedent event or
a set of antecedent events to the last event for each tuple is extracted and added to the input
activities list (X). Continuing with the previous example, of the elements of the tuple {1, 3},
the first element {1} would be stored in the input activity list (X). The second element
{3} would be recorded in the output activity list (y), and so on for all tuples collected
from each event log trace. Figure 2 graphically shows an example of the segmentation
task implemented in the framework. (4) The list of input activities (X) is converted into a
two-dimensional matrix constructed with the total sequence of integers and the maximum
length of the sequences; that is, the matrix of input activities (X) will have a dimension
of m x n, where m = total tuples, and n = maximum length of the sequence. In the case
of a tuple < 3, a padding method is applied to insert zero values before the integer in the
sequence so that the length of the tuple is equal to 3. (5) Finally, the list of output activities
(y) becomes a matrix of dimension m x 1, where m = total number of tuples and n = 1
because it only has a single output activity (class) per tuple.

Figure 2. Operation schema of the segmentation task.
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2.2. Binarization

The binarization phase assigns a binary value to each integer in the output activities
(y) vector. This phase is performed for the two output activity lists (y) generated previ-
ously, corresponding to the training and test sub-datasets. The binarization reduces the
complexity of the task, which is also advisable for detecting connected components, i.e.,
event sequences or next-event prediction. This task is performed by applying a one-hot
encoding scheme, which specifies that the quantity of classes equals the dictionary size.
The one-hot encoding technique helps convert categorical features into binary format, that
is, categorical integer features to a binary variable (a binary variable is added for each
unique integer).

Figure 3 extends the example of Figure 2 to explain the binarization phase. Figure 3
shows that a binary representation is created from the unique integers. A vector of the
presence/absence of integers illustrates this representation. The number of columns will
equal the number of classes in the event log, and the number of rows will equal the number
of instances used in the training stage. Hence, a binary representation consists of a sequence
of 0/1 vectors, possibly long. The presence of an integer is marked with a value of 1 in the
class column corresponding to the value of the integer. All the other columns of the vector
will be marked with a value of 0. The above procedure is performed for each instance in
the output vector.

Figure 3. One-hot vector representation of the output activities.

2.3. Model Training

The model training phase obtains a trained model based on an LSTM network that can
predict the next event of a healthcare process model. Network design, network training,
model selection, and model inference stages form this phase.

2.3.1. Network Design

The input layer is created using the word embedding technique in the neural network
design. Also, the hidden layer containing the LSTM units is generated and interconnected
through the input, output, and forget gates. Finally, only one neuron is available as a
unique output value corresponding to the prediction in the output layer. Figure 4 shows
the design of the neural network, where xt is the input vector and ht is the output result to
the memory cell at time t. Moreover, ht is the value of the memory cell. At the time t, it are
the values of the input gate, ft are the values of the forget gate, and ot are the values of the
output gate. Finally, C̃t are values of the candidate state of the memory cell at time t.
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Figure 4. Architecture of a single LSTM cell.

2.3.2. Network Training

The LSTM uses hyperbolic tangent (tanh) and sigmoid activation functions in different
flows for the input and output gates; logistic sigmoid activation function for the forget
gate, as shown in Figure 4. The two-dimensional matrix of the input activities (X) and
the vector of the output activities (y), represented by a one-hot encoder and generated in
the framework’s previous stages, are used. We performed hyper-parameter optimization
using a grid search algorithm to determine the optimal parameters for the LSTM networks.
This algorithm is based on an exhaustive search that looks through each hyper-parameter
combination using permutation and combination. The hyper-parameters introduced to
the search algorithm were the following: “batches = [32, 64]”, “dropout_rate = [0.0, 0.1,
0.2, 0.3, 0.4, 0.5]”, “epochs = [50, 100]”, “units = [10, 50, 100]”, “optimizers = [‘SGD’,
‘RMSprop’, ‘Adagrad’, ‘Adadelta’, ‘Adam’, ‘Adamax’, ‘Nadam’]”, “activation = [‘softmax’,
‘softplus’, ‘softsign’, ‘relu’, ‘tanh’, ‘sigmoid’]”. The performance of the grid search algorithm
is measured using 3-fold cross-validation on the evaluation set. The setting that achieved
the highest accuracy in the validation process after performing all possible combinations
of hyper-parameters is the next: epochs = 100, optimizer = Adam, batch size = 32, LSTM
units = 50, and activation = softmax. The cross-entropy loss was predefined in the neural
network parameters due to the data types used in the input vectors.

2.3.3. Model Selection

The LSTM network model is selected based on the accuracy measure and the loss function
achieved in the training stage. The model that achieves the highest accuracy measurement
and a minor loss function in the training phase will be used as the LSTM network model
to predict the next event. Otherwise, we must return to the previous stage and adjust the
training parameters if an acceptable metric is not obtained during network training.

2.3.4. Inference Model

The LSTM inference or predictive model is the model that has acquired knowledge or
learned adequately in the last phase of the framework. With a model implemented from an
input event or a sequence of input events, the LSTM inference model allows the prediction of
the next event for a new instance of a healthcare process, explained in the following section.

3. Results

The business processes that derived the event logs were generated in different hospitals
or, in the case of the healthcare collaboration process, simulated the relationship established
in the clinic for the care of a sick patient. The four healthcare processes used in our approach
coexist in the operation of a hospital, starting with patient care through the healthcare
collaboration process, from which the sepsis process or the patient transfer process to a
second or third-level hospital can be derived. In other cases, the patient transfer process
can occur after sepsis. For its part, the hospital billing process can be performed after each
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previous process. An event log typically contains attributes related to the identifier and
name of the executed process, the name of the activities executed, resources responsible for
the execution of the activity (human, system, or equipment), date and time of the execution
of the activity, and the events that triggered the activity. A case contains a sequence of
traces representing the behavior identified in an instance of a process.

In implementing the neural network model, a training sub-dataset with 80% of the
original dataset (event log) observations was used to train our model (in each of the
experiments described below). These instances were selected automatically on a random
basis. The remaining 20% of the original dataset instances were used to validate the
effectiveness of the inference model. Furthermore, the experimentation was implemented
on the Jupyter Notebook tool, using the Python Keras Neural Network library with the
TensorFlow backend [30].

3.1. Experiment 1

The event log contains historical information (from 2012 to 2018) about patient transfer
orders and medical referral management processes. The event log basis is a project for
collaborating healthcare services between a primary care provider (PCP) and a specialist
care provider (SCP) located in northern Mexico, presented in [31]. The procedure of a
patient referral assumes negotiating a patient transfer order and managing the medical
referral. The social work department of each hospital operates the patient transfer order
process. A social worker executes a patient transfer upon request from a specialist doctor.
The social work department coordinates all activities related to patient transfer, including
equipment, care facilities, personnel, and transportation. The patients are referred from a
PCP to an SCP when requiring medical care for cancer, heart, vascular, and neurological
diseases. Both hospitals have defined a set of inter-organizational business processes at
design time executed by the HIS of each hospital in a coordinated way while respecting the
institutions’ autonomy involved in the collaboration.

The dataset was extracted from the test environment of the PCP information system by
information technology personnel authorized by the hospital. This environment contains
the real behavior of the healthcare processes executed between hospitals with n instances
of all possible behaviors defined in each healthcare process. The data was extracted
automatically, assigning a Case-ID for each instance of the logged process, generating an
XML file with the required structure in the XES schema. It is essential to mention that this
data set does not include sensitive data about the patient’s identity, disease, or diagnosis,
the doctors’ or specialists’ identification, or the hospital’s administrative staff.

In this experimentation, the event log exclusively contains instances generated by
the patient transfer order process’s execution through the HIS of the PCP (see Table 1),
composed of 2500 traces, 25 unique activities, and 76,948 events. The event log contains
traces from a patient transfer order process (including medical referral management), with
attributes of Case-ID, activity name, resource, and timestamp.

Table 2 shows an excerpt of the results obtained. The “input activity” column repre-
sents the activity or set of activities introduced at the input gate of the LSTM network. The
“target event” column contains the events that can be predicted according to the behavior
pattern identified in the event log traces. A target event value is an event with the highest
prediction probability, estimated according to the weight of the event tag value. The predic-
tion of the event generated by the LSTM method is presented in the “output event” column.
In instances 1 and 4, the LSTM model has correctly predicted the next event according to
the expected event in the process model, e.g., when the new input activity is START. The
output event is GPTO (see Table 2). In instances 2 and 3, it can be seen that the neural
network has not correctly predicted the next event in the process model. In instance 3, the
target event has two prediction possibilities (APPR | RPPR), but the model did not predict
the next event correctly. In the “Target Event” column of Table 2, we present instances (3
and 5) with two expected events (APPR | RPPR, CPR | IRLC) because the activities are
potentially found in the output paths at a decision point or path division gateway of the
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process flow. Also, in instances 5–7 (see Table 2), a sequence of two input activities is
shown in the “Input Activity” column; i.e., the LSTM network receives a sequence of input
activities to predict the next event. Additionally, in instances 8–10, three input activities are
entered into the LSTM model, which correctly predicts the next event in all cases.

Table 1. Example of the patient transfer order event log.

Case-ID Activity Resource Timestamp Acronym

1707 Generate Patient Transfer Order Hospital Social Worker 2017-06-06 12:46:40 GPTO
1707 Propose Patient Transfer Order Hospital Social Worker 2017-06-06 13:08:20 PPTO
1707 Accept-proposal PTO Response System Message 2017-06-06 13:10:00 APPR
1707 Inform Referral Number System Message 2017-06-06 13:11:40 IRN
1707 Store Referral Number Automated Service 2017-06-06 13:13:20 SRN
1707 Generate Patient Referral Letter Medical Office Administrator 2017-06-07 08:16:40 GPRL
1707 Inform Patient Referral Letter Medical Office Administrator 2017-06-08 05:06:40 IPRL
1707 Inform Referral Letter Change System Message 2017-06-08 05:08:20 IRLC
1707 Analyze Requested Change Medical Office Administrator 2017-06-09 05:23:20 ARC
1707 Generate Patient Referral Letter Medical Office Administrator 2017-06-10 05:38:20 GPRL
1707 Inform Patient Referral Letter Medical Office Administrator 2017-06-11 05:53:20 IPRL
1707 Confirm Patient Reception System Message 2017-06-11 05:55:00 CPR
1707 Store Patient Reception Automated Service 2017-06-11 05:56:40 SPR
1707 Confirm Patient Referral Receipt System Message 2017-06-11 05:58:20 CPRR
1707 Store Patient Referral Receipt Automated Service 2017-06-11 06:00:00 SPRR
1707 Inform Discharge Note System Message 2017-06-11 06:01:40 IDN
1707 Inform Medical Summary System Message 2017-06-11 06:01:41 IMS
1707 Store Discharge Note Automated Service 2017-06-11 06:03:20 SDN
1707 Store Medical Summary Automated Service 2017-06-11 06:03:21 SMS

Table 2. Extraction of the LSTM prediction results.

Instance Input Target Output
Number Activity Event Event

1 START GPTO GPTO
2 GPTO PPTO RPPR
3 PPTO APPR|RPPR IMS
4 APPR IRN IRN
5 GPRL IPRL CPR|IRLC IRLC
6 IPRL IRLC ARC ARC
7 IRLC ARC GPRL GPRL
8 APPR IRN SRN GPRL GPRL
9 IRN SRN GPRL IPRL IPRL
10 SRN GPRL IPRL IRLC IRLC

Table 3 shows the accuracy and precision metrics achieved by the LSTM neural
network model in the validation stage. The precision measure allows us to know the
number of correct positive predictions. This way, the LSTM model can predict the next
event with 0.98 precision. This model achieves the highest precision confirming the ability
to predict the next event in the patient referral healthcare process. Similarly, the accuracy
measure achieved by the LSTM model is highly acceptable (0.94), supporting the precision
measure obtained. The value obtained by the inference model for the recall metric was 0.94
(see Table 3). The recall metric indicates how much the model captures the behavior present
in the event log. The recall is close to the precision value, which is desirable when training
a model. This means the LSTM model detects the most positive examples, providing
higher reliability. Similarly, high reliability is observed when calculating the F1-score, with
a value of 0.95 (see Table 3). Furthermore, our experiment was evaluated using 10-fold
cross-validation, achieving an accuracy of 94.62% (±0.09%), which demonstrates that the
model can predict the next event correctly, regardless of the partitioning of the dataset used
for training and validation (see Table 3). The aforementioned confirms that the selected
LSTM model parameters do not operate only on a particular dataset partition; on the
contrary, they function correctly for data not seen within a dataset partition.
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Table 3. Key performance measures achieved by the inference method at the validation stage using
the patient transfer event log.

Event Log Precision Accuracy Recall F1-Score
10-Fold

Cross-Validation

Patient transfer order 0.98 0.94 0.94 0.95 0.94

Moreover, we report the receiver operating characteristic (ROC) curves computed
from the output probabilities provided by the LSTM inference model. The area under the
ROC curve (AUC) represents the degree of class separability that the model achieves. This
measure quantifies the ability of a model to distinguish between classes. The higher the
AUC value is, the greater the model’s ability to distinguish one class from another. This
metric is generally used with binary classifiers; to be used with multi-class classifiers, it is
necessary to binarize the output. This condition is satisfied by using one-hot encoding. A
ROC curve can be plotted for each class, taking a one-vs-all approach for each class. The
scenario used in our experimentation consists of 25 classes.

ROC-AUC quantifies the continuous relation between true and false positives, given
the ROC curve plots the true positive rate (TPR) against the false positive rate (FPR), as
defined in Equations (1) and (2). TPR is also termed sensitivity or recall. It is important to
mention that a good classification model should have an AUC value close to 1.

TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
= 1− Speci f icity (2)

where TP represents the number of identified positive instances in the positive set, TN
means the number of classification negative instances in the negative set, FP refers to the
number of identified positive instances in the negative set, and FN represents the number
of identified negative instances in the positive set.

Figure 5 shows an analysis of the area under ROC curves using the TPR on the Y-
axis (Equation (1)) and the FPR on the X-axis (Equation (2)). Also, Figure 5 presents the
micro-average and the macro-average ROC-AUC values. The former consists of adding
each class’s contribution to calculate its average. The latter is calculated independently
for each class to calculate all the classes’ averages (managing each class equally). Figure 5
displays the five worst ROC curves according to the AUC values obtained with the one-
vs-all approach (illustrated by continuous lines). The ROC-AUC values for these five
classes are class_2 = 0.9831, class_9 = 0.9411, class_13 = 0.9960, class_14 = 0.9960, and
class_19 = 0.9870. Most of the remaining classes of the experiment obtained a ROC-AUC
value between 0.9998 and 1.000. On the other hand, a magenta dotted line represents the
micro-average ROC-AUC, and a blue dotted line represents the macro-average ROC-AUC,
calculated for all the classes (Figure 5). The micro-average and macro-average ROC-AUC
of the LSTM method are 1.000 and 0.958, respectively.

In addition, an equal error rate (EER) was checked for all of the given classes to eval-
uate the results. EER is defined as the error rate at a point on the ROC curve where FPR
(Equation (2)) is equal to FNR (Equation (3)). EER gives a good overview of a classifier’s
strength in deep learning approaches as it provides a comparable and reproducible compro-
mise between acceptance and rejection rates. Then, EER can serve as a quantitative measure
of the classifier quality assessment. An EER equal to 0.00% corresponds to the inference
model’s error-free work, meaning the correct classification at the point on the ROC curve.
EER is the value of the FPR (Equation (2)) and the false negative rate (FNR) for a given
matching process when the FPR = FNR. The FNR measure is defined by Equation (3).

FNR =
FN

FN + TP
= 1− TPR (3)
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Figure 5. Receiver operating characteristic (ROC) curves and their area under the curves (AUC) of worst
classes existing in the validation stage of our experiment.

In this case, the value furthest from 0 within the experiment is an EER of 11.78%
achieved in class_9, corresponding to the value obtained by the same class in the ROC-
AUC metric. The other four worst EER values reached are 3.38%, 1.65%, 1.43%, and 2.65%
for the classes class_2, class_13, class_14, and class_19, respectively. The EER value for the
remaining 20 classes is between 0.66% and 0.00%. The results listed show that the LSTM
method attains a significantly low EER in most classes.

Finally, the LSTM was trained with an optimization procedure that requires a loss
function to calculate the model error, allowing a precise summary to be generated through
an indicator considering all the assessable aspects of the model. On the one hand, the LSTM
model obtains 0.1160 and 0.9465 of the average loss function and accuracy in the training
stage, respectively (Figure 6). On the other hand, the inference LSTM model reaches
0.1172 and 0.9466 of the average loss function and prediction accuracy in the validation
stage, respectively (Figure 7).

Figure 6. Loss function in the training and validation phases by epoch.
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Figure 7. Accuracy in the training and validation phases by epoch.

3.2. Experiment 2

A real-life event log containing sepsis case events from a hospital is used in this
experiment. Sepsis is a life-threatening condition typically caused by a bacterial infection
primarily affecting the stomach, lungs, kidneys, or bladder. The events were recorded by an
enterprise resource planning (ERP) system of a hospital in the Netherlands and provided
by the Eindhoven University of Technology [32]. The event log contains 1050 cases with a
total of 15,214 events that were logged for 16 unique activities. The data was captured from
7 November 2013 to 5 June 2015. A case in the event log represents the patient’s trajectory
in their medical care, recording each activity related to their care during their hospital stay.

The LSTM model predicts the next event within the identified behavior in the sepsis care
business process with a precision of 0.92 and an accuracy of 0.91 (see Table 4). Furthermore,
the model captures the behavior contained in the event log with a recall metric of 0.90. This
event log has a highly complex behavior, which has been used in many experiments applying
different data mining and machine learning algorithms. Our inference model correctly
identifies the behavior with an F1-score metric of 0.90, the harmonic mean of the precision and
recall, confirming its ability to predict the next event accurately, very close to the maximum
range of 1 on this metric. In the evaluation with the 10-fold cross-validation technique, a very
slight decrease in the accuracy metric is observed. However, the inference model maintains
high performance, confirming that the change of instances in the folds does not drastically
affect its prediction, allowing reliance on the stability of the model’s performance.

Table 4. Key performance measures achieved by the inference method at the validation stage using
the sepsis event log.

Event Log Precision Accuracy Recall F1-Score
10-Fold

Cross-Validation

Sepsis 0.92 0.91 0.90 0.90 0.88

Figure 8 shows the ROC curve’s graphical plot calculation, where class 12 obtains
the worst ROC-AUC value of 0.779. The rest of the classes received better values in the
measurement of the area; for example, in classes 2, 10, 14, 15, and 16, AUC values between
0.802 and 0.842 were reached; classes 3, 9, and 13 obtained values of 0.895, 0.863, and 0.889.
On the other hand, classes 6 and 8 reached AUC values of 0.937 and 0.928; and the classes
with AUC values closest to 1 in the experiment are 4, 5, 7, and 11 with 0.978, 0.987, 0.965,
and 0.987, respectively. In addition, the dotted lines represent the micro-average and the
macro-average ROC-AUC, with values of 0.953 and 0.899, respectively.
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Figure 8. ROC curves using all classes of the sepsis event log.

3.3. Experiment 3

The Hospital Billing event log is derived from the financial modules of an ERP system
of a Dutch regional hospital [33]. It contains events related to billing for the medical
services provided by the hospital from 2012 to 2016. The activities carried out to bill the
medical service are recorded in each trace. All traces are anonymous and do not contain
identification or user values for privacy reasons. The event log comprises 100,000 traces,
451,359 events, and 18 unique activities. The event log comprises the concept : name, lifecycle
: transition, and time : timestamp attributes.

The inference model obtains acceptable values in all metrics using the hospital billing
event log to predict the next event to be executed in the business process. In the precision
and accuracy metrics, a value of 0.85 is obtained. In the validation using the 10-fold cross-
validation technique, a value of 0.84 is reached (see Table 5), which confirms the stability of
the model with any data set, whether to train or test the inference model.

Table 5. Key performance measures achieved by the inference method at the validation stage using
the hospital billing event log.

Event Log Precision Accuracy Recall F1-Score
10-Fold

Cross-Validation

Hospital billing 0.85 0.85 0.86 0.85 0.84

Very high scores are obtained in evaluating the performance of the inference model
through the ROC curve. In the micro-average ROC curve, 0.994 is obtained. This curve
adds the participation of all classes to calculate the average metric, which is representative
of multiclass ROC curve analysis. Figure 9 clearly shows class 17 with the lowest AUC score
(0.737), represented by the yellow line. At the other extreme are classes 0, 2, 3, 4, 10, and
12, with the highest AUC values of 0.990, 0.996, 0.991, 0.994, 0.999, and 0.993, respectively.
Classes 6, 7, 13, and 16 obtain AUC values of 0.872, 0.899, 0.844, and 0.816. The remaining
classes earn AUC scores between 0.906 and 0.984. We conclude that in the inference model
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with the hospital billing event log, in 13 classes, there is more than 90% probability that
the model can distinguish between the positive and negative classes, and in 4 classes, with
more than 81% probability to distinguish between classes.

Figure 9. ROC curves using all classes of the hospital billing event log.

3.4. Experiment 4

The healthcare collaboration event log is artificial, derived from a scenario of collab-
orative business processes presented in [34]. The business process involves the public
(messaging) and private activities of the patient, gynecologist, laboratory, and hospital
participants. The business process begins when the patient requests medical attention from
the gynecologist, reporting the disease. The gynecologist examines the patient and may
determine that a blood test, a prescription, or an order for hospitalization is required, as
well as the additional activities needed in the gynecologist’s decision, for the patient to
recover her health. The event log contains message interactions between the gynecologist
and the patient, the gynecologist with the laboratory and the hospital, and the hospital
with the patient. The event log includes 199 traces and 21 activities.

The inference model learns adequately from 159 instances used in the training stage,
obtaining good results in predicting the next event, considering that it is an event log with
few traces. A value of 0.81 is received in the accuracy metric, in precision and recall of 0.83
and 0.82, respectively, with which an average of 0.82 is obtained in the F1-score measure
(see Table 6). In evaluating the prediction using 10-fold cross-validation, a value of 0.81
is reached; observing a low variance is very important with a limited amount of data in
the event log. The preceding demonstrates that estimating the model’s performance is less
sensitive to data partitioning, which is appropriate.

Table 6. Key performance measures achieved by the inference method at the validation stage using
the healthcare collaboration event log.

Event Log Precision Accuracy Recall F1-Score
10-Fold

Cross-Validation

Healthcare collaboration 0.83 0.81 0.82 0.82 0.81
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In Figure 10, all ROC curves incline towards the upper left space of the graph, indicat-
ing perfect classification, representing that the TPR is very close to 100% and the FPR is
close to 0%. The AUC score in classes 0, 6, 7, 8, and 10 obtain the maximum value, the ideal
point in the graph with an FPR = 0 and a TPR = 1, confirming an excellent performance of
the inference model in these classes (see Figure 10). Similarly, classes 1, 3, 4, 5, 12, 13, 14,
17, 18, and 19 reached scores above 0.990. Furthermore, classes 9, 11, 16, and 20 obtained
AUC values very close to 1, with scores greater than 0.980. In this evaluation of the model’s
performance, only classes 2 and 15 obtain low values of 0.952 and 0.902, respectively.

Figure 10. ROC curves using all classes of the healthcare collaboration event log.

4. Discussion

We introduced the application of deep learning-based event prediction in healthcare
processes. Our approach is not based on process models with an explicit or simple flow of
activities. It can be applied when the models have high complexity in their behavior and
extension. Our results show no available comparison to the state-of-the-art methods in the
healthcare domain (experiment 1). Approaches to predicting patient transfer management
events (experiment 1) are not found in the literature or reports from extensive recent research.
The values obtained in the metrics are encouraging for practical implementations, demonstrat-
ing the feasibility and usefulness of this method. The use of LSTM neural networks has been
employed in diverse fields of healthcare, e.g., predicting healthcare trajectories from medical
records [35], analyzing longitudinal patient records [36], predicting patient spending on medi-
cations [37], and predicting an initial diagnosis of heart failure [38]. Regarding experiment
2, in [39], they proposed a method based on LSTM using the event log sepsis to predict
the next activity, obtaining a value of 0.60 in the F1-score metric. In [40], it compares the
convolutional neural network (CNN) and an LSTM for predicting the next event, reaching
a score of 0.57 in the ROC-AUC and 0.84 in the accuracy metrics. Similarly, in [41], they
evaluated models based on LSTM and a deep neural network (DNN), reaching 0.66 and
0.57 in the same event log. Our model exceeds the values mentioned in the sepsis event log
(experiment 2), reaching 0.91, 0.90, 0.953, and 0.899 in accuracy, F1-score, micro-average
ROC-AUC, and macro-average ROC-AUC, respectively.

Concerning experiment 3, in [42], reported a value of 0.78 in the accuracy metric for
predicting the next activity in a business process obtained through an LSTM model using
the hospital billing event log. Similarly, the authors of [43] present an approach based on a
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self-attention mechanism called process transformer to predict the next activity, which obtains
85.83 and 0.82 for the accuracy and F1-score metrics. Our LSTM model achieves equal or
higher values in the accuracy and F1-score metrics than the proposals mentioned above.
Furthermore, the AUC score achieved in each class demonstrates the stability of the prediction
model’s performance. Moreover, the average of 0.89 obtained in the 10-fold cross-validation
technique indicates that the model distinguishes most cases correctly, that is, the next activity
within the business process, regardless of the partition of the tested data set.

The results achieved by the LSTM network model support the hypothesis of imple-
menting deep learning approaches to predict future events within healthcare processes.
According to Evermann et al. [21], three factors can (positively or negatively) affect predic-
tion performance. First, parameters initialized randomly in the training phase can lead to
different values. Second, traces contained in an event log are in an arbitrary order. Third,
the training data selection may influence the prediction, so the results obtained by a testing
dataset may not be generalized to others. Nevertheless, our experiment is unaffected by the
above factors; we verify each experiment by 10-fold cross-validation, achieving an accuracy
of 94%, 88%, 84%, and 81%. The possibility of generalizing to similar datasets is evaluated
by comparing the prediction performance from an independent validation sample with
the training sample’s prediction performance. Given the complexity that characterizes the
clinical and organizational processes in the healthcare domain, it is essential to consider
the implementation of process mining approaches when performing data analysis that
supports decision-making within a hospital. Furthermore, predicting future events that
may occur within the execution of a healthcare process has significant advantages, such as
reducing patient care costs, patient waiting time for transfer between hospitals, queue time
in patient care, and the time to order a blood test or to hospitalize a patient.

Exploiting event logs to predict the next event is essential for planning activities and
resource assignments, such as preparing a machine (computed tomography or magnetic
resonance imaging scan) or a resource ready for timely patient care. Therefore, deep
learning for predicting events in healthcare processes through process mining approaches
is feasible.

In summary, the following advantages and limitations can be described. The frame-
work can be replicated in any organization that uses event logs in XES format and even in
data sets that contain a trace/events format. With a trained LSTM model, the processing
time required to predict the next event is minimal. The inference model has the ability to
predict one or more future events correctly. The LSTM model can remember dependencies
when using long data streams. On the other hand, the required processing time will depend
on the number of events distributed in the traces contained in an event log. The LSTM
network training must be rerun when new instances are added to the dataset. The inference
model only operates through the attribute selected in the data extraction stage.

5. Conclusions

We presented a deep learning-based LSTM neural network approach for predicting
future events or activities in healthcare processes. Before implementing the LSTM model
selected, we pre-processed and binarized the events. Subsequently, we designed a neural
network model and trained the network to choose the inference model that achieves the
highest performance.

The inference model achieves high performance on accuracy measures, with values of
0.98, 0.91, 0.85, and 0.81 for patient transfer orders, sepsis, hospital billing, and healthcare
collaboration event logs, respectively, based on the validation dataset. The accuracy metric
is widely used to measure the performance of inference models that predict the next activity
in a business process. However, in data sets that present imbalances in their classes, it is
recommended to use the F1-score metric, in which values of 0.95, 0.90, 0.85, and 0.82 were
reached for the same previously mentioned event logs. Therefore, the predictive method
achieves the highest values in the evaluation metrics, which confirms the capability to
predict the next event in the healthcare process.
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In future work, we aim to extend the input vectors of the LSTM model with additional
attributes (resources or participants) of the event log to predict other event types. To meet
some of the challenges identified within the healthcare processes, such as estimating the
time of occurrence of the next event or predicting the time required to complete a case.

Author Contributions: Conceptualization, U.M.R.-A. and E.T.-L.; methodology, U.M.R.-A. and
E.T.-L.; software, U.M.R.-A.; validation, U.M.R.-A., E.T.-L., G.R. and B.A.M.-H.; formal analysis,
U.M.R.-A. and E.T.-L.; investigation, U.M.R.-A., E.T.-L., G.R. and B.A.M.-H.; resources, U.M.R.-A.
and E.T.-L.; data curation, U.M.R.-A. and E.T.-L.; writing—original draft preparation, U.M.R.-A.,
E.T.-L., G.R. and B.A.M.-H.; writing—review and editing, U.M.R.-A., E.T.-L., G.R. and B.A.M.-H.;
visualization, U.M.R.-A.; supervision, E.T.-L.; project administration, E.T.-L.; funding acquisition,
E.T.-L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by Universidad Autónoma de Tamaulipas (México) un-
der grant number PEI2018-UAT-2022 and UAT/SIP/INV/2023/043. Also, this work was supported
by the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México under grant number 748457.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in 4TU.ResearchData
(Eindhoven University of Technology) at [32,33].

Acknowledgments: The authors are grateful to the Autonomous University of Tamaulipas, Mexico,
for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

LSTM Long short-term memory
HIS Hospital information systems
HIE Healthcare information exchange
EHR Electronic health record
HL7 Health level seven
CDA Clinical document architecture
FHIR Fast healthcare interoperability resources
BPM Business process management
RNN Recurrent neural network
ROC Receiver operating characteristics curve
AUC Area under the curve
XES eXtensible event stream
PCP Primary care provider
SCP Specialist care provider
TPR True positive rate
FPR False positive rate
TP True positive
TN True negative
FP False positive
FN False negative
EER equal error rate
FNR False negative rate
ERP Enterprise resource planning
CNN Convolutional neural network
DNN Deep neural network



Information 2023, 14, 508 18 of 19

References
1. Hompes, B.; Dixit, P.; Buijs, J. Using Process Analytics to Improve Healthcare Processes. In Data Science for Healthcare: Methodologies
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