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Abstract: Parkinson’s disease (PD) is a neurological disorder affecting the nerve cells. PD gives rise
to various neurological conditions, including gradual reduction in movement speed, tremors, limb
stiffness, and alterations in walking patterns. Identifying Parkinson’s disease in its initial phases
is crucial to preserving the well-being of those afflicted. However, accurately identifying PD in its
early phases is intricate due to the aging population. Therefore, in this paper, we harnessed machine
learning-based ensemble methodologies and focused on the premotor stage of PD to create a precise
and reliable early-stage PD detection model named PDD-ET. We compiled a tailored, extensive
dataset encompassing patient mobility, medication habits, prior medical history, rigidity, gender, and
age group. The PDD-ET model amalgamates the outcomes of various ML techniques, resulting in an
impressive 97.52% accuracy in early-stage PD detection. Furthermore, the PDD-ET model effectively
distinguishes between multiple stages of PD and accurately categorizes the severity levels of patients
affected by PD. The evaluation findings demonstrate that the PDD-ET model outperforms the SVR,
CNN, Stacked LSTM, LSTM, GRU, Alex Net, [Decision Tree, RF, and SVR], Deep Neural Network,
HOG, Quantum ReLU Activator, Improved KNN, Adaptive Boosting, RF, and Deep Learning Model
techniques by the approximate margins of 37%, 30%, 20%, 27%, 25%, 18%, 19%, 27%, 25%, 23%, 45%,
40%, 42%, and 16%, respectively.

Keywords: Parkinson’s disease detection (PDD); ensemble techniques (ETs); big dataset; adaptive
boosting (AB); random forest (RF); LSTM; GRU; SVR; KNN; premotor

1. Introduction

Parkinson’s disease (PD) represents a severe form of neurocellular disorder that can
lead to the deterioration of the central nervous system in affected individuals [1]. The
disease is transmissible among patients and exhibits varying symptoms across different
cases, underscoring the necessity for early PD detection, benefiting both patients and others.
To create an effective PD detection model, careful attention must be given to monitoring
the premotor phase of the disease.

PD-affected individuals may exhibit recognizable symptoms such as tremors, limb
stiffness, changes in walking patterns, and balance issues. However, these symptoms
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develop gradually within patients. Additionally, there are two distinct categories of PD
symptoms: (i) motor-related symptoms tied to movement and (ii) non-motor symptoms
unrelated to motion. Non-motor symptoms tend to be more severe and encompass aspects
including depression, sleep pattern abnormalities, diminished olfactory function, and
cognitive decline. Over 52 billion individuals in the USA are affected by PD annually, with
a global impact surpassing 10 million cases. Detecting PD early, categorizing its stages
within patients, initiating prompt treatment, and identifying alleviating symptoms and
treatments are essential strategies to combat PD [2]. Hence, early detection is vital to
slowing PD progression and potentially developing curative therapies.

Despite several PD symptoms and diagnostic tests, the exact diagnosis of PD remains
elusive [2]. These diagnostic indicators are employed collectively to identify PD, with
various biomarkers scrutinized to recognize the disease’s early stages. PD treatments focus
on alleviating symptoms rather than halting or reversing the disease’s progression within
patients.

Before developing the novel PDD-ET model, existing PD detection models were ex-
plored. This exploration revealed various measurement methods, including speech data [3–6],
gait dynamics [7], force trajectory information [8], olfactory recognition measurements [9], and
involuntary fluctuations in cardiovascular activity [10]. In 2020, Illner et al. employed a
serrulate-based pitch estimator (SBPE) to detect PD-related speech abnormalities [11].
Although SBPE demonstrated some promising experimental outcomes distinguishing
PD-affected patients, noise resilience remains a concern. Improved, robust PD detection
algorithms/models are needed to address this challenge. Solana-Lavalle et al. developed
PDD models using vocal features [12]. Maachi et al. introduced a 1D convolutional neural
network (CNN) for PD detection based on gait signals [13]. However, both speech and
gait techniques’ PD detection performance could be more reliable, especially in the pres-
ence of background noise. Additionally, these techniques demand dedicated equipment
and controlled environments [14]. Wagner et al. proposed a wavelet-based PD detection
method using data collected from PD-affected patients [15]. Gallego et al. presented a mo-
tor impairment-based PDD model using smartphones [16]. This model also incorporated
statistics such as covariance, skewness, and temporal data. Dinov et al. utilized diverse
data sources for their PDD model, including imaging, genetics, clinical data, and demo-
graphics [17]. Other handwriting evaluation-based PDD models are also discussed [18,19].

The literature survey underscores the need for an accurate, early-stage PDD model
to acquire crucial information about PD patients for controlling the disease’s progression
within their bodies. Data-driven and model-based methods have been established for this
purpose, with substantial involvement from machine learning (ML) and deep learning
(DL) techniques [20–23]. These tools offer valuable insights for the classification and early
identification of PD. Various ML and DL approaches have been utilized in prior research
to tackle the issue of the PDD challenge. For example, SVM has been used to detect and
classify PD-related dysphonia problems by extracting nonlinear features through SVM’s
nonlinear kernels [24]. Random forest (RF) and neural networks have also been applied
for PD detection using acoustic analysis of articulation. RF and SVM combined exhibit
respectable PDD results. In a comparison of decision tree (DT), regression (Reg.), DM
neural network (DMNN), and neural network (NN), NN achieved around 93% accuracy,
outperforming other algorithms [25].

In recent times, DL techniques have gained prominence in addressing the PDD chal-
lenge due to their ability to handle sequential time-series data and large datasets while
managing overfitting, underfitting, and long-term dependencies [26,27]. The memorization
capacity of LSTM makes it effective in handling the long-term dependencies inherent in
time-series sequential datasets, resulting in improved performance, as seen in detecting
Freezing of Gait issues. The Freezing of Gait phenomenon is significant as a PD indicator.
Furthermore, we also consider the premotor phase as a PD indicator [28], encompassing
symptoms like rapid eye movement (REM), sleep behavior disorder (SBD), and olfactory
loss (OL).
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The advantages and disadvantages of our proposed PDD-ET model and the existing
models are outlined in Tables 1 and 2.

Table 1. Comparison of advantages and disadvantages of the PDD-ET model and the existing models.

Models Advantages Disadvantages

SVR [29]

(i) It has capability to handle non-linear
relationships between input features and

the target output.
(ii) It can effectively capture complex
patterns and variations in the data,

making it suitable for situations where
the underlying relationships are not

linear.

(i) Its sensitivity to the selection of
hyperparameters, such as the kernel type

and regularization parameters.
(ii) Poorly tuned hyperparameters can

lead to overfitting or underfitting,
impacting the model’s generalization

performance.

CNN [30]

(i) Its capacity to autonomously discern
pertinent attributes from unprocessed
data, like images, without the need for

manual feature engineering.
(ii) CNNs are particularly adept at

capturing spatial patterns and hierarchies
of features, making them well-suited for

image-based data like brain scans or
medical images commonly used in PD

diagnosis.

(i) Its susceptibility to overfitting,
especially when dealing with limited
training data. CNNs contain a large

number of learnable parameters, and
without enough diverse data, the model
might generalize poorly to new, unseen

examples.
(ii) Regularization techniques and data

augmentation can mitigate this issue, but
careful attention to dataset size and

quality is necessary.

Stacked-LSTM [31]

(i) Its proficiency in capturing and
learning long-term dependencies within

sequential data.
(ii) It can effectively handle complex
temporal patterns in time series data

related to PD symptoms.

(i) Its susceptibility to overfitting,
especially when dealing with limited

training data.

LSTM [26]
(i) Its aptitude to apprehend extended
correlations and sequential patterns

within time series data.

(i) Its sensitivity to hyperparameter
tuning.

(ii) It struggle when dealing with very
short sequences and the temporal

dependencies.

Decision Tree, RF, SVR [32]

(i) Diverse Learning,
(ii) Bias Reduction,
(iii) Robustness,

(iv) Capturing Complex Patterns,
and (v) High Accuracy.

(i) Complexity,
(ii) Hyperparameter Tuning,
(iii) Computational Intensity,

(iv) Data Requirements,
and (v) Risk of Overfitting.

GRU [33]
(i) It has the capacity to encompass

distant connections within sequential
data.

(i) It might not capture very long-term
dependencies as effectively as more

complex models like LSTMs.

Alex Net [34]

(i) Its capacity to effectively extract
features from images and visual data.

(ii) It can automatically learn hierarchical
features, making it suitable for processing

visual data such as brain scans to PD
diagnosis.

(i) Its relatively large number of
parameters, which can result in higher

computational requirements and
increased training times.

(ii) Alex Net may not be as efficient in
capturing intricate spatial patterns for

complex image recognition tasks.

Deep Neural Network [35]

(i) Feature Learning,
(ii) Hierarchy of Features,

(iii) Versatility,
(iv) Performance,
and (v) Transfer Learning.

(i) Data Hunger,
(ii) Complexity,

(iii) Hyperparameter Tuning,
(iv) Black Box Nature,

and (v) Computational Intensity.
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Table 2. Comparison of advantages and disadvantages of the PDD-ET model and the existing models.

Models Advantages Disadvantages

HOG [36]

(i) Efficient Feature Extraction,
(ii) Robustness to Illumination

and Color Variations,
(iii) Interpretability,
(iv) Low-Dimensional
Representation,

and (v) Applicability to
Different Data Modalities.

(i) Limited Representation of
Complex Patterns,
(ii) Limited Contextual

Information,
(iii) Dependency on Image

Quality,
(iv) Feature Engineering

Required,
and (v) Limited Application to

Non-Visual Data.

Quantum ReLU Activator [37]
(i) Quantum Advantage,

(ii) Feature Transformation,
and (iii) Non-linearity.

(i) Complexity,
(ii) Hardware and

Infrastructure,
(iii) Lack of Quantum Data,

(iv) Interpretability,
and (v) Limited Adoption.

Proposed PDD-ET model

(i) Improved Accuracy and
Robustness,

(ii) Reduced Overfitting,
(iii) Capturing Diverse

Patterns,
(iv) Handling Noisy Data,

(v) Model Flexibility,
(vi) Interpretable Insights,
(vii) Scalability, Parallelism,

and Adaptability.

(i) Architecture of the model is
Complex.

(ii) Training of the model is
complex and time consuming.

The key contributions of this paper are four-fold and stated as follows:

1. To the best of our understanding, we are pioneers in constructing a customized big
dataset encompassing diverse attributes from both individuals affected by Parkinson’s
disease and those who are in good health. Furthermore, we are introducing the novel
notion of the customized expansive dataset into PD detection and classification.

2. To identify PD during its initial phases within the bodies of afflicted individuals to
manage its progression, we employed premotor, cerebrospinal fluid (CF), and SPECT
indicators to achieve a proficient and precise detection of PD.

3. Employing ensemble techniques (ET) to categorize the distinct levels of PD.
4. We extensively examine the latest machine learning and deep learning techniques

alongside our proposed ensemble technique-driven PDD-ET model. Consequently,
the assessed methods encompass shallow machine learning (SML), deep learning
(DL), and ensemble learning (EL) approaches.

In this paper, we have formulated an EL-based PDD-ET model designed to gain
insights into PD by undergoing training procedures. Through this training process, our
model acquires the ability to distinguish between healthy and PD-affected people. The
main aim of this paper is to offer a meticulous and comprehensive evaluation of a spectrum
of ML, DL, and EL techniques for early-stage PD detection. Additionally, we shed light on
the performance of these techniques using our unique and tailored extensive PD dataset, as
discussed in Section 2.1.

The subsequent sections of the paper are organized as follows. Section 2 delves
into creating our customized big PD dataset and the corresponding ensemble learning
methodologies applied. Section 3 describes the system architecture of the PDD-ET model.
Section 4 outlines the particulars of our proposed Parkinson’s Disease Detection (PDD)
model. Moving forward, Section 5 visually presents our experiments’ results and facilitates
comparison between techniques. Lastly, our paper culminates with concluding remarks
and future prospects in Sections 6 and 7.
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2. Customized Big PD Dataset and EL Technique

This section outlines the framework based on EL that is employed for the classification
of distinct Parkinson’s disease (PD) levels and the early-stage detection of PD. Figure 1
illustrates the general progression of the PDD-ET model.

Big PD
Dataset

Pre-processing Normalization Divide into
training (80%)

Training of
PDD-ET model

Predicted
Result

Evaluation
Predicted
Output

Training Phase

Testing Phase

Validation Phase

Pre-processing

Pre-processing

Normalization Divide into
testing (10%)

Predicted
Output

Estimated PDDecision
Yes

No

Nrmalization Divide into
validation (10%)

Predicted
Output Decision

Validated PDD-ET
model

Yes

No

Figure 1. General flow diagram of PDD-ET model.

2.1. Customized Big PD Dataset (CBPDD)

PD is a progressive neurological condition characterized by reduced dopamine levels
within the brain. It becomes evident through the deterioration of movement capabilities,
leading to symptoms like tremors and stiffness. Speech is also notably affected, with diffi-
culties such as trouble articulating sounds (dysarthria), decreased volume (hypophonia),
and limited pitch range (monotone). Moreover, cognitive decline and shifts in emotional
state may arise, and the risk of developing dementia is heightened.

The traditional approach to diagnosing PD entails a clinician compiling the patient’s
neurological history and assessing their motor abilities in various scenarios. Given the
lack of a definitive laboratory test for PD diagnosis, this process can be intricate, partic-
ularly in the early stages when motor symptoms are not yet pronounced. Monitoring
the disease’s progression often involves recurrent visits to the clinic by the patient. A
valuable enhancement could be developing an efficient screening technique that eliminates
the need for in-person clinic visits. Given that individuals with PD exhibit distinct vocal
traits, the analysis of voice recordings offers a non-invasive and informative diagnostic
tool. Applying ML algorithms to a voice recording dataset makes it possible to achieve
accurate PD diagnosis. This approach presents a practical preliminary screening measure
to be taken before seeking consultation with a clinician.

To curate our customized big PD dataset, we sourced the PD dataset from Kaggle’s
official website [38] and the collected patient dataset from various hospitals, as clinical and
behavioral data play a crucial role in PD detection and diagnosis. Figure 2 describes the
construction of the customized big dataset. Within this dataset, we incorporated a more
comprehensive set of features, encompassing 50,583 samples from healthy individuals and
60,958 samples from individuals afflicted by PD. Beyond these two groups, an additional
6000 samples were gathered, encompassing attributes such as patient movement, drug
habits, medical history, flexibility, gender, and age group. These data points were meticu-
lously collected from medical clinics. Subsequently, all these samples were amalgamated
with the existing PD dataset, introducing them as noise or outliers. Following this, the
dataset underwent preprocessing and zero-score normalization, culminating in the creation
of our distinctive Customized Big Parkinson’s Disease Dataset (CBPDD). This CBPDD was
developed with the intent to facilitate the detection and classification of PD.
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PD Dataset26 Patient’s dataset+

Input Dataset

Pre-Processing Data
Normalization

Input Customized Big
Dataset

Noise/Outliers

PD Dataset26 Patient's dataset

Pre-Processing Data
Normalization

Construction of Customized Big Dataset

PDD Dataset

Figure 2. Construction of Customized Big Dataset for the PDD-ET model.

The used clinical and behavioral data for PD detection are described as follows:

1. Demographic Information: Basic patient details such as age, gender, and ethnicity are
often considered, as they can provide insights into potential risk factors.

2. Medical History: Previous medical conditions, surgeries, medication history, and
family history of PD or related neurological disorders are essential for understanding
a patient’s overall health.

3. Symptom Profiles: Detailed descriptions of motor symptoms like tremors, rigidity,
bradykinesia (slowness of movement), and postural instability are fundamental indi-
cators of PD.

4. Non-Motor Symptoms: These include cognitive impairments, sleep disturbances, mood
changes, loss of smell (anosmia), and autonomic dysfunctions.

5. UPDRS Assessment: The Unified Parkinson’s Disease Rating Scale (UPDRS) finds
extensive application as a commonly employed instrument to evaluate the severity of
PD symptoms. It covers both motor and non-motor symptoms.

6. Gait Analysis: Gait abnormalities are common in PD. Analyzing gait patterns and
abnormalities can aid in early detection.

7. Speech Patterns: PD often affects speech, leading to changes in volume, pitch, articula-
tion, and rhythm. Speech analysis can provide valuable diagnostic insights.

8. Fine Motor Skills: Assessments of handwriting, finger tapping speed, and dexterity
can reveal motor impairments indicative of PD.

9. Reaction Time and Movement Speed: Slowed reaction times and reduced movement
speed can be early indicators of PD.

10. Response to Levodopa: Observing how a patient responds to levodopa, a common PD
medication, can help confirm the diagnosis.

11. Self-Reported Questionnaires: Patients’ self-reported questionnaires about their quality
of life, daily activities, and emotional state can contribute to behavioral data.

12. Neuropsychological Testing: Assessments of cognitive functions like memory, attention,
and executive functions can provide additional diagnostic information.

13. Electrophysiological Data: Electroencephalography (EEG), electromyography (EMG),
and other electrophysiological tests can reveal abnormal brain activity and muscle
responses.

14. Imaging Data: Neuroimaging techniques such as MRI, DAT scans, and PET scans can
detect structural and functional changes in the brain associated with PD.

Attribute Information:

• MDVP: Fo(Hz)—Average vocal fundamental frequency;
• MDVP: Fhi(Hz)—Maximum vocal fundamental frequency;
• MDVP: Flo(Hz)—Minimum vocal fundamental frequency;
• MDVP: Jitter(%);
• MDVP: Jitter(Abs);
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• MDVP: RAP;
• MDVP: PPQ;
• Jitter: DDP—Several measures of variation in fundamental frequency;
• MDVP: Shimmer;
• MDVP: Shimmer(dB);
• Shimmer: APQ3;
• Shimmer: APQ5;
• MDVP: APQ;
• Shimmer: DDA—Several measures of variation in amplitude NHR;
• HNR—Two measures of ratio of noise to tonal components in the voice status:

– Health status of the subject (one)-Parkinson’s;
– (zero)-healthy RPDE.

• D2—Two nonlinear dynamical complexity measures;
• DFA—Signal fractal scaling exponent spread1, spread2;
• PPE—Three nonlinear measures of fundamental frequency variation.

Collecting, integrating, analyzing these diverse clinical and behavioral data and at-
tribute information can enable more accurate and early PD detection, leading to timely
interventions and improved patient outcomes.

2.2. Ensemble Learning Technique (ELT)

In this context, we used the power of ensemble learning to facilitate the detection of
PD. EL amalgamates diverse algorithms to yield superior predictive performance compared
to utilizing individual algorithms in isolation [39]. Leveraging the advantages inherent
to EL, our ultimate ensemble is determined following a series of meticulous experiments.
The selection of the final ensemble is detailed in Table 3, which outlines the ensemble
assessment. From Table 3, we discern that the performance enhancements are notable
in the case of ensembles utilizing algorithms like adaptive boosting [40], random forest
(RF) [41], support vector regressor (SVR) [29], long short-term memory (LSTM) [20], gated
recurrent unit (GRU) [27], and Stacked LSTM [31]. Consequently, the ensemble chosen
as our ultimate selection encompasses the adaptive boosting, RF, SVR, LSTM, GRU, and
Stacked LSTM algorithms.

Table 3. Ensemble status.

Select ML algorithms for Ensemble Accuracy Sensitivity Precision F1-Score

Adaptive boosting, RF 65.93% 67.23% 68.69% 69.23%
Adaptive boosting, RF, and KNN 75.223% 75.98% 76.23% 78.23%

Adaptive boosting, RF, KNN, and LSTM 80.12% 80.26% 80.32% 80.95%
Adaptive boosting, RF, Stacked RF, GRU,

and KNN 85.12% 86.26% 86.32% 86.95%

Adaptive boosting, RF, Stacked RF, GRU,
and Improved KNN 90.0123% 89.926% 89.932% 89.95%

Adaptive boosting, RF, Stacked KNN,
Stacked LSTM, and SVR 90.12% 91.26% 91.32% 92.95%

Adaptive boosting, RF, SVR, LSTM,
GRU, and Stacked LSTM 96.12% 97.26% 98.32% 98.05%

3. System Architecture of Our Proposed PDD-ET Model

Figure 3 outlines the framework of the PDD-ET model. By observing the system
diagram in Figure 3, we can understand the progression of early PD detection using our
proposed PDD-ET model.
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Figure 3. System architecture of the PDD-ET model. Here, Ii and Hi denote the input and hidden
layers of the proposed PDD-ET model.

4. Proposed PDD-ET Model

The impact of Parkinson’s disease detection using ML ensemble techniques and a
Customized Big Dataset (PDD-ET) can be profound and far-reaching, contributing to both
the medical field and society. Our work lies in its potential to transform Parkinson’s disease
diagnosis and treatment. By leveraging advanced ML techniques and a customized big
dataset, we can contribute to more accurate diagnosis, improved patient care, and the
advancement of medical research. Our work can change lives, enhance medical practices,
and inspire further innovation in neurology and AI in healthcare. Therefore, this section
expounds upon our conceptualized Parkinson’s Disease Detection Ensemble Technique by
meticulously elucidating the model’s overarching operational methodology, as visually
represented in Figure 3. The comprehensive workflow of our model for early-stage Parkin-
son’s disease detection (PDD) through the amalgamation of machine learning ensemble
techniques and the utilization of premotor stage characteristics unfolds across a sequence
of distinct phases.

• Initially, the customized big PD dataset is subjected to normalization using the zero-
score normalization technique. Subsequently, a pre-processing step is implemented to
eliminate any absent or inaccurate values from the training dataset before initiating the
training of the proposed Parkinson’s Disease Detection Ensemble Technique (PDD-ET)
model.

• After that, we divided the customized big dataset into training, testing, and validation
datasets (80%:10%:10%) and fed them into the PDD-ET model.

• With this setup, we start the training procedure of the PDD-ET model.
• Finally, we evaluate the results through comparison with the predicted and observed

outcomes.

4.1. Construction of the PDD-ET Model

The focal objective of this research is to establish a connection between PD and PDD,
aiming to achieve the early identification of PD. Our approach involves the construction
of the PDD-ET model, which is founded on an ensemble of diverse algorithms, including
adaptive boosting, RF, SVR, LSTM, GRU, and Stacked LSTM, illustrated in Figure 4. Com-
mencing with individual training for each regressor module, we attain a total of six distinct
models (referred to as Model1, Model2, Model3, Model4, Model5, and Model6). These
models are subsequently amalgamated via adjustments in weight parameters, culminating
in the creation of the requisite PDD-ET model.

4.2. Training of the PDD-ET Model

Before commencing the training process, we partition the training dataset into six sep-
arate sub-training datasets. Each sub-training dataset is then utilized to train six individual
models, encompassing adaptive boosting, random forest, SVR, LSTM, GRU, and stacked
LSTM algorithms.
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Training
Dataset
(80%)

Training
Sample1
(14%)

Training
Sample2
(14%)

Training
Sample3
(13%)

Training
Sample4
(13%)

Training
Sample5
(13%)

Training
Sample6
(13%)

Adaptive
boosting

Training Procedure

Random
Forest SVR LSTM GRU Stacked

LSTM

Model1 Model6Model5Model4Model3Model2

Weight Adjustment

Ensembling & Combining

Ensemble PDD-ET Model

Figure 4. Construction of PDD-ET model.

The training procedure yields optimal outcomes by adhering to the configured hyper-
parameter setup, as outlined in Table 4.

Table 4. Best hyperparameter configuration.

Hyperparameter Value

Loss MSE and MAE
Optimizer stochastic gradient descent (SGD)
Batch size 68
Time step 1

Epochs 1000
Learning Rate 0.0003

Dropout 0.03

4.3. Deployment of the PDD-ET Model

The construction of the PDD-ET model involves the integration of individual al-
gorithms, including adaptive boosting, RF, SVR, LSTM, GRU, and stacked LSTM. Each
algorithm features five hidden layers, comprising fifty neurons each, designed to accom-
modate the inputs from the meticulously curated customized extensive PD dataset. The
ensemble algorithms employed are detailed as follows:

1. Adaptive Boosting algorithm [40]:

• Adaptive boosting algorithm is an ensemble technique used to improve weak
models’ performance.

• Here, we designed three adaptive boosting algorithms with different models.
The first boosting algorithm deals with the classification tree. The second and
third boosting algorithms are concerned with different linear models.

2. Random Forest algorithm [41]:

• Random forest (RF) also belongs to the class of ML ensemble techniques. It aggre-
gates the results in a cluster form. RF proceeds using the bootstrap mechanism
and de-correlates the classification trees via random splits during training.

3. SVR algorithm [29]:

• SVR is an offshoot of support vector machines (SVM), originating from its prin-
ciples. Employed to transform features from a lower-dimensional realm to a
higher-dimensional one through the utilization of kernel functions, SVR con-
structs a hyperplane that maximizes optimization outcomes.

4. LSTM algorithm [26]:
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• LSTM is a variant of recurrent neural network (RNN) having the memorization
capacity with its cell units [42]. It works efficiently by using its complex input,
forget, and output gates at each layer of the hierarchy. The output of every layer
is treated as the input of its next immediate layer during training.

5. GRU algorithm [33]:

• GRU is a modified version of the LSTM neural network.
• It improves the complexity and gate architecture of standard LSTM by using

update and reset gates.

6. Stacked LSTM algorithm [31]:

• Stacked LSTM (SLSTM) is a special kind of ensemble technique to enhance
the performance of a standard LSTM neural network. Inside this SLSTM neural
network, the memory states (i.e., cells) are reset at each layer to obtain an accurate
result at every step.

• Stacking architecture makes the model deeper and reaches for improved performance.
• The SLSTM neural network also reduces the accumulation and propagation

errors for long-term detection.
• It also minimizes the computational complexity of the iterative strategy for

long-term multi-step prognosis.

5. Result Analysis and Discussion
5.1. Implementation Details

To assess the efficacy of the PDD-ET model’s performance, we gauge the accuracy
of both the individual ensemble models and the comparative models during the training
phase. The training procedure involves segmenting the customized extensive PD dataset
into proportions of 80% for training, 10% for testing, and 10% for validation. During both
the training and testing stages, we uphold the consistency of the proportion of PD-affected
and non-affected individuals within the dataset, achieved through the implementation of
stratified sampling. Our ensemble models are trained using the training data to discern
whether patients are afflicted by PD or not in the testing data. To ensure computational
efficiency, this entire process is iterated 500 times.

To comprehensively depict the robustness and precision of our proposed PDD-ET
model compared to other models, we uniformly train all compared models with the same
configuration. The models subjected to comparison include (i) SVR [29], (ii) CNN [30],
(iii) Stacked-LSTM [31], (iv) LSTM [26], (v) GRU [33], (vi) Alex Net [34], (vii) DT+RF+SVR [32],
(viii) Deep Neural Network [35], (ix) HOG [36], (x) Quantum ReLU Activator [37], (xi) Im-
proved KNN [43], (xii) Adaptive Boosting [40], (xiii) RF [41], and (xiv) Deep Learning [44]
Models.

5.2. Experimental Setup

The experiments were conducted on a server housing an Intel i7-8700K CPU and an
NVIDIA GeForce GTX 1080 GPU. The software environment employed was Python 3.7,
facilitated by mini Anaconda.

5.3. Model Evaluation

PDD-ET and all compared models are evaluated based on the following metrics:
(i) accuracy (acc), (ii) sensitivity (senv), (iii) specificity (spec), (iv) precision (prec), and
(v) F1-Score (F1). These evaluation metrics are computed from [45].
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Algorithm 1 PDD-ET: Parkinson’s Disease Detection using ML Ensemble Techniques and
Customized Big Dataset

1: INPUT: Customized Big Dataset.
2: OUTPUT: Parkinson’s disease detection.
3: Training of PDD-ET Model
4: Begin
5: Initialize raw input data for every model.
6: Apply zero-score normalization followed by pre-processing.
7: Training of Adaptive Boosting algorithm:
8: Assign equal weight for every dataset (5%, 5%, and 4%) of classification tree and linear

models.
9: Identify the miss classified samples.

10: Increase the weight parameter for the miss classified samples.
11: Ensemble three models.
12: Obtained Model1.
13: if obtained desired results then
14: {
15: Ensemble three models.
16: Obtained Model1.
17: }
18: else
19: {
20: Identify the miss classified samples.
21: Increase the weight parameter for the miss classified samples.
22: Ensemble three models.
23: Obtained Model1.
24: }
25: Training of Random Forest algorithm:
26: Select random samples through a bagging classifier from the training set (14% of

training data).
27: Generate decision trees for every training data.
28: Voting process will be considered for averaging the decision trees.
29: Select the most voted result as the final desired result in terms of Model2.
30: Training of SVR algorithm:
31: Set the hyperplane function, kernel, and boundary lines for SVR.
32: Perform feature extraction.
33: Perform fitting operation to generate the output in terms of Model3.
34: Training of LSTM & GRU algorithms:
35: Construct an instance of the sequential classes.
36: Create 50 layers and connect each of them in the required sequence.
37: Compile the neural networks.
38: Perform fitting operation to generate the desired result in terms of Model4, and Model5.
39: Training of Stacked LSTM algorithm:
40: Create a stack and perform push() operation for every LSTMs.
41: Follow the training procedure of the LSTM neural network to get the desired result in

terms of Model6.
42: Add the desired results from every model by adjusting weight parameters.
43: Formed Ensemble PDD-ET Model.
44: Evaluate the ensemble model on the validation set using acc, senv, spec, prec, F1, Loss,

and AUC metrics.
45: Early Detection of PD based on Algorithm 2.
46: Interpretability and Deployment.
47: Continual Monitoring and Improvement.
48: End
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Algorithm 2 Early PD Detection Criteria.

1: INPUT: Clinical observations, diagnostic test results, patient data.
2: OUTPUT: Early PD detection criteria.
3: Begin
4: Initialize criteria list: criteriaList← ∅
5: Clinical Symptoms and Signs:
6: criteriaList← criteriaList∪ Specific motor and non-motor symptoms associated with

PD.
7: Diagnostic Tests:
8: criteriaList← criteriaList∪ Imaging test results (MRI, DAT scans).
9: criteriaList← criteriaList∪ UPDRS scores and assessments.

10: Biomarkers:
11: criteriaList← criteriaList∪ Identified biomarkers in bodily fluids.
12: Response to Treatment:
13: criteriaList← criteriaList∪ Positive response to dopaminergic medications.
14: Longitudinal Monitoring:
15: criteriaList← criteriaList∪ Gradual worsening of symptoms and test results over time.
16: Machine Learning Algorithms:
17: criteriaList← criteriaList∪Machine learning predictions based on diverse data.
18: Combining Criteria:
19: Define comprehensive criteria by combining elements from criteriaList.
20: End

In addition to the aforementioned five assessment metrics, we incorporated the AUC
curve. Accuracy is a measure of correctly identifying individuals with Parkinson’s disease.
A higher accuracy value indicates the superior performance of the PDD overall. The senv
metric quantifies the PDD-ET model’s proficiency in detecting individuals with PD. On the
other hand, the spec metric gauges the PDD-ET model’s capability to accurately identify
individuals without the condition. The prec metric establishes the significance of positive
detections pertaining to PD-affected patients. The F1 score represents the harmonic mean
between prec and senv.

5.4. Performance Analysis

As depicted in Figure 5, we can discern the PDD-ED model’s capability to detect
individuals affected by PD by utilizing PD features. Within Figure 5, our proposed PDD-ET
model’s feature importance score, indicated by the F1-Score, is presented.

Figure 5. PD detection of the proposed PDD-ET model.
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Figure 6 illustrates the loss trends of the proposed PDD-ET model across both the
training and testing datasets. Upon observation of Figure 6, it becomes evident that the
training and testing losses experience swift declines during the initial epochs. Following
the first 20 epochs, both plots stabilize, indicating that the training loss and testing loss
have reached a comparable equilibrium. This pattern signifies a consistent trend between
the training and testing datasets, with the loss maintaining a relatively stable pattern over
a span of 50 epochs.

Epochs

Lo
ss

Figure 6. Network loss of the proposed PDD-ET model.

Figure 7 illustrates the distribution of Parkinson’s disease within the proposed PDD-ET
model, employing the density feature.
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Figure 7. Detection of healthy and PD-affected patients based on PD density of PDD-ET model.

Figure 8 illustrates the detection of PD using the proposed PDD-ET model, employing
the spiral images from the healthy and PD-affected patients.
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Figure 8. Detection of healthy and PD-affected patients based on spiral images of PDD-ET model.

Figure 9 delineates the representation of PD status within the proposed PDD-ET
model.
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Figure 9. Status of PD detection of the PDD-ET model.

Figure 10 delineates the representation of PD spread status within the proposed
PDD-ET model based on all used features of PD.
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Figure 10. Spread status of Parkinson’s disease using the PDD-ET model.

5.5. PD Detection of PDD-ET Model

Figure 11 presents the AUC value associated with the PDD-ET model. Upon exami-
nation of Figure 11, it becomes apparent that enhanced receiver operating characteristics
are evident within the testing dataset. This substantiates the heightened PD detection
proficiency achieved by the proposed PDD-ET model.

Figure 11. AUC curve of the proposed PDD-ET model.

Table 5 displays the distribution of PD status as depicted by the proposed PDD-ET
model.

Table 5. Distribution of PD status of the PDD-ET model.

PD Status
117,541 Units of Samples

PD Positive PD Negative

Training Set 25% 10.6%
Validation Set 5% 6%

Testing Set 45.4% 8%
Total Set 75.4% 24.6%

5.6. Comparing the PD Detection with Other ML/DL Models

Table 6 demonstrates the efficacy of our proposed PDD-ET model compared to other
models, showcasing the minimal generated loss (i.e., 19.325%). Upon examination of
Table 6, it becomes evident that our proposed PDD-ET model showcases both efficiency
and robustness compared to the state-of-the-art models. Moreover, we can observe that
the PDD-ET model aligns with the advancements attributed to ensemble techniques. The
fusion of models significantly enhances the neural network’s performance compared to
each ML and DL algorithm.
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Table 6. Performance comparison among all state-of-the-art models.

Model accaccacc (%) senvsenvsenv (%) specspecspec (%) precprecprec (%) F1F1F1 (%) Loss (%) AUC (%)

SVR [29] 58.236 59.986 50.236 50.6921 55.236 40.23 78.23
CNN [30] 65.329 66.159 60.956 65.2369 65.659 30.26 85.655

Stacked-LSTM [31] 75.415 76.652 75.236 74.489 75.658 20.365 80.369
LSTM [26] 68.968 68.265 68.266 67.856 68.236 30.256 80.235
GRU [33] 70.968 70.265 70.256 71.256 71.658 26.23 82.365

Alex Net [34] 77.235 76.235 76.556 76.698 76.569 30.123 83.569
Decision Tree, RF, SVR [32] 76.652 76.231 76.359 76.589 76.658 26.256 82.698
Deep Neural Network [35] 68.568 68.236 68.356 68. 432 68.569 32.123 84.236

HOG [36] 70.236 70.569 70.165 70.3215 70.213 30.215 81.023
Quantum ReLU Activator [37] 72.123 72.369 72.456 72.325 72.658 25.369 78.256

Improved KNN [43] 50.9658 50.3256 50.4568 50.231 50.562 45.236 75.9869
Adaptive Boosting [40] 55.658 55.956 55.7858 55.9831 55.7562 40.136 78.169

RF [41] 53.1258 53.366 53.556 53.111 53.1262 32.236 79.1169
Deep Learning Model [44] 79.918 79.561 79.116 79.569 79.662 30.106 79.969
Proposed PDD-ET model 95.325 95.265 95.955 95.1225 95.925 19.325 88.00

5.7. Impact and Application of the PDD-ET Model

The impact and application of our proposed PDD-ET model can be defined as follows:

1. Early and Accurate Diagnosis:

• ML ensemble techniques can lead to more accurate and dependable detection of
Parkinson’s disease, including its initial phases when symptoms might be subtle.

• Early diagnosis enables timely intervention and treatment, potentially slowing
the advancement of the condition and enhancing the quality of life for patients.

2. Personalized Treatment:

• Accurate diagnosis allows for customized treatment strategies tailored to the
unique condition of each individual patient.

• Healthcare professionals can prescribe targeted therapies and medications, re-
ducing unnecessary side effects and optimizing treatment outcomes.

3. Reduced Misdiagnosis:

• ML ensemble techniques can significantly decrease the rate of misdiagnosis,
which is expected due to the complexity of Parkinson’s symptoms.

• This process reduces patient frustration and the risk of inappropriate treatments.

4. Improved Monitoring and Progression Tracking:

• ML-based ensemble models can monitor patients’ symptoms and disease pro-
gression continuously.

• This process enables medical professionals to make informed adjustments to
treatment plans as needed.

5. Advancing Medical Research:

• Our designed customized big dataset contributes to a more comprehensive
understanding of Parkinson’s disease.

• The dataset can be valuable for researchers investigating the disease’s genetic,
environmental, and clinical factors.

6. Facilitating Research Collaboration:

• Sharing our customized big dataset and methodologies can foster collaboration
among researchers, enabling them to advance the field of Parkinson’s disease
research collectively.

7. Enhancing Medical Expertise:

• ML models can complement the expertise of medical professionals, providing
them with an additional tool for accurate diagnosis.
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• Medical professionals can focus more on patient care and treatment decisions.

8. Data-Driven Insights:

• Analyzing our customized big dataset using ensemble techniques can reveal
insights into the disease that might not be apparent through traditional methods.

• These insights could lead to new hypotheses and avenues of research.

9. Public Health Impact:

• Improved diagnosis and treatment can positively impact public health by re-
ducing the burden of Parkinson’s disease on healthcare systems and improving
patients’ overall well-being.

10. Ethical Considerations:

• Our work raises awareness about the ethical considerations of using AI in health-
care, encouraging discussions on data privacy, patient consent, and responsible
AI deployment.

5.8. Discussion

This section contains a two-way discussion of our proposed PDD-ET model.
Clinical Application: Integrating ML ensemble techniques and a customized big

dataset for Parkinson’s Disease (PD) detection holds significant potential for clinical appli-
cation and patient care. Here are some potential clinical applications:

1. Early Detection and Diagnosis: The developed model can contribute to the early identifi-
cation of Parkinson’s disease, allowing for timely intervention and treatment planning.
This has the potential to enhance patient results and quality of life.

2. Personalized Treatment: The PDD-ET model’s accurate detection can lead to increased
customization of treatment strategies uniquely adapted to the individual patient’s
condition and needs.

3. Monitoring Disease Progression: The PDD-ET model can monitor disease progression
over time, assisting clinicians in adjusting treatment strategies as needed.

4. Assisting Medical Professionals: Clinicians can use the PDD-ET model’s predictions
as an additional diagnostic tool, helping them make more informed decisions in
conjunction with their expertise.

5. Telemedicine and Remote Monitoring: The PDD-ET model can be integrated into telemedicine
platforms, enabling remote monitoring of patients’ PD status and providing healthcare
professionals with valuable insights for remote consultations.

6. Clinical Trials and Research: The PDD-ET model can contribute to the recruitment and
stratification of randomized participants, leading to more accurate research outcomes.

Future Directions: Looking ahead, there are several directions in which the applica-
tion of ML ensemble techniques and customized big dataset for PD detection can evolve:

1. Improved Performance: Further optimization and fine-tuning of ensemble models can
enhance their accuracy and reliability in detecting early-stage PD.

2. Incorporating Multi-Modal Data: Integration of multiple data sources, such as imaging,
genetic, and wearable sensor data, can provide a more comprehensive understanding
of PD and improve detection accuracy.

3. Longitudinal Monitoring: Developing models that analyze changes in patient data over
time can aid in predicting disease progression and treatment responses.

4. Explainable AI: Enhancing the interpretability of the model’s predictions can increase
its clinical acceptance by providing insights into the features driving the detection.

5. Real-Time Monitoring: Creating models that can operate in real time can enable con-
tinuous monitoring of PD symptoms, allowing for rapid adjustments to treatment
plans.

6. Global Deployment: Scaling the model’s deployment across different healthcare systems
and regions can ensure a broader impact on PD detection and patient care.
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7. Collaboration with Clinicians: Continued collaboration with medical professionals is
essential for refining the model’s clinical relevance, validation, and integration into
clinical workflows.

8. Ethical Considerations: Addressing ethical concerns related to patient data privacy,
model bias, and responsible AI usage is critical for the sustainable application of these
techniques in clinical settings.

9. Patient Empowerment: Developing patient-friendly tools that leverage the model’s
predictions can empower individuals to monitor their PD status actively.

10. Expanding the model’s capabilities to detect other neurological disorders can make it a versatile
tool in clinical neurology.

6. Conclusions

The early identification of PD holds significant importance in gaining insights into
its underlying causes. Through early PD detection, individuals afflicted with PD can
initiate therapy and treatments at the nascent stages of the condition. This paper introduces
an ensemble-based PDD-ET model, leveraging premotor features of PD to distinguish
between individuals in good health and those afflicted by PD. The proposed PDD-ET
model showcases an enhanced capability for PD detection compared to other models,
achieving a remarkable accuracy level of 95.325%. This achievement can be predominantly
attributed to the amalgamation of diverse ML and DL models. The experimental outcomes
unequivocally establish the superiority of the PDD-ET model over the 14 compared ML
and DL models.

7. Future Work

In the future, our domain of PDD using ML-based ELT could encompass various
avenues for exploration and enhancement, such as Dynamic Ensemble Adjustment, Imbal-
anced Data Handling, and Cross-Dataset Generalization. Incorporating these aspects into
upcoming research and development endeavors has the potential to drive advancements
within the realm of Parkinson’s disease identification, facilitated by ensemble learning.
Ultimately, these advancements could improve early detection, treatment strategies, and
patient outcomes. We also face a few challenges when the PDD-ET model comes to practical
implementation in a clinical setting. Bridging the gap between advanced AI models and
their practical clinical application is an important consideration. Here are some steps that
can be taken to address this issue in the future:

1. Interdisciplinary Collaboration: Engage in collaborative efforts between data scientists,
machine learning experts, and clinical professionals. This collaboration can help
ensure that the model’s development aligns with clinical realities and requirements.

2. Simplified Reporting: Create an intermediate layer that translates the model’s complex
predictions into more understandable and actionable insights for clinicians. This layer
could provide explanations for the model’s decisions and present the results in a
format that clinicians are familiar with.

3. User-Friendly Interface: Develop a user-friendly interface that simplifies the interaction
with the model. This could involve a dashboard or application that presents the
model’s output in an easily interpretable manner.

4. Clinical Guidelines: Develop guidelines for clinicians on how to interpret the model’s
results and incorporate them into their decision-making process. This could include
recommendations on when and how to use the model’s predictions alongside tradi-
tional diagnostic methods.

5. Training for Clinicians: Provide training sessions for clinicians to understand the
underlying concepts of the model and its practical application. This can help them
gain confidence in utilizing the model effectively.

6. Gradual Implementation: Introduce the model in a phased manner, starting with specific
use cases where the model’s predictions can provide valuable insights. Gradually
expand its usage as clinicians become more comfortable with its application.
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7. Feedback Loop: Establish a feedback loop where clinicians can provide input on the
model’s performance, usability, and areas for improvement. This iterative process can
lead to a model that better aligns with clinical needs.

8. Real-World Testing: Conduct pilot studies or simulations within a controlled clinical
environment to observe how the model’s predictions integrate into the workflow and
impact decision making.

9. Validation Studies: Conduct validation studies that compare the model’s predictions
with established diagnostic methods. This can help establish the model’s clinical
validity and reliability.

10. Ethical and Regulatory Considerations: Ensure compliance with ethical guidelines and
regulatory requirements for medical devices and AI applications in healthcare.

11. Patient Involvement: Involve patients in the implementation process. Their feedback
can provide insights into the practical implications of using the model in clinical care.

By taking these steps, the transition from a conceptual model to practical implementa-
tion in a PD clinic can become more feasible. The aim is to ensure that the model’s advanced
capabilities are harnessed to enhance clinical decision making and patient care effectively.
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