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Abstract: Currently, enhancing the efficiency of vulnerability detection and assessment remains
relevant. We investigate a new approach for the detection of vulnerabilities that can be used in cyber
attacks and assess their severity for further effective responses based on an analysis of exploit source
codes and real-time detection of features of their implementation. The key element of this approach is
an exploit source code model. In this paper, to specify the model, we systematically analyze existing
source code models, approaches to source code analysis in general, and exploits in particular in order
to examine their advantages, applications, and challenges. Finally, we provide an initial specification
of the proposed source code model.

Keywords: software code analysis; exploit; semantic model; feature; graph clustering; cyber threats;
software and hardware vulnerabilities; zero-day vulnerabilities; security assessment

1. Introduction

Currently, there is a lot of research and many commercial products in the field of
cyber attack detection and security monitoring based on signature-based, rule-based,
and heuristic methods. However, the number of successful targeted cyber attacks that
exploit previously unknown (zero-day) vulnerabilities continues to grow. This indicates
the lack of acceptable theoretical and practical solutions in this area. Thus, enhancing the
efficiency of vulnerability detection and severity assessment remains relevant. We investi-
gate a new approach to solve the problem of detecting vulnerabilities that can be used in
cyber attacks, and for assessing their severity for further efficient responses. This approach
includes vulnerability detection and dynamic assessment of their severity based on the
analysis of the exploit’s code, and the detection of features of their implementation in
real-time. To implement this approach, it is required to:

• Develop a reference semantic model of the exploit’s source code;
• Define features of the different attack actions considering the related classes of vulner-

abilities and weaknesses;
• Develop methods for detection of the attack actions by using vulnerabilities in the real-

time, mapping of the features as outlined in the previous step and the characteristics
of the analyzed information system;

• Develop methods for assessing the severity of the vulnerabilities and attack actions.

Implementation of these tasks will allow for:

• Detecting the objective features of vulnerabilities and attack actions as determined
based on semantic analysis of the source codes of exploits and construction of patterns
of their behavior, i.e., of the effects of maliciously intended algorithms on vulnerable
software;
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• Detecting the cyber attacks at early stages;
• Defining the metrics for the vulnerability assessment and dynamic assessment of a

cyber attack’s severity based on the selected features.

We propose to use the source code models as the basis for developing a reference
semantic model of the exploit’s source code. Thus, in this paper, we focused on the existing
research in the area of source code analysis as a whole, the source code of the exploits in
particular, and their applications for vulnerability assessments.

The main contributions of this paper are as follows:

• A comparative analysis and systematization of the proposed source code models and
methods of source code analysis, including the exploit’s source code;

• The introduction of an initial semantic model of the exploit’s source code that is used
for further definition of features of vulnerabilities and cyber attacks.

The paper is organized as follows. Section 2 describes the research methodology and
criteria for analysis of the existing source code models and methods of source code analysis,
including the exploit’s source code. Section 3 compares this comparative research with
other reviews. Section 4 gives a detailed description of the selected approaches and their
comparative analyses. The paper ends with a summary of the most important results of the
study, an introduction of the developed semantic model, and future research prospects.

2. Methodology for the Literature Review and Analysis

The study of source code analysis methods was based on the recommendations for a
systematic analysis of the scientific literature [1], which involves defining research ques-
tions, strategies for searching and selecting scientific works, and criteria for including and
excluding papers in this study. The key objective of this study is to analyze approaches
for source code analysis with a possible assessment of the practical applicability to the
problem of intrusion detection and assessment. Thus, the following research questions
(RQs) were specified:

RQ1: which information security tasks use source code/exploit code analysis?
RQ2: what models and methods of their generation are used for the source code

analysis?
RQ3: what programming languages are covered?
RQ4: what metrics are used for the evaluation of the source code analysis methods?
RQ5: what tools are used to generate source code models?
The formulated research questions allowed for specifying the assessment criteria for

the selected research papers. The research paper search strategy was specified considering
the research questions and recommendations from [1]. The authors analyzed research pa-
pers published in scientific journals. We did not consider papers in conference proceedings,
non-scientific journals, commercial documents, presentations, or slides. The search was
implemented using bibliographic systems. Thus, in order to form a set of research papers
for the analysis, the following steps were taken:

Step 1. Form the set of keywords in English.
Step 2. Search the literature using the selected keywords in electronic databases,

e.g., ScienceDirect. The result of this step is the initial dataset of the research papers
for analysis.

Step 3. Validate the initial dataset using inclusion and exclusion criteria. The criteria
are used to decide if the research paper will be included in the final dataset for analysis.

The authors defined the following keywords:
(source code OR exploit source code) AND (graph model OR model) AND

(cyber security).
The following inclusion (IC) and exclusion (EC) criteria were defined:
IC1. The research paper clearly describes the approach to source code analysis and

proposes an analysis model. The presented approach is used to solve information security
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tasks, and the paper describes the experiment scenarios and datasets used, proposes
evaluation metrics, and describes any software solutions that are used or developed.

IC2. The paper is well-structured, and the methods are well described.
IC3. The paper is well written, stylistic, and grammar norms are observed.
EC1. The paper is a survey or contains a comparison of the methods.
EC2. The paper is not suitable for the analysis, as it is not relevant to this research.
EC3. The approach presented is poorly described, and the publication lacks a clear

structure and/or is presented in unscientific language.
The general scheme of the source collection procedure is shown in Figure 1. First,

393 research articles were selected using the keywords in the ScienceDirect database for the
given Subject areas—Computer Science, Engineering, and Decision Sciences for 2019–2024
(the last 5 years). Further, taking into account the inclusion and exclusion criteria, 340 arti-
cles were excluded; in particular, seven research papers were excluded as review papers,
and the rest were excluded as not suitable for the analysis. As a result, only 53 papers were
selected for the comparative analysis.

Figure 1. Scheme of the selection process for the research papers, considering the source code analysis
for intrusion detection and assessment. All numbers are as of June 2023.

3. Comparison with Other Literature Reviews

There are several reviews in the area of the source code representation for the in-
formation security goals that were made within the last 5 years. Some reviews cover
various methods for code analysis; thus, paper [2] analyses different vulnerability dis-
covery methods including static code analysis. Paper [3] analyses various approaches
to malware analysis, including code analysis, but the review is focused on the applied
machine learning and deep learning methods. Paper [4] reviews the detection and analysis
of the Linux-based IoT malware, including code analysis methods and models as part of
the review.

Some reviews are focused on the analysis of the executable files. In [5], a review of
methods for the analysis of the malware in Windows environments (i.e., Portable Executa-
bles) is given, while in this review, the methods and models for the source code analysis are
considered. In [6], the authors analyze six timestamping approaches for static and dynamic
feature sets for Android malware detection.

Some papers review methods of code analysis to detect specific types of attacks. Thus,
in [7] the machine learning techniques, and especially deep learning techniques, for the
code injection attack detection are reviewed.

Some reviews are devoted to the tools’ analysis. Paper [8] compares the static code
analysis tools for vulnerability detection from the detected vulnerabilities and weaknesses
point of view. The tools for C/C++ and JAVA source code are covered.
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Additionally, the adversarial attacks against deep learning models of code should
be mentioned. The comparative analysis of the adversarial attacks against deep learning
models of code is given in [9].

Thus, from our point of view, there is a gap in reviews of the exploit’s source code anal-
ysis methods for the cyber security goals, including vulnerability detection and assessment.

4. Models and Methods for the Exploit’s Source Code Analysis for the Vulnerability
Detection and Assessment
4.1. Source Code Models

There is a set of basic source code models. These models are widely used in such
source code analysis and transformation tasks as compilation, code optimization, clone
code detection, and code authorship attribution. They are graph-based models including
Abstract Syntax Tree (AST), Abstract Semantic Graph (ASG), Control Flow Graph (CFG),
Program Dependence Graph (PDG), and Code Property Graph (CPG) [10].

Abstract Syntax Tree is a tree which nodes are represented by source code tokens such
as operators, variables, and constants. This model reflects the transformation process of
source code written in programming language starting from terminal symbols using the
grammar of the given language [11]. The definition of the AST is given below [12]:

GA = (VA, EA, λA, µA), (1)

where

VA—the set of nodes;
EA—the set of directed edges, E ⊆ (V ×V);
λA—edge labels of one type: parent_of ;
µA—property assignments of nodes.

An implementation of the AST for the Python language is presented by [13]. We pay
special attention to the source code in Python, as the goal of this research is to develop the
model for the exploit’s static analysis, while Python is one of the most popular languages
for the exploit’s implementation. Some papers analyze the structure of the .pyc files that
can be applied while defining the exploit’s source code architecture [14].

An abstract semantic graph is formed from an abstract syntax tree using semantic
rules. Unlike an abstract syntax tree, it includes semantic information [11].

A Control Flow Graph (CFG) is an oriented graph where every node is a basic block
while every edge connects nodes that can be executed sequentially [15]. The definition of
the CFG is given below [12]:

GC = (VC, EC, λC,∅), (2)

where

VC—the set of statements of the programming language, VC ⊂ VA, i.e., the CFG nodes are
based on the AST nodes;
EC—the set of edges, where edges define the possible control flow from one statement to
another;
λC—the edge labels flows_to;
∅—means that there are no properties for the CFG.

An implementation of the CFG for the Python language is presented by [16].
In [17], the authors generate a set of fingerprints based on the control flow graph of

the binary.
A Data Flow graph (https://oneapi-src.github.io/oneTBB/main/tbb_userguide/

Data_Flow_Graph.html (accessed on 26 June 2023)) is an orthogonal view of program
code. The data flow graph represents data dependencies between a number of opera-
tions. It reflects data flows in the program, and is often used in taint analysis to track the
information flows.

https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Data_Flow_Graph.html
https://oneapi-src.github.io/oneTBB/main/tbb_userguide/Data_Flow_Graph.html
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Program Dependence Graph (PDG) represents data and control dependencies, i.e., it
represents the locations in code where variables are used, and resolves function calls.
The definition of the PDG is given below [12]:

GP = (VP, EP, λP, µP), (3)

where

VP—the set of nodes;
EP—the set of edges, where edges define function calls or variable usage, i.e., they link the
variable definition and the statements where the variable is used;
λP—the edge labels that include the edge label calls for the function calls and the edge label
reaches for the variable usage;
µP—the variable name of the variable definition for the variable usage edges.

An implementation of the PDG for the Python language is presented by [18].
In [19], the authors introduce the code property graph (CPG), which integrates AST,

CFG, and PDG. It is a directed, edge-labeled, and attributed multigraph [12]. The definition
of the CPG is given below:

G = (V, E, λ, µ), (4)

where

V—the set of nodes;
E—the set of directed edges, E ⊆ (V ×V);
λ—the labels for the edges E: λ→ ∑, where ∑—the alphabet of the edge names;
µ—the properties for edges and nodes: µ : (V

⋃
E)× K → S, where K—the set of property

keys and S—the set of property values.

In [20], the authors introduce the, static calls graph and the similarity matrix of all
possible ways of code execution in the system. The static calls graph represents the relations
between the system functions, where each node is a function, and each edge is a function
call. The approach proposed by the authors of [20] involves the extraction of the code
structure. This structure, in turn, is used to extract the “calling-called” relations, represented
as a matrix. A call graph is formed based on this matrix. It is used to generate a similarity
matrix. This matrix can be used to discover similar execution paths and to train machine
learning models.

In [21], the instruction calls graph is generated based on malicious Android applica-
tions. It incorporates all execution paths in terms of the operation codes (opcodes).

Various modifications of these models are currently available. Thus, in [12], the
Adversary Controlled Input Dataflow (ACID) tree is constructed based on the code property
graph. According to [12], this is “an ordered, rooted, directed, edge-labeled and attributed
tree”. The definition of the ACID tree is given below:

TAC = (VAC, EAC, λAC, µAC), (5)

where

VAC—the set of nodes, VAC ⊆ VA, i.e., the ACID nodes are based on the AST nodes;
EAC—the set of the directed edges: EAC ⊆ (VAC ×VAC);
λAC—the labels for the edges EAC: λ → ∑A C, where ∑A C—the alphabet of the edge
names;
µAC—the properties for nodes: µAC : VAC × KAC → SAC, where KAC—the set of property
keys, SAC—the set of property values.

An example of the ACID sub-tree representing Listing 1 from [12] is given in Figure 2.
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Listing 1. Source code.

1 5 : \out = $name . i n t v a l ( $page ) ;
Var iab le : Assignment : Expression

Figure 2. ACID sub-tree for an assignment retrieved from [12].

In [22], the System Call Dependency Graph (SCDG) is introduced for malware analysis
and classification. It is constructed based on the binaries. They are used as input to generate
symbolic execution traces. SCDG is generated using execution traces. Finally, the SCDGs
are used in a supervised machine learning multi-class malware classifier. In [23], the
Reflection Guided Static Slicing Diagram (RGSD) is used to detect reflection APIs. It is the
state diagram with removed unnecessary paths.

Graph structures also serve as a basis for creating code embeddings. We classify such
models as embedding-based models, namely, graph-based embeddings. apk2vec [24] is one of
the first solutions to construct vector embedding for APK applications. It includes such
steps as the generation of CFG with its further decomposition on API dependency graph,
Permission Dependency Graph (PDG), and source and sink dependency graph (SGD),
extraction of rooted subgraphs from the obtained graphs, and generation of the vector
presentation using a skip-gram neural network.

Another widely used representation of the source code is its description using its
literal constants. We classify such models as token-based models. For example, the source
code could be presented as a set of strings [25–27] as a sequence of API calls and its argu-
ments [28]. Depending on the used representation model, different analysis techniques
are applied. For example, V. Kalgutkar et al. evaluated the efficiency of the author-
ship attribution classifiers for strings extracted from various locations of Android APK
packages [26], and demonstrated that string-based representation of the code allows outper-
forming approaches based on analysis of the opcode and bytecode features in authorship
attribution task.

In [29], the authors proposed to enrich the string data of the program by including the
information about the sequence of the API calls collected using dynamic analysis. Such
a solution allowed authors to apply a Bi-LSTM neural network to reveal dependencies
between API calls and increase the performance of the malware detection up to 0.9731 in
accuracy and 0.9724 in f1 measure.

In [28], the authors add explainability to malware detection by introducing a fusion
model of dynamic and static API call sequences based on semantics mapping. The feature
vectors are generated considering the contributions of all API calls. They are calculated
using the TF–IDF method. The authors use the Mahalanobis distance to measure the simi-
larity of feature vectors of different samples. Furthermore, finally, for malware detection
and classification, the authors use the following classifiers: Decision Tree, Random Forest,
K-Nearest Neighbor, and Extreme Gradient Boosting. As a result, they reach 97.89% in
detection accuracy and 94.39% in classification accuracy.

Binary code analysis is also used in some cases. We classify appropriate models as byte
level models. It is not aligned with our research goals, but we will consider such models for
the completeness of the review. The models of this class that have been gaining popularity
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are images [30–34]. Thus, in [34], the space-filling curves (Figure 3a) are used for the
construction of the image of the malware behavioral data (Figure 3b).

Figure 3. Hilbert space-filling curve traversal (a) and mapping data through the space-filling curve
(b), retrieved from [34].

In [33], the authors use the grayscale images of the malware retrieved from the MalImg
dataset [35].

In [33], the traditional learning approach (ResNet50 model) and the transfer learning
approach (MCFT-CNN model trained with the knowledge from already trained ImageNet)
are used.

Finally, the classification of the analyzed models is provided in Figure 4.

Figure 4. Taxonomy of program code models.

4.2. Source Code Analysis Methods

Various methods based on the proposed models are used for code analysis, including
static code analysis, dynamic code analysis, and hybrid analysis. In this study, we mainly
consider static analysis methods due to the specifics of the research tasks, but we also
consider hybrid (static and dynamic) methods.

Static code analysis based on graph models is quite common. Until recently, inference
methods have been rather popular. Static code analysis based on the ACID tree is used
in [12]: using PIP definitions and context rules, the authors search possible injection paths
in the ACID tree to inject vulnerabilities represented using vulnerability patterns to modify
AST and inject data flow patterns to modify AST and generate vulnerable source code.

In [11], the abstract semantic graph is used for static and dynamic analysis. In [17],
the authors generate fingerprint sets based on the CFG, and encode them using colors,
i.e., arrays of bits where each bit corresponds to the specific class of instructions. Finally,
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the obtained fingerprints are compared with the precalculated ones using the similarity
measure of the overlap coefficient.

Machine learning methods have become popular in recent years. Several studies
apply machine learning and deep learning methods. In some studies, graph-based models
are used as the basis for machine learning models. Thus, in [20], the similarity matrix
constructed using a static calls graph is used to generate machine learning models. In [22],
a supervised machine learning multi-class malware classifier based on the system call
dependency graph (SCDG) is used for malware detection and classification.

In [23], the static analysis of the Reflection Guided Static Slicing (RGSS) is used as a
preprocessing method to limit the number of paths for the dynamic analysis using machine
learning methods.

Other studies use graph-based embeddings to obtain features. In [21], the authors use
pseudo-dynamic analysis to generate the instruction calls graph and to extract features for
a Deep Neural Network.

Other models are also popular for constructing features for machine learning methods.
For example, in [29] the authors use the token-based model to extract features for the
Bi-LSTM neural network to reveal dependencies between API calls. In [28], the authors use
static and dynamic analysis. They use four different classifiers (Decision Tree, Random For-
est, K-Nearest Neighbor, and Extreme Gradient Boosting) trained using features extracted
from the token-based models to detect and classify malware.

The methods of the malware detection and classification based on the byte level
models, i.e., images, should be outlined [30–34]. Thus, in [34], to extract features from the
constructed image, the following algorithms are used: Local Binary Patterns (LBP), Gabor
filters, and Histogram of Oriented Gradients (HOG). Finally, the following classification
algorithms were used: Random Forest (RF), Support Vector Machine (SVM), and K-nearest
Neighbors (KNN).

In [33], the authors avoid the feature extraction process from images of the malware us-
ing the traditional learning approach (ResNet50 model) together with the transfer learning
approach (a MCFT-CNN model trained with the knowledge from the trained ImageNet).

4.3. Application of the Source Code Analysis Methods in Information Security

Many research works are related to software code analysis using the considered
models and methods. Initially, the proposed models and methods were used for the goals
of developing and analyzing the functionality of applications, and analyzing programming
languages, to ensure correctness and reliability. ASTs are often used for type determination,
architecture reconstruction, and call graph extraction [10]. Thus, in [36], the authors
use the AST dynamic model to analyze dynamic programming languages. In [37], the
authors use AST matching for analysis of the evolution of C source code. The abstract
semantic graph is used to develop programs [11], and for the analysis of dynamically typed
programming languages in [38]. The Control Flow Graphs are usually used to analyze the
flow and control [10,15,39]. The Program Dependency Graphs are used for the program
slicing [10,40,41]. The similarity matrix constructed using static calls graph is used to
discover similar execution paths [20].

Currently, the main application of source code analysis techniques is to identify
software weaknesses and vulnerabilities [19]. In [19], the authors use the code property
graph to detect buffer overflows, integer overflows, string format vulnerabilities, etc.

The static and dynamic analysis of executable files is widespread to detect and classify
malware. In [17], the authors generate fingerprint sets based on the CFG to detect malicious
binaries. In [21], the authors detect malware using pseudo-dynamic analysis. They generate
an instruction call graph to construct a feature vector for the deep neural network. In [28],
the authors implement static and dynamic analysis of a PE file to detect and classify
malware, and to explain why the PE file is recognized as malicious. In [23], the authors
apply the static analysis of the Reflection Guided Static Slicing (RGSS) to obtain a sliced app.
It allows for limiting the number of paths for the dynamic analysis. The authors use machine
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learning methods to detect the reflection API calls in Android apps. The study [22] considers
the optimization of malware detection and classification for the malware represented by
binary files. Additionally, the image-based malware detection and classification methods
should be mentioned [33,34].

Another application of the reviewed methods and models is the generation of vulnera-
bilities in source code for training purposes. For example, in [12], the authors use the code
property graph for this goal. On its basis, the Adversary Controlled Input Dataflow (ACID)
tree is built. To inject vulnerabilities, the possible injection paths (PIPs) (i.e., the source code
statements that can be refactored to inject vulnerabilities) are searched first. Then, these
PIPs are transformed into vulnerabilities using source code patterns specified in the PL/V
pattern language.

5. Tools for Code Analysis

In this paper, we analyze the research papers. Most of them name implementation for
the experiments but do not develop the code analysis tool [22,28,30,32,34,42–45]. Python is
a quite common language for the implementation of the prototypes [21,33]. Thus, in [33],
the authors name that the proposed method is implemented in Keras using Tensorflow
backend in Python 3.6 environment for the experiments.

In some papers, tools are mentioned but not available in open sources. Thus, in [17], the
authors mention that they have developed the tool named Apìcula for malware detection.
In [23], the authors mention the tool EspyDroid+ developed for the reflection API calls
detection in the Android Apps.

Furthermore, there are just a few papers that provide references to the tool. Thus,
in [12] the authors developed the Insecurity Refactoring (https://github.com/fschuckert/
insecurity-refactoring (accessed on 26 June 2023)) code refactoring tool, which allows
injecting vulnerabilities to the PHP code. To evaluate their tool, the authors used True
Positive and True Negative metrics for the found possible injection paths grouped by the
corresponding vulnerabilities. In [46], the authors developed the tool (https://github.com/
SeUniVr/EtherSolve (accessed on 26 June 2023)) for the construction of the precise CFG
graphs based on the analysis of the compiled Ethereum Virtual Machine (EVM) bytecode.

6. Results and Discussion

The summarized results of the comparative analysis are presented in Table 1.

Table 1. Comparative analysis of the research papers.

Ref. Analysis Model and Method Programming Languages
(Input Data) Evaluation Metrics Application

Graph-based models

[46] CFG Compiled Ethereum Virtual
Machine bytecode

Success rate of constructing the
CFG

Construction of the precise
CFG graphs based on the
analysis

[17] CFG; the set of fingerprints; similar-
ity measure Binaries (PE) Jaccard index; Recall; False Dis-

covery Rate (FDR) Malware detection

[12]
ACID tree.
Tree traversal and rules to find place
and insert vulnerability patterns.

PHP TP and FP of the founded places
to inject vulnerabilities Code refactoring

[22]
SCDG; dynamic analysis based on a
supervised ML (the methods are not
specified)

Binaries Execution time
Optimizing symbolic execu-
tion for malware behavior
classification

[23]

Reflection Guided Static Diagram;
Reflection Guided Static Analysis
(RGSS) to limit number of paths for
dynamic analysis based on ML (the
methods are not specified)

Android Apps Number of reflection calls
logged and time Reflection API calls detection

https://github.com/fschuckert/insecurity-refactoring
https://github.com/fschuckert/insecurity-refactoring
https://github.com/SeUniVr/EtherSolve
https://github.com/SeUniVr/EtherSolve
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Table 1. Cont.

Ref. Analysis Model and Method Programming Languages
(Input Data) Evaluation Metrics Application

Token-based models

[43] Vectorized presentation of the code
using Pkg2Vec

Source code decompiled from
Dalvik bytecode (Android
APK)

Accuracy and loss function Source code authorship attri-
bution task

[28]

A fusion model of dynamic and static
API call sequences based on seman-
tics mapping; TF–IDF method to con-
struct feature vector, Mahalanobis
distance to measure the similarity
of feature vectors, Decision Tree,
Random Forest, K-Nearest Neighbor,
and Extreme Gradient Boosting for
detection and classification

PE file TP, TN, FP, FN, precision, recall,
f1 score, accuracy

Malware detection and ex-
planation

[47]

Binary header as a sequence of byte
code, the CNN neural networks to
extract features, GAN to generate ad-
versarial samples of the packed mal-
ware. The classification of packed
malware is performed using LSTM
with attention mechanism

Binaries (PE files and ELF files) TP, TN, FP, FN, precision, recall,
f1 score, accuracy Packed malware detection

Byte level models

[30] RGB image; convolutional neural net-
work

Source code decompiled form
Dalvik bytecode (Android
APK)

Precision, recall, f1 measure, accu-
racy, time for image generation

Malware detection and clas-
sification

[31] RGB image; analysis of the image tex-
tures’ features using KNN, SVM, NB Binaries Precision, recall, f1 measure, accu-

racy, time for image generation
Identification of the malware
variants

[32]

RGB image; analysis of the im-
ages using pretrained CNN net-
works with different architectures:
VGG16, VGG19, ResNet50, Incep-
tionV3, MobileNetV2, DenseNet121,
DenseNet169

Android bytecode – Detection of malicious An-
droid applications

[33]

Grayscale image; ResNet50 model
and MCFT-CNN model trained with
the knowledge from already trained
ImageNet

Grayscale image generated
from binaries

Confusion matrix, accuracy, preci-
sion, recall, and f measure

Malware classification and
uncover

[34]

Space-filling curves to generate an
image; LBP, Gabor filters, and HOG
to extract features; RF, SVM and
KNN for classification

32-bit executable PE samples Precision, recall, accuracy Malware classification

Embedding-based models

[48] Code embedding representation
based on CodeBERT – – Detecting vulnerabilities in

IoT applications

[42]

Code embedding representation
based on analysis of word sequence
in function; analysis is performed
using a Siamese network consisting
of BiLSTM and Attention mechanism

C/C++ FNR, FPR, Accuracy, Precision, f
measure

Detecting vulnerabilities in
IoT applications

[45]

App similarity graph (ASG), which
is constructed based on the similar-
ity score calculated for a pair of ap-
plications. The similarity score is de-
fined according to the set of functions
used by APK. The ASG is used to ob-
tain vector representation of the APK
in order to apply classifiers (using
node2vec transformation)

APK Accuracy, f1 measure, AUC Detection of the malware

[44]

vectorized representation of the
Data Flow Graph paths, vectorized
representation is constructed using
Word2Vec

C/C++ source files TP, TN, FP, FN, accuracy

Location of vulnerabilities
in source code (buffer er-
ror (CWE-119) and resource
management error (CWE-
399))



Information 2023, 14, 497 11 of 15

Table 1. Cont.

Ref. Analysis Model and Method Programming Languages
(Input Data) Evaluation Metrics Application

[49]

Combination of the AST and CFG.
Graph convolution neural network
and the bidirectional recurrent neu-
ral network to extract source code
features.

JavaScript TP and FP of the founded places
to inject vulnerabilities Detecting XSS vulnerabilities

[50]

CFG and PDG and program slice,
which is a set of Assembler code
lines extracted from a binary pro-
gram, program slice is vectorized
and analyzed using LSTM and GRU
neural networks

C/C++ FPR, FNR, precision, recall, f1
measure, accuracy Vulnerability detection

[21] Instruction call graph based on the
opcodes; DNN Android malware TP, TN, FP, FN, Precision, Recall,

f measure, Accuracy Malware detection

The review demonstrated that the research direction related to source code analysis
is highly relevant to information security. Source code analysis allows for detecting and
classifying weaknesses, vulnerabilities, and malware, and for attributing the malware.
Despite the number of studies in the area, there are still challenges that should be resolved,
including analysis of the obfuscated applications and detection of unknown malware and
vulnerabilities. To resolve these challenges, researchers moved their attention to machine
learning and deep learning methods. The new challenge of feature construction was
revealed. That, in turn, led to multiple researchers in the area of transfer learning based on
the images generated from the source code or binaries using different approaches. At the
same time, the problem of explainability is almost not covered in the analyzed papers.

The authors noticed just one paper considering the explainability [28], while it could
have wide application in information security. Thus, the authors of this paper research the
questions of the objective exploits and vulnerabilities measuring. In the analyzed papers,
the authors cover only one approach to the automated vulnerability assessment, based on
the NLP of the vulnerability descriptions. Such a method is proposed in [51], where the
authors categorize vulnerabilities based on their summaries using a taxonomy modeled
for industry, and in [52], where the authors use machine learning based on the textual
descriptions of the vulnerabilities to predict their CVSS vectors or scores. We assume
that the approach based on the source code analysis will allow providing objective and
explainable vulnerability and exploit metrics. Thus, in the next section, the authors provide
an initial model of the source code for the vulnerability and exploit assessment goals.

7. Conclusions and Future Work

We conducted an analytical review of the research papers related to the models and
methods of the source code analysis for the information security goals published in the
last five years. Additionally, we compared the conducted review with the existing ones.
The analysis was made on the recommendations for the systematic analysis of the scientific
literature. As a result, we compared the models and methods proposed in the selected
research papers considering the outlined criteria. Finally, we concluded as to why the
existing models are not suitable for the goals of the exploit’s source code analysis for
vulnerability detection. While the graph models could be used to solve the task, already-
existing models have disadvantages. Thus, the ASGs do not reflect the code functionality,
the abstract semantic graphs in existing implementations lose function call names, and the
CFGs may contain vertices that are not functional. Therefore, we propose a new model
that is a variation of the semantic graph and combines the control flow graph with the
dependency graph of function call names.

The proposed reference semantic model of the exploit’s source code is generated based
on the CFG, whose nodes are replaced with functions and classes of objects of imported
modules (conditionally global names). The nodes of the proposed graph model are specified
by the “names” of the source code, i.e., the imported modules and their functions. Such
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modules (libraries) make up the standard runtime environment of the code interpreter. The
edges of the graph specify the sequence of function calls for such modules. The link from
the source node to the destination node represents the use of the corresponding function
result as an argument of the destination node function. It can be specified as follows:

SG = (Vin, E),

where

Vin—the nodes of the graph that correspond to “names” extracted from the executable
code;
E—the edges representing the “names” usage dependencies from the importing modules.

The distinctive features of the model are as follows: a strict adherence to the main code
execution route; and a reflection of only functional dependencies between imported names.

An example of the proposed model for the exploit with EDB-ID = 30,688 from the
Exploits database is provided in Figure 5: there is a control flow graph on the left and
its transformation to the exploit model on the right. In CFG, the nodes correspond to
the code blocks. The number in the node represents an offset of the first instruction of
each block. The shortest path of the code execution is bold. It represents regular program
execution. The nodes beyond the main route represent the blocks that process exceptions
and irregular situations.

The generated semantic functional model of the exploit reflects the order and depen-
dencies of calls of imported names. For the provided example, there are names of two
functions, namely urlencode() and urlopen(), and one class constructor, namely “Request”.
The first two calls are made in one block. Therefore, the output of function urlencode() will
be unconditionally sent in the constructor of class Request (in case of absence of exceptions).
This link is based only on call dependency. Function call urlopen() is made in another block.
However, it uses an object of the class Request created earlier. This link is built based on the
CFG and functional dependency. Additionally, the code of this exploit contains two more
imported modules. However, calls of their modules do not reflect the functional features
of code.

Figure 5. An example of the proposed model for the exploit’s source code.

The proposed model of the exploit’s source code is required to extract features for
vulnerability detection and construction of the objective and explainable vulnerability
metrics. It is the core of a new approach under investigation to solve the problem of
detecting vulnerabilities that can be used to conduct cyber attacks and assessing their
severity for further efficient response.

In the future research, we plan to evolve the proposed model and to develop the
method for the vulnerability detection and assessment on its basis.

Author Contributions: Conceptualization, E.F. and E.N.; methodology, E.F. and E.N.; software, A.F. and
E.F.; validation, E.F.; formal analysis, E.F. and E.N.; investigation, E.F., E.N., A.F. and S.V.; writing—original
draft preparation, E.F., E.N., A.F. and S.V.; writing—review and editing, E.F.; visualization, E.F. and E.N.
All authors have read and agreed to the published version of the manuscript.
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