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Abstract: This paper addresses the multi-sensor fusion target tracking problem based on maximum
mixture correntropy in non-Gaussian noise environments exclusively using Doppler measurements.
As Doppler measurements are non-linear, a statistical linear regression model is constructed using
the unscented transformation. Then, a centralized measurement model is developed, and the mix-
ture correntropy is determined, which contains the high-order statistics of state prediction and the
measurement error caused by noise. Then, a robust fusion filter is proposed by maximizing the
mixture-correntropy-based cost. To improve numerical stability, the information filter and correspond-
ing square root version are also derived. Furthermore, the performance of the proposed algorithm
is analyzed, and the selection of the kernel width is discussed. Experiments are performed using
simulated data and automatic driving software. The results show that the estimation performance
of the proposed algorithm is better with respect to outliers and mixture Gaussian noise than that of
traditional methods.

Keywords: multi-sensor fusion; mixture correntropy; maximum correntropy criterion; Doppler
measurement; non-Gaussian noise

1. Introduction

Doppler tracking is a technique that is widely used in the fields of radar, wireless
communication, and acoustics, and it is also used for the motion state tracking of targets. In
this technique, by employing the Doppler effect, the speed and direction of the movement
of a target are inferred by analyzing the frequency variation of the received signal. Doppler
tracking plays an important and well-established role in radar systems: it can help a
radar system to detect and track moving targets in real time. Doppler tracking offers
the advantages of high-precision speed measurement, motion state estimation, real-time
performance, anti-interference ability, and wide applicability. These properties make it an
important technique for object tracking and motion analysis in many fields [1,2].

To solve a target-tracking problem using Doppler measurements, Ristic and Farina
implemented Bernoulli PF for Doppler tracking in multi-static situations in [3]. These
authors utilized fixed single-transmitter and Doppler measurements measured by multiple
receivers in order to jointly detect and track targets. As the Doppler measurements were
non-linear, the solution was obtained via particle implementation. Ristic and Farina also
proposed an active receiver-based approach in [4] to improve the information collected
from sensors, and to discard measurements from sensors aligned with the target and
transmitter in the bistatic case. This study shows that the choice of receiver improves
track-settling time and steady-state error performance. The observability and performance
of dual/multistatic Doppler radars were analyzed by Xiao in [5]. For simplicity, the author
analyzed the multi-transmitter-receiver case, and pointed out that this case can also be
generalized to multi-transmitter and multi-receiver cases. In the case of a single receiver,
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observability is evaluated using the rank of the Fisher Information Matrix (FIM). If a target
is completely observable, the FIM should have the highest rank. These Doppler-tracking
filter methods and analyses for target tracking are all based on Gaussian assumptions.

A Kalman filter (KF) is an optimal estimator under the minimum mean square error
criterion, for which a solution is achieved by recursively updating the estimated state and
covariance matrix based on a state-space model. For nonlinear systems, various sub-optimal
nonlinear extensions have been proposed. However, with respect to dealing with non-
Gaussian noise, such as impulsive interference or outliers, their estimation performance
is poor, as the minimum mean square error cannot indicate the bias of the predicted state.
Accordingly, Robust filters, such as the H∞ filter and Huber’s filter [6–8], are employed in
this situation. In particular, the H∞ filter ensures bounded estimation error but performs
poorly in relation to Gaussian noise. Alternatively, Huber’s filter is suitable for dealing
with data estimation problems involving outliers. Based on the theory of robust statistics,
Huber’s filter has a certain robustness to outliers, and it can resist the interference of outliers.
The Huber–Kalman filter can be used to obtain optimal results by minimizing a combined
l1 and l2 norm. Huber estimation can provide better estimation results in the presence of
outliers, and it has a better fitting effect on non-outliers.

Recently, a new cost function based on information theory was constructed, and
a corresponding optimal criterion was proposed [9]. Correntropy is defined as a local
similarity measure, and it is used as a cost for state estimation [10]. By maximizing
the correntropy-based cost, the maximum correntropy criterion (MCC) was employed to
derive robust solutions. As correntropy costs contain the high-order statistics of the error
signal, the high-order characteristics of the error distribution can be captured, and the
derived solutions are, therefore, more robust. MCC-based Kalman filters (MCC-KFs) can
be used to solve linear and non-linear state estimation problems involving non-Gaussian
noise, such as outliers and impulsive noise, and the performance is obviously better than
traditional methods [11,12]. In fact, MCC-based filters can also be treated as a smoothed
MAP estimator [13]. However, MCC-based filters cannot be obtained in closed forms;
therefore, the solutions are usually obtained using a fixed-point iteration approach [14].
The selection of kernel width is also important in MCC-based algorithms, as it determines
the relative weighting of different orders of norms in the loss function, thus potentially
altering the estimation results. In [15], the algorithm performance under different kernel
widths was shown and analyzed; better estimation performance was obtained using an
appropriate kernel width.

This paper addresses the problem of multi-sensor fusion target tracking in non-
Gaussian noise environments with Doppler measurements based on maximum mixture
correntropy. A statistical linear regression model is constructed for nonlinear ranges, an-
gles, and Doppler measurements by employing unscented transformation. Based on the
centralized measurement model, a mixture-correntropy-based cost function is constructed
to capture the high-order statistics of state prediction and the measurement error that
are caused by non-Gaussian noise. Subsequently, a robust fusion filter is developed by
maximizing the cost function based on the maximum correntropy criterion. The solution is
obtained through an iterative approach and the use of square roots. To enhance numerical
stability, the information filter version is also derived. This paper also analyzes the perfor-
mance of the proposed algorithm and discusses the selection of kernel width. Experiments
are performed using numerical simulation and automatic driving software; the results
demonstrate that the proposed method is more robust against non-Gaussian noise than
conventional methods.

The maximum correntropy criterion is introduced in Section 2. In Section 3, the
mixture correntropy cost function is derived, and a robust fusion filter is developed. The
simulation results are presented in Section 4. Finally, the conclusions of the study are
summarized in Section 5.
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2. Background
2.1. Maximum Correntropy Criterion

Define e = y− x is the error between two variables x and y with probability distribu-
tion pe(e). The information of the error e can be measured according to the definition of
Renyi’s entropy, which is denoted as:

Hα(e) , 1
1−α log

∫ ∞
−∞ pα

e (e)de
= 1

1−α logEe
[
pα−1

e (e)
]

= 1
1−α log(Vα,σ(e))

(1)

where E denotes the expectation operator. The variable α is the order of the function. Therefore,
Expression (1) is called Renyi’s α entropy, and Vα,σ(e) is α information potential estimator.

When α = 2, the term Hα(e) is quadratic Renyi’s entropy:

H2(e) = −logEe[p(e)] = −log(V2(e)) (2)

Based on Expression (2), the correntropy can be defined as a generalized similarity
measure between two random variables as follows:

H(x, y) = −log
x

κ(x, y)p(x, y)dxdy = −logEXY[Gσ(x− y)] (3)

where κ(·, ·) is a shift-invariant kernel function. Without loss of generality, the Gaussian
kernel function is used in this paper, which is given by:

κ(x, y) = Gσ(e) = exp
(
− e2

2σ2

)
(4)

where e = x− y, and σ > 0 is the kernel width.
Usually, the joint distribution p(x, y) is unknown, and only limited numbers of data

are available. In this situation, the PDF p(x, y) can be estimated from data using Parzen’s
window estimator, and the expectation operator can be approximated with the sample mean.
The nonparametric estimation of quadratic information potential can be calculated as:

V(x, y) =
1
N ∑N

i=1 Gσ(ei) (5)

where Gσ(·) represents the Gaussian kernel function. Based on the optimization theory,
the optimal solution is obtained when the similarity of two variables is maximized with
respect to ei, such as, for example:

x̂ = argmin
x

H2(e) (6)

This criterion is called the maximum correntropy criterion. Notice that the logarithm
is dropped, and, therefore, the derivation of (6) is equal to maximize the term V(e), such as,
for example:

min
x

H2(e) = max
x

V(e) = max
x

1
N ∑N

i=1 Gσ(ei) (7)

It can be seen that the term Gσ(ei) contains the high moments of the error. Thus, the
MCC algorithm derives the optimal solution in high-dimensional space, and the results are
more robust given non-Gaussian noise.

2.2. Doppler Measurement Equation

Consider the multi-radar fusion situational awareness background, assuming that
the data fusion center knows the position of the transmitter and the sensor, the moving
target detected by the sensor gives each Doppler measurement, and the sensor outputs the
measured value to the data fusion center. The scene is illustrated in Figure 1:
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Figure 1. Multiple radar fusion scenario using Doppler measurements.

Assume that the state vector of the target is a variable in space X ⊆ Rnx and can be
denoted as xk =

[
xk, yk,

.
xk,

.
yk
]T, in which [xk, yk] is the position of the target,

[ .
xk,

.
yk
]

are
the speed, and the notation T represents the transpose operation.

The Doppler measurement is generated by each sensor in the scene, i = 1, . . . , Ns, and
the motion of the target in the direction of the transmitter and receiver jointly cause the
Doppler effect, which is located at the i-th of [xi, yi].The multi-static Doppler frequency shift
measured by two sensors is taken in space Z ⊆ Rnz , the measurement results are transmit-
ted to the data fusion center, and the measurement equation shown in Formulas (3) and (4)
are given as:

zk,i = hi(xk) + εk,i (8)

Among them, hi(xk) = −
[ .

d
t
k

λ +
.
dk,i
λ

]
is the Doppler frequency shift, λ is the wavelength

of the transmitted signal, and εk,i is the measurement noise of the sensor. The linearization
matrix of hi(xk) can be expressed as:

Hk,i =
[

∂hi(xk)
∂xk

∂hi(xk)
∂yk

∂hi(xk)
∂

.
xk

∂hi(xk)
∂

.
yk

]
(9)

and εk,i is the measurement noise of sensor i:

εk,i ∼ N
(

ε; 0, σ2
ε

)
(10)

3. Robust Fusion Filter Based on Maximum Mixture Correntropy
3.1. Mixture Correntropy Cost Function

Consider the discrete nonlinear state-space model:

xk = f (xk−1) + wk−1
yk,n = hn(xk) + vk,n

(11)

where f (x) and hn(x) are the nonlinear state transition equation and the nonlinear measure-
ment equation with an independent non-linear process and a measurement noise of wk−1
and vk,n with the associated covariance Qk−1 and Rk,n. Assume that at time k− 1, the prior
state is x̂k−1 with the associated covariance Pk−1, and the dimension of the state vector is m.
To approximate the nonlinear of the state transition process and the measurement, a set of
2m + 1 sigma points {χi,k−1}2m+1

i=1 . are generated based on the unscented transform [16].
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According to the state transition equation and the nonlinear measurement equations,
the predicted sigma points χi,k|k−1, γi,k|k−1,n can be obtained, and the predicted state x̂k|k−1
and the predicted measurement ŷk|k−1,n can then be calculated as:

x̂k|k−1 = 1
2m+1

2m+1
∑

i=1
χi,k|k−1

ŷk|k−1,n = 1
2m+1

2m+1
∑

i=1
γi,k|k−1,n

(12)

Similarly, the predicted state covariance and the state-measurement cross-covariance
matrix can then be calculated using the sigma points as:

Pk|k−1 =
2m+1

∑
i=1

χi,k|k−1χT
i,k|k−1 − x̂k|k−1 x̂T

k|k−1 + Qk−1

Pxy,n =
2m+1

∑
i=1

χi,k|k−1γT
i,k|k−1,n − x̂k|k−1yT

k|k−1,n

(13)

Define the measurement slope matrix as:

Hk,n =
(

P−1
k|k−1Pxy,n

)T

Then, the measurement equation for sensor n can be approximated by a statistical
linear regression model as:

yk,n ≈
∼
yk,n = ŷk|k−1,n +Hk,n

(
xk − x̂k|k−1

)
+ vk,n (14)

This equation is derived based on Kalman filtering equations [17], which provide the
pseudo-measurement to approximate the nonlinear observation model for state update
and filtering operations with unscented transformation. The pseudo-measurement

∼
yk,n

is an approximate measure obtained by predicting a state estimate and linearizing the
observation model in order to transform the nonlinear observation model into a linear
model. Pseudo-measurements can help us to deal with both nonlinear and non-Gaussian
noise in estimation problems.

Then, the centralized measurement equation [16] can be constructed as:

Yk = Hkxk + vk

where the vector Yk =
[
yT

k,1, yT
k,2, . . . , yT

k,n

]T
and matrix Hk =

[
HT

k,1,HT
k,2, . . . ,HT

k,n

]T
repre-

sent the augmented multi-source measurements and measurement matrix, respectively, and

vk =
[
vT

k,1, vT
k,2, . . . , vT

k,n

]T
is the multi-source measurement noise vector with covariance

Rk = diag[R1, R2, . . . , Rn].
Let ζk,n = R−1

k,n

(
Yk|k−1 + Hkxk −Hk x̂k|k−1 − Yk

)
, and the mixture correntropy be-

tween predicted state and measurements can then be defined as:

Vxy =
N

∑
n=1

1
Ln

Ln

∑
j=1

Gσn

(
en,j
)

(15)

where en,j is the jth element of ζk,n, σn is the selected kernel width for sensor n according
to the noise distribution characteristics, and Ln is the dimension of the measurement for
sensor n.

Assuming independence between the dynamic process noise and the measurement
noise, the MMC criteria are applied to the state transition and the measurement models.
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The optimal solution x̂k can be obtained by minimizing the combined cost function based
on correntropy according to the maximum correntropy criterion:

x̂k = argmin
xk

(
Gσn(xk − x̂k|k−1)−

N

∑
n=1

1
Ln

Ln

∑
j=1

Gσn

(
en,j
))

(16)

where ‖ x ‖2
A = xT Ax.

3.2. Robust Fusion Information Filter Based on Maximum Correntropy Criterion

As shown in Figure 2, we provide the structural diagram of the proposed algorithm,
which has a recursive framework. In this section, an iterative algorithm is proposed for
multi-sensor fusion estimation with non-Gaussian noise. The mixture correntropy cost is
constructed and recursively calculated as it related to the state estimates.

Information 2023, 14, x FOR PEER REVIEW 6 of 16 
 

 

where 𝑒𝑛,𝑗  is the 𝑗th element of 𝜁𝑘,𝑛, 𝜎𝑛 is the selected kernel width for sensor 𝑛 accord-

ing to the noise distribution characteristics, and 𝐿𝑛 is the dimension of the measurement 

for sensor 𝑛. 

Assuming independence between the dynamic process noise and the measurement 

noise, the MMC criteria are applied to the state transition and the measurement models. 

The optimal solution �̂�𝑘 can be obtained by minimizing the combined cost function based 

on correntropy according to the maximum correntropy criterion: 

�̂�𝑘 = argmin
𝑥𝑘

(𝐺𝜎𝑛
(𝑥𝑘 − �̂�𝑘|𝑘−1) − ∑

1

𝐿𝑛

𝑁

𝑛=1

∑𝐺𝜎𝑛

𝐿𝑛

𝑗=1

(𝑒𝑛,𝑗)) (16) 

where ∥𝑥∥𝐴
2 = 𝑥T𝐴𝑥. 

3.2. Robust Fusion Information Filter Based on Maximum Correntropy Criterion 

As shown in Figure 2, we provide the structural diagram of the proposed algorithm, 

which has a recursive framework. In this section, an iterative algorithm is proposed for 

multi-sensor fusion estimation with non-Gaussian noise. The mixture correntropy cost is 

constructed and recursively calculated as it related to the state estimates. 

Measurements

Iteration 
estimation

MMCC-cost
State estimates

kenel

error

,1 ,2 ,{ , ,..., }k k k ny y y

ˆ
kx

,

1 1

1
( )

n

n

LN

xy n j

n jn

V G e
L


= =

= 

1 2, ,...{ , }n  

1 2, ,...{ , }ne e e

Optimal 
estimation

Output

 

Figure 2. Algorithm framework. 

To improve the numerical stability, the fusion estimation algorithm within the infor-

mation filter framework is proposed in this section. 

Start with the Fisher information matrix 𝑉𝑘−1 and information vector 𝑣𝑘−1 at time 

𝑘 − 1, and the state estimate can be represented as �̂�𝑘−1 = 𝑉𝑘−1
−1 𝑣𝑘−1 and the associated 

covariance is 𝑃𝑘−1 = 𝑉𝑘−1
−1 . Then, the predicted state vector �̂�𝑘|𝑘−1 and associated covari-

ance 𝑃𝑘|𝑘−1 are calculated using (12) and (13). 

Differentiating Equation (16) with respect to 𝑥𝑘, the optimal estimate �̂�𝑘 satisfies the 

equality: 

𝛬𝑘|𝑘−1
−1 (�̂�𝑘 − �̂�𝑘|𝑘−1) = ∑ ℋ𝑘,𝑛

𝑇

𝑁

𝑛=1

𝑅
𝑘,𝑛

−
𝑇
2𝛬𝑘,𝑛𝑅

𝑘,𝑛

−
1
2𝜁𝑘,𝑛 (17) 

where 𝜁𝑘,𝑛 = 𝑅𝑘,𝑛

−
1

2 (�̂�𝑘|𝑘−1,𝑛 + ℋ𝑘,𝑛�̂�𝑘 − ℋ𝑘,𝑛�̂�𝑘|𝑘−1 − 𝑦𝑘,𝑛) , and the term 𝛬𝑘|𝑘−1
−1   and 𝛬𝑘,𝑛 

are calculated as: 

𝛬𝑘 = diag[𝐺𝜎(𝑥𝑘 − �̂�𝑘|𝑘−1)] (18) 

𝛬𝑘,𝑛 = diag[𝐺𝜎(𝑒𝑘,𝑛
1 ), 𝐺𝜎(𝑒𝑘,𝑛

2 ), . . . , 𝐺𝜎(𝑒𝑘,𝑛
𝑗

)] (19) 

where 𝑒𝑘,𝑛
𝑗  is the 𝑗th element of 𝜁𝑘,𝑛.  

The posterior information matrix is: 

Figure 2. Algorithm framework.

To improve the numerical stability, the fusion estimation algorithm within the infor-
mation filter framework is proposed in this section.

Start with the Fisher information matrix Vk−1 and information vector vk−1 at time
k − 1, and the state estimate can be represented as x̂k−1 = V−1

k−1vk−1 and the associated
covariance is Pk−1 = V−1

k−1. Then, the predicted state vector x̂k|k−1 and associated covariance
Pk|k−1 are calculated using (12) and (13).

Differentiating Equation (16) with respect to xk, the optimal estimate x̂k satisfies
the equality:

Λ−1
k|k−1

(
x̂k − x̂k|k−1

)
=

N

∑
n=1
HT

k,nR−
T
2

k,n Λk,nR−
1
2

k,n ζk,n (17)

where ζk,n = R−
1
2

k,n

(
ŷk|k−1,n +Hk,n x̂k −Hk,n x̂k|k−1 − yk,n

)
, and the term Λ−1

k|k−1 and Λk,n are
calculated as:

Λk = diag
[

Gσ

(
xk − x̂k|k−1

)]
(18)

Λk,n = diag
[

Gσ

(
e1

k,n

)
, Gσ

(
e2

k,n

)
, . . . , Gσ

(
ej

k,n

)]
(19)

where ej
k,n is the jth element of ζk,n.

The posterior information matrix is:

Vk = P−1
k|k−1 + HT

k

∼
Λk,yHk

= Vk|k−1 + ∑N
n=1HT

k,n

∼
Λk,nHk,n

(20)

and the posterior information vector is:

vk , P−1
k x̂k = vk|k−1 + ∑N

n=1H
T
k,n

∼
Λk,n

(
yk,n − ŷk|k−1 −Hk x̂k|k−1

)
(21)
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The detailed derivation is provided in Appendix A.
Then, the posterior state estimate is:

x̂k = V−1
k vk (22)

The state estimate xk is involved in the computation of Λk,n, which implies that both
sides of Equation (17) are interdependent with x̂k. In order to update the estimates in the
Kalman filter, a fixed-point iteration approach is employed where the innovation covariance
matrix and the posterior information matrix and vector are recalculated iteratively until
convergence is achieved. Using the posterior estimate x̂k obtained from Equation (22), the
terms Λk and Λk,n are recalculated, and the posterior information matrix and vector are
updated iteratively.

The robust square root (SR) fusion information filter is a modification of the MCC-
based fusion information filter using Cholesky factors. Then, re-formulate the filtering equa-
tions, and a more numerically stable algorithm will be derived than the original method.

The SR implementation of the fusion information filter uses QR factorization in each
iteration step to update the corresponding Cholesky factors. This involves decomposing
the information matrix into an orthogonal matrix Q and an upper triangular matrix R, such
that V1/2

k = QR. The Cholesky factor can also be computed using the QR factorization of
PT/2

k−1 , where T denotes the transpose operation.
Algorithm: Maximum mixture correntropy fusion filter:
(1) Initialize Vk−1 and vector vk−1 of the target state, and the posterior covariance is

then P1/2
k−1 = V1/2

k−1 and the state vector is x̂k−1 = PT/2
k−1 vk−1.

(2) Time update:
Evaluate the sigma points χi

k−1, and predict the points χi
k−1 and predicted state values

x̂k|k−1 by using the process equation.
(3) Calculate the square root Λ1/2

k|k−1 using QR decomposition:

[
Λ1/2

k|k−1, 0
]T

= QR
([

χ∗k|k−1, Q1/2
k−1

]T
)

(23)

Calculate V1/2
k|k−1 = Λ1/2

k|k−1 and v1/2
k|k−1 = Λ1/2

k|k−1xk|k−1.
(4) Measurement update:

Calculate γ∗k+1|k and the measurement slope matrixHk =
(

χ∗k+1|k

)−1
γ∗k+1|k using the

measurement equation to obtain the regression model (16).
(5) Compute the term Λk,y using (19).
(6) Calculate the posterior information matrix:

[
V1/2

k 0
]T

= QR

([
V1/2

k|k−1 HT
k,1

∼
Λ

1/2

k,1 . . . HT
k,n

∼
Λ

1/2

k,n

]T)
(24)

where
∼
Λ

T/2

k,n
∼
Λ

1/2

k,n =
∼
Λk,n. Calculate the posterior information matrix and the information vector:

vk|k = vk|k−1 +
N

∑
n=1
HT

k,n

∼
Λk,y

(
yk,n − ŷk|k−1 −Hk,n x̂k|k−1

)
(25)

(7) Repeat steps 4–6 until convergence is achieved.

3.3. Analysis of the Algorithm Convergence

The kernel width σ is a crucial parameter, and the selection of this parameter affects
the convergence of both the algorithm and the fusion estimation performance.

In this section, we analyze the effect of parameter selection on the convergence of the
iteration implementation of the proposed algorithm. Since the MCC solution cannot be
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obtained in closed form, iterative methods are used to derive the final results. The con-
vergence of the fixed point iteration approach is guaranteed by the compression mapping
theorem when the function ‖ g(xk) ‖1 and its derivative5xk ‖ g(xk) ‖1 are bounded. Here,
we define β as the upper bound of ‖ x̂ ‖1, and we ensure that the function ‖ g(xk) ‖1
satisfies this inequality:

||g(xk)||1
(a)
≤‖

(
Λ−1

k|k−1 + HT
k

∼
Λk,yHk

)−1
‖1‖ HT

k

∼
Λk,y

(
Yk − Ŷk

)
‖1

(b)
≤‖

(
Λ−1

k|k−1 + HT
k

∼
Λk,yHk

)−1
‖1

N
∑

n=1

Ln
∑

i=1

(∣∣vi,k
∣∣× ∣∣hi,k,n

∣∣)
(c)
≤
√

m ‖
(

Λ−1
k|k−1 + HT

k

∼
Λk,yHk

)−1
‖2

N
∑

n=1

Ln
∑

i=1

(∣∣vi,k
∣∣× ∣∣hi,k,n

∣∣)
=
√

mλmax

[(
Λ−1

k|k−1 + HT
k

∼
Λk,yHk

)−1
]

N
∑

n=1

Ln
∑

i=1

(∣∣vi,k
∣∣× ∣∣hi,k,n

∣∣)
(d)
≤

√
m∑N

n=1 ∑Ln
i=1(|vi,k|×|hi,k,n|)

λmin

[
P−1

k|k−1+∑N
n=1 ∑Ln

i=1

(
ξnhT

i,k,nhi,k,n

)]

(26)

where m is the state dimension, ‖ · ‖2 is the 2-norm of matrix, hi,k,n is the ith row ofHk,n, and

vi,k is the element of the vector R−
1
2

k,n

(
yk,n − ŷk|k−1,n

)
. The term ξn = Gσn

(
β ‖ hi,k,n ‖1 +

∣∣di,k
∣∣),

where di,k is the element of the vector R−
1
2

k,n

(
yk,n − ŷk|k−1,n − Hk,n x̂k|k−1

)
. The inequality (a)

and (c) hold according to the properties of the matrix norm, and the inequality (b) is estab-
lished based on the triangle inequality. The inequality (d) holds as ξn is a monotonically
decreasing value of x.

According to (26), we obtain a function of kernel width:

φ(σ) =
√

m∑N
n=1 ∑Ln

i=1(|vi,k|×|hi,k,n|)
λmin

[
P−1

k|k−1+∑N
n=1 ∑Ln

i=1

(
ξnhT

i,k,nhi,k,n

)] (27)

which satisfies ||g(xk)||1 ≤ φ(σ). Moreover, when σn → ∞ , φ(σ)→ 0, and when ∏N
n=1 σn → 0,

the function φ(σ)→ ∞ . The reason is that the function φ(σ) is continuous and involves
the monotonic decreasing of σn.

Therefore, the equation φ(σ) = β has the solution
{

σ′n}N
n=1 , and for any upper bound

β of ‖ x ‖1, we have:
∃
{

σn}N
n=1, s.t. ‖ g(x) ‖1≤ φ(σ) ≤ β (28)

Differencing Equation (27) with respect to xk, when the kernel widths are large, we have:

‖ ∇xk g(xk) ‖1≤ α ≤ 1 (29)

When the selected kernel widths
{

σn}N
n=1 meet the conditions in (28) and (29) at the

same time, the convergence of the fixed point iterative algorithm is guaranteed.

3.4. Discussion of the Kernel Selection

Further, we analyze the influence of parameter selection on estimation performance.
Extend the potential estimator around zero by the Taylor series yields:

N

∑
n=1

1
Ln

Ln

∑
i=1

Gσn(ek,n,i) =
N

∑
n=1

Ln

∑
i=1

1
Ln
√

2πσ

∞

∑
p=0

(−1)p

2p p!

(
e2

k,n,i

σ2

)p

(30)
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when the kernel width σ→ ∞ , the term Gσn

(
ei

k,n

)
can be approximated by the sum of zero

order and first-order terms in Taylor expansion:

Gσn

(
ei

k,n

)
≈ 1√

2πσ

(
1−

e2
k,n,j

2σ2
n

)
(31)

Then, the cost function in (19) is as follows:

JF ≈ min

{
‖ xk − xk|k−1 ‖

2
P−1

k|k−1
−

N

∑
n=1

1
Ln
√

2πσ

Ln

∑
j=1

e2
k,j

}
(32)

which can be represented as follows:

JF ≈ min

{
‖ xk − x̂k|k−1 ‖

2
P−1

k|k−1
−

N

∑
n=1
‖ Hk,nxk − yk,n ‖2

Wk

}
(33)

where W =
R−1

k
Ln
√

2πσ
. This equation is the same as the traditional MMSE-based fusion cost func-

tion, and the derived solution is similar to the conventional Kalman filter fusion algorithm.
The kernel widths σx,

{
σn}N

n=1 are crucial parameters in the maximum mixture corren-
tropy (MMCC)-based fusion algorithm, and they can be set manually or optimized through
trial-and-error in practical applications.

4. Simulation
4.1. Numerical Example

In this section, simulations are performed in order to demonstrate the effectiveness
of the proposed algorithm, and they are then compared with traditional methods. In the
scenario, consider linear constant velocity (CV) and nonlinear constant turn (CT) motion
models with state transition equation:

xk = Fkxk−1 + wk (34)

where

Fk =


1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 1 0

 (35)

for the CV model, and

Fk =


1 sin(ω∆T)

ω 0 − 1−cos(ω∆T)
ω

0 cos(ω∆T) 0 −sin(ω∆T)
0 1−cos(ω∆T)

ω 1 sin(ω∆T)
ω

0 sin(ω∆T) 0 cos(ω∆T)

 (36)

for the CT model.
In the state transition matrix, the turn rate ω = −0.005 rad/s, and the dynamic state is

initialed with x =
[
px, vx, py, vy

]T
= [0 m, 10 m/s, 0 m, 0 m/s]T. The target track is shown

in Figure 3.
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In these equations, ∆T represents the interval between the target motion and the
measurements, which also corresponds to the time step of the iterative estimation process
proposed in this paper. In practical applications, the target signal is accumulated within
the ∆T interval, and Doppler measurements are obtained by Fourier transform. Since this
paper mainly studies the fusion estimation method with target Doppler measurement
under non-Gaussian measurement conditions, the radar signal processing is not discussed
in detail here.

The process noise wk follows mixture Gaussian distribution:

wk ∼ N
(

r1

∣∣∣0, Q2
1

)
+ 0.1N

(
r3

∣∣∣0, Q2
3

)
(37)

and the covariance in the distribution can be represented as:

Qn = diag

([
T3ln

3
T2ln

2
T2ln

2 Tln

]
,

[
T3ln

3
T2ln

2
T2ln

2 Tln

])
(38)

where l1 = 10−3 m2/s−3, l2 = 10−3 m2/s−3.
Four sensors receive Doppler measurements. As shown in Figure 1, the positions of

the sensors are set at [−1500 m, −600 m], [−1500 m, 600 m], [500 m, −600 m], and [500 m,
600 m], respectively, and the measurement equation can be represented as:

h(x) =


√

p2
x + p2

y

arctan
(

py
px

)
pxvx+pyvy√

p2
x+p2

y

 (39)

When the radar carrier frequency is 1 GHz, consider four kinds of non-Gaussian
measurement noise:

rk,1 ∼ N
(
r1
∣∣0, R2

1
)

rk,2 ∼ N
(
r1
∣∣0, R2

1
)
+ 0.1N

(
r3
∣∣0, R2

3
)

rk,3 ∼ N
(
r1
∣∣0, R2

1
)
+N

(
r2
∣∣0, R2

2
)

rk,4 ∼ N
(
r1
∣∣0, R2

1
)
+N

(
r2
∣∣0, R2

2
)
+ 0.1N

(
r3
∣∣0, R2

3
) (40)

In these equations, the first kind of noise is Gaussian noise with covariance
R1 = diag

(
20 m2, 10−5 rad2, 10 Hz2

)
; the second is Gaussian noise with outliers, in which

the outliers are generated with probability 0.1 and covariance R3 = diag(2000 m2, 10−3 rad2,
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1000 Hz2); the third is mixture Gaussian noise with covariance R1 = diag(20 m2, 10−5 rad2,
10 Hz2), R2 = diag

(
5 m2, 5× 10−6 rad2, 5 Hz2

)
; and the fourth is mixture Gaussian noise

with outliers.
In the simulation, the initial position and the velocity estimates are calculated by the

Doppler cross approach. The termination threshold of the iteration implementation is set
to 0.01. The proposed MMCC-based fusion method is compared with the traditional fusion
method based on KF [17] and the robust Huber filter [8] in terms of the root mean squared
error (RMSE) with 200 Monte Carlo trails. The selection of kernel widths is crucial for the
performance here, and these parameters are chosen based on the error distribution through
trial-and-error.

The fusion estimation results with Gaussian noise, mixture Gaussian noise, outliers,
and complex noise are presented in Table 1, respectively. Appropriate kernel widths
are selected in order to obtain the best performance for the correntropy-based fusion
method. Figures 4 and 5 show the estimation performance given mixture Gaussian noise
and outliers. As shown in the figures, the MMCC-Fusion method outperforms the other
algorithms. The reason for this is that the correntropy-based cost function in the MMCC-
Fusion method captures higher-order statistics compared to the correction function in
the Huber-Fusion algorithm, which allows it to accurately reflect the characteristics of the
arbitrarily distributed process and the measurement noise. Therefore, the MMCC-Fusion-IF
algorithm is able to effectively suppress different types of non-Gaussian noise under the
MCC criterion. This experiment demonstrates the robustness and the adaptiveness of the
correntropy-based method in complex non-Gaussian noise scenarios.

Table 1. Fusion estimation RMSE in different non-Gaussian noise.

Algorithm Case 1 Case 2 Case 3 Case 4

KF-Fusion 1.413 2.510 1.918 2.404
Huber-Fusion 2.165 2.050 1.907 2.226
MMCC-Fusion 1.555 1.753 1.725 1.890
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Table 1 provides the estimation performance given different noise patterns. It can
be seen that KF is the optimal estimator, and that it performs best given Gaussian noise.
However, the MMCC-Fusion method can still provide better results. The reason for this
is that through select appropriate kernel width, relatively good results can be achieved
under arbitrary noise conditions, and this also reflects the flexibility of the MMCC-based
method. When the kernel width approaches infinity, the estimation results are close to the
traditional Kalman filter fusion method.

Evaluate the estimation performance with different kernel widths. Outliers generated
with the parameters in case 2 are contained in the measurements. As shown in Figures 6
and 7 and also listed in Table 2, the estimation results are the best when the kernel widths
are selected as σ = 9 for each Doppler radar, which leads to a desirable error distribution
and optimal results. It can be seen that the performance decreases with inappropriate kernel
widths because the characteristics cannot be accurate captured. With the increasing of
kernel width, the second moment of the error has the largest proportion in the correntropy-
based loss function. In this situation, the loss function is approximate to the minimum
mean square error loss, and the estimation results will be close to the traditional Kalman
filter fusion.
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Table 2. Velocity estimation performance with different kernel widths.

Algorithm Kernel Widths RMSE of
.
x RMSE of

..
x Iteration Num

MMCC-Fusion-IF (σ = 8 ) 1.895 0.249 3.85
(σ = 9 ) 1.840 0.234 2.98
(σ = 15 ) 2.164 0.306 2.36

KF-Fusion 2.179 0.312

Furthermore, Table 2 shows that larger kernel widths result in faster convergence.
With kernel widths larger than 10, the iterative implementation of the proposed algorithm
converges to the optimal solution quickly in only two or three iterations. Therefore, very
small kernel widths should be avoided to avoid slow convergence.

4.2. Autonomous Driving Data Simulation

This experiment provided the tracking of an autonomous driving vehicle. The data
source is from the Udacity course self-driving car [18], and the Doppler measurements are
obtained by four distributed radar sensors. The track of the car is shown in Figure 8:
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In Figures 9 and 10, the estimation results are shown. It can be seen that the KF-Fusion
method performs worst, mainly due to the sensitivity of the MMSE criterion to outliers.
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The Huber-Fusion method yields better results by mitigating the impact of outliers using a
correction function on the measurements. The MMCC-Fusion-IF method outperforms the
others as non-Gaussian measurements are suppressed under the MCC criterion.
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5. Conclusions

This paper addresses the multi-sensor fusion target tracking problem based on maxi-
mum mixture correntropy with the non-Gaussian process and measurement noise using
Doppler measurements. A robust fusion filter is developed by maximizing the mixture
correntropy-based cost, which contains the high-order statistics of state prediction and
measurement error caused by noise. Furthermore, the selection of the kernel width is dis-
cussed. Simulations are performed given different non-Gaussian noise, such as outliers and
mixture Gaussian noise. Experiments are performed using simulated data and automatic
driving software. The results demonstrate the effectiveness of the proposed method.
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Appendix A

Derivation of (20) and (21).

Let
∼
Λk,n = R−

T
2

k,n Λk,nR−
1
2

k,n , and Equation (17) can then be rewritten in a centralized
form as:

Λ−1
k|k−1

(
x̂k − x̂k|k−1

)
= HT

k

∼
Λk,y

(
Yk − Ŷk + Hx̂k|k−1 −Hk x̂k

)
(A1)

where
∼
Λk,y = diag

[∼
Λk,1,

∼
Λk,2, . . . ,

∼
Λk,n

]
.

Change the form of (34) to obtain:

x̂k = x̂k|k−1 + Kk
(
Yk − Ŷk

)
Kk =

(
Λ−1

k|k−1 + HT
k

∼
Λk,yHk

)−1
HT

k

∼
Λk,y

(A2)

Apply the matrix inversion lemma

(A + BCD)−1 = A−1 −A−1B
(

C−1 + DA−1B
)−1

DA−1 (A3)

with the identifications

Λk|k−1 → A, HT
k → B,

∼
Λk,y → C, Hk → D (A4)

and the innovation gain

K = Λk|k−1HT
k

(∼
Λk,y + HkPk|k−1HT

k

)−1
(A5)

Then, the posterior covariance can be calculated as follows:

Pk = (I−KHk)Pk|k−1 =

(
P−1

k|k−1 + HT
k

∼
Λk,yHk

)−1
(A6)

Therefore, the posterior information matrix is:

Vk = P−1
k|k−1 + HT

k

∼
Λk,yHk

= Vk|k−1 +
N
∑

n=1
HT

k,n

∼
Λk,nHk,n

(A7)

and the posterior information vector is:

vk , P−1
k x̂k =

(
P−1

k|k−1 + HT
k

∼
Λy,kHk

)
xk|k−1 + P−1

k PkHT
k

∼
Λk,y

(
Yk − Ŷk

)
= P−1

k|k−1xk|k−1 + HT
k

∼
Λk,y

(
Yk − Ŷk + Hk x̂k|k−1

)
= vk|k−1 +

N
∑

n=1
HT

k,n

∼
Λk,n

(
yk,n − ŷk|k−1 −Hk x̂k|k−1

) (A8)
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