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Abstract: Stroke occurs when a brain’s blood artery ruptures or the brain’s blood supply is interrupted.
Due to rupture or obstruction, the brain’s tissues cannot receive enough blood and oxygen. Stroke is
a common cause of mortality among older people. Hence, loss of life and severe brain damage can be
avoided if stroke is recognized and diagnosed early. Healthcare professionals can discover solutions
more quickly and accurately using artificial intelligence (AI) and machine learning (ML). As a result,
we have shown how to predict stroke in patients using heterogeneous classifiers and explainable
artificial intelligence (XAI). The multistack of ML models surpassed all other classifiers, with accuracy,
recall, and precision of 96%, 96%, and 96%, respectively. Explainable artificial intelligence is a
collection of frameworks and tools that aid in understanding and interpreting predictions provided
by machine learning algorithms. Five diverse XAI methods, such as Shapley Additive Values (SHAP),
ELI5, QLattice, Local Interpretable Model-agnostic Explanations (LIME) and Anchor, have been used
to decipher the model predictions. This research aims to enable healthcare professionals to provide
patients with more personalized and efficient care, while also providing a screening architecture with
automated tools that can be used to revolutionize stroke prevention and treatment.

Keywords: anchor; explainable artificial intelligence; Eli5; LIME; machine learning; SHAP; stroke;
QLattice

1. Introduction

A blockage or leak in the blood vessels causes the brain’s blood flow to be stopped or
diminished, which results in a stroke. When this happens, the brain’s cells start to degrade
as a result of lack of nutrition and oxygen [1]. Stroke is a cerebrovascular condition. This
suggests that it has an effect on the blood vessels that supply the brain with oxygen. If the
brain is not given adequate oxygen, damage may start to occur [2]. Medical help is needed
immediately. Some strokes can be deadly or leave a person incapacitated, despite the fact
that many of them are treatable [3–6].

Stroke symptoms appear unexpectedly, and they might differ from person to person.
Signs of a stroke include dizziness, problems speaking or understanding, blurred or lost
vision in one or both eyes, a lack of sensation of the arms, legs, or face, usually on a single
side of the body or issues with coordination or balance, walking or mobility issues, fainting
or seizures and extreme headaches that have no apparent reason. Other stroke symptoms
that are less typical may include sudden nausea, momentary loss of consciousness, fainting,
confusion, seizures, or coma [7–10]. The treatment process for stroke is depicted in Figure 1.

Information 2023, 14, 435. https://doi.org/10.3390/info14080435 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14080435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-9459-8423
https://orcid.org/0000-0002-3345-360X
https://orcid.org/0000-0002-3826-1084
https://orcid.org/0000-0002-9468-548X
https://doi.org/10.3390/info14080435
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14080435?type=check_update&version=2


Information 2023, 14, 435 2 of 27

Figure 1. Process flow of stroke.

Prediction of stroke can be made by using AI/ML classifiers. One such field where
machine learning (ML) could have a big impact on society is the healthcare sector. In a
market of smart watches, fit bits, and other devices that continuously capture a wealth
of health data, the use of machine learning to assess health data is becoming widespread.
Machine learning may prove to be the solution to the healthcare sector’s rising costs as
well as to strengthening the relationship between patients and doctors. Machine learning
and big data solutions can be used for a variety of health-related applications such as
diagnosis, prognosis, decision support systems, helping doctors optimise prescriptions and
treatments, helping patients decide when and whether to schedule follow-up appointments
and many more [11,12].

Artificial intelligence (AI) algorithms carry out sophisticated operations on very large
amounts of data. These operations include text recognition and imaging, remote health
treatment, accurate disease prediction and detection [13]. Explainable AI (XAI) was de-
veloped as a result of the realisation that the classifiers must be used in an appropriate
manner in order to ensure transparency, accountability, and ethics [14]. The explainability
factor gives black-box models new potential and provides healthcare stakeholders the
confidence to interpret Machine Learning (ML) and Deep Learning (DL) models. In the
healthcare industry, transparency in predictive analysis is essential and XAI is centred on
enhancing it [15].

This research focuses on the usage of XAI techniques such as Eli5, SHAP, QLattice,
LIME and Anchor for better understanding of stroke predictions [16]. Explainable AI (XAI)
is a new area of machine learning that tries to solve how AI systems make decisions in
a “black box.” This field examines the steps and models involved in decision making by
making it more interpretable and understandable.

Several studies have already employed machine learning algorithms to predict stroke.
The contributions of some research studies are described below:

Govindarajan et al. [17] collected data from 507 patients to categorise stroke disease
combining machine learning and text mining algorithms. For their analysis, several ma-
chine learning algorithms were employed, and the stochastic gradient algorithm (SGD)
provided the classification accuracy of 95%. Tazin et al. [18] employed a dataset containing
5110 records, where 249 patients were at risk of having a stroke and 4861 were not. For
early stroke prediction, ML algorithms, such as logistic regression (LR), decision tree (DT),
random forest (RF), and voting classifier, were utilised. Among these, the RF model out-
performed the others with 96% accuracy. Emon et al. [19] proposed a framework for the
early prediction of stroke using various machine learning classifiers such as LR, SGD, DT,
AdaBoost, Gradient Boosting Classifier (GBC), XGBoost (XGB), and multilayer perceptron
(MLP) and compared them with the proposed weighted voting classifier. According to
the performance test, weighted voting classifier delivered the highest accuracy of 97%.
Sailasya et al. [20] examined a stroke dataset and performed data preprocessing such as
label encoding, handling of missing values, and imbalanced data handling. On this dataset,
six machine learning techniques were employed. The Naive Bayes algorithm obtained an
accuracy of 82% Shoily et al. [21] proposed a new prediction model with several feature



Information 2023, 14, 435 3 of 27

selection combinations. They built their model with Naive Bayes, J48, KNN, and RF classi-
fiers. From the above studies, it is evident that ML and AI algorithms have already been
utilised to predict stroke risk. This article makes the following contributions to the existing
literature:

• The most crucial attributes have been decided upon using four feature selection
techniques: Pearson’s correlation, Mutual information, Particle swarm optimization
and Harris Hawks algorithm. Comparison of the feature selection methods have been
made in this study.

• A novel customised “ensemble-stacking” architecture was designed and used to
improve the performance utilizing baseline classifiers.

• This is a unique study that used five XAI techniques, such as LIME, SHAP, ELI5,
Anchor and Qlattice, on the dataset to demystify stroke predictions.

The rest of the article is structured as follows: Section 2 comprises materials and
methods. The results are extensively described in Section 3. Section 4 comprises the
conclusion and future scope.

2. Materials and Methods
2.1. Data Description

In this research, we made use of a publicly available stroke dataset [22]. This dataset
has information on 5110 patients with 12 attributes. This dataset has stroke as the target
variable (binary classification problem). Out of 5110 patients, 4869 did not have stroke and
249 had stroke. The attribute “BMI” had 201 null values. Since the median is unaffected by
outliers, it was used to impute the missing values for continuous variables. The dataset’s
attributes are described in Table 1.

Table 1. An overview of our dataset’s attributes.

Attribute Number Attribute Name Mentioned in
the Data File Attribute Name Description of the Attribute

1 id Id Unique identifier number for each patient

2 gender Gender Female, Male, Other

3 age Age (years) Patient’s age

4 hypertension Hypertension (0/1) If patient has hypertension (1) or no hypertension (0)

5 heart_disease Heart disease (0/1) If patient has any heart disease (1) or no heart disease (0)

6 ever_married Yes-married
No-not married Patient’s marital status

7 work_type Work type
If the patient is a child or has a government job, if they
have never worked, if they work in a private
organization, or if they are self-employed

8 Residence_type Residence type If the patient lives in urban residential area or rural
residential area

9 avg_glucose_level Average glucose level Average glucose level present in the blood

10 bmi BMI Body mass index of the patient

11 smoking_status Smoking status
If the patient formerly smoked, if they have never
smoked, if they smoke or Unknown (information is
unavailable)

12 stroke 0-no stroke
1-had stroke If the patient had stroke (1) or did not have stoke (0)

2.2. Data Preprocessing

Raw data are transformed into usable and understandable forms through data prepro-
cessing. There are several challenges associated with raw datasets, including flaws as well
as inconsistent behaviour, lack of trends, and inconsistency. It is also necessary to perform
preprocessing in order to handle missing values and inconsistencies [23]. Preprocessing
of the dataset was performed, and it needed a few additional procedures to be prepared
for deployment. The missing values in the ‘bmi’ attribute were replaced by its median.
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Since the attribute’s ‘id’, ‘ever_married’, and ‘work_type’ had little statistical relevance, we
eliminated them.

The violin plot for attributes such as age and average_glucose_level is shown in
Figure 2. (a) Patients with strokes ranged in age from roughly 40 to 80 years old, while
those without strokes ranged in age from 0 to 80. (b) The majority of patients’ average
blood glucose levels ranged from 50 to 130, while the rest ranged from 130 to 300, and these
patients did not experience a stroke. Majority of stroke patients had average blood sugar
levels between 60 and 130, only a small percentage had levels between 170–300.

Figure 2. Violin plots for continuous attributes. (a) age and (b) average_glucose_level.

The attributes’ variations in relation to the target variable stroke are depicted in
Figure 3. While 183 individuals had no hypertension but suffered a stroke, 4429 patients
had neither.

Sixty-six patients had both hypertension and stroke, while 432 patients had hyper-
tension but no stroke. A total of 202 patients had a stroke but no heart disease, while
4632 patients had neither. Forty-seven patients had both heart disease and a stroke, while
229 patients had heart disease and no stroke. There were 141 female patients who had a
stroke and 2853 female patients who did not. A total of 108 males experienced strokes,
compared to 2007 males who were stroke-free. While the smoking status of 1497 patients
was unknown and they did not experience a stroke, 47 patients with this same status expe-
rienced a stroke. While 70 individuals who formerly smoked suffered strokes, 815 other
patients who formerly smoked did not have stroke. Ninety people who had never smoked
experienced strokes, while 1802 patients who had never smoked did not. Forty-two smokers
who had strokes in comparison to 747 smokers who did not have stroke.

Rescaling the attributes to have a mean of 0 and a variance of 1 is the process of data
standardization. Standardization’s objective is to reduce all features to a comparable scale
without distorting the variations in the values ranges. For feature scaling, we implemented
the standard scaler algorithm. After standardization, outliers have no effect on the data
and standardization has no bounding range.
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Figure 3. Bar plots some of the categorical attributes. (a) hypertension, (b) heart_disease, (c) gender
and (d) smoking_status.

Balancing the dataset facilitates model training by avoiding it from becoming biased
towards one class. Data balancing can be performed in two ways: undersampling or
oversampling. Despite the fact that undersampling is simple to perform and can improve
model run-time, it has certain drawbacks. Eliminating samples from the original dataset
can result in the loss of important information. If there are insufficient data, it may also lead
to overfitting. Hence, oversampling was proposed in this study. To reduce the possibility
of inappropriate model training, we used the Borderline-Synthetic Minority Oversampling
Technique (SMOTE) to balance the training dataset data. Oversampling in this approach
generates deceptive points from the minority class [24,25]. A comparison of the borderline-
SMOTE algorithm’s performance before and after is shown in Figure 4. The testing dataset
was not balanced to preserve integrity.
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Figure 4. (a) Unbalanced training dataset (b) Balanced training dataset using Borderline-SMOTE.

2.3. Feature Selection

Pearson’s Correlation, Mutual information, Particle swarm optimization and Harris
Hawks algorithm were utilized in this study to choose the best features. These algorithms
assisted in extracting the important attributes and reduced the amount of data.

2.3.1. Pearson’s Correlation

Following a preliminary review of the data, the influence of each feature on the
result was examined using Pearson’s correlation coefficient analysis. A perfect relationship
between the correlation coefficient value “r” and the output is shown if the value was near
“−1/1,” whereas a value of 0 denoted there was no correlation. Values of the correlation
coefficient that are positive show that the factor had an effect on the result favourably. If
it was negative, the effect on the result was the opposite. The basis for the correlation
coefficient evaluation approach is the notion that assessing the strength of the link between
the characteristics of variables can help evaluate the importance of a feature collection in a
dataset [26,27]. Some variables exhibited a positive association, whereas others exhibited a
negative correlation. The correlation heatmap is shown in Figure 5.

Figure 5. Pearson’s correlation matrix.
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2.3.2. Mutual Information (MI)

A popular feature selection approach is the Mutual Information algorithm [28]. The
statistical properties of the dataset are considered by this filtering technique. Entropy, which
measures the degree of uncertainty in the features, serves as the foundation for mutual
information. The attributes were ranked based on how much each attribute contributes to
the target variable, as seen in Figure 6.

Figure 6. The Mutual Information Algorithm ranks the features in order of importance.

2.3.3. Particle Swarm Optimization

An effective global search method is required to solve feature selection issues more
effectively. Global search capabilities of evolutionary computation (EC) approaches are
well recognized. The EC method known as particle swarm optimization (PSO), which is
based on swarm intelligence, is relatively new. PSO is computationally less costly and has a
faster convergence rate when compared to other EC algorithms like genetic programming
(GP) and genetic algorithms (GAs) [29–33]. Eleven features were selected with this feature
selection out of 16 parameters. These selected features are presented in Table 2.

Table 2. Important features.

Methods Used Features

Mutual Information
‘age’, ‘heart_disease_0’, ‘smoking_status_Unknown’, ‘bmi’, ‘heart_disease_1’,
‘smoking_status_formerly smoked’, ‘gender_Male’, ‘hypertension_0’, ‘hypertension_1’,
‘Residence_type_Rural’.

Pearson’s Correlation
‘age’, ‘heart_disease_1’, ‘heart_disease_0’, ‘avg_glucose_level’, ‘hypertension_1’,
‘hypertension_0’, ‘smoking_status_formerly smoked’, ‘smoking_status_Unknown’, ‘bmi’,
‘Residence_type_Rural’.

Particle swarm optimization
‘age’, ‘heart_disease_0’, ‘heart_disease_1’, ‘hypertension_0’, ‘hypertension_1’,
‘gender_Male’, ‘gender_Female’, ‘gender_Other’, ‘bmi’, ‘Residence_type_Rural’,
‘Residence_type_Urban’.

Harris Hawks algorithm
‘age’, ‘heart_disease_0’, ‘heart_disease_1’, ‘gender_Male’, ‘gender_Female’,
‘gender_Other’, ‘bmi’, ‘smoking_status_Unknown’, ‘smoking_status_formerly smoked’,
‘smoking_status_never smoked’, ‘smoking_status_smokes’.
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2.3.4. Harris Hawks Algorithm

Heidari et al. created the Harris Hawks Optimizer (HHO), a swarm-based optimiza-
tion technique. The basic goal of HHO is to imitate the natural hunting behaviour of the
Hawk team and the prey’s flight in order to find solutions to the single-objective problem.
In Harris Hawks Optimizer, the best location is represented by the prey, while the hawks’
chasing behaviour reflects the search agent [34–38]. Harris Hawks Optimizer can be used
to solve a variety of real-world optimization problems, including those involving discrete
and continuous spaces, and can improve the quality of solutions, offer high accuracy in
obtaining the best possible parameters, and improve prediction performance [39–43].

2.3.5. Important Features

Important features according to Mutual information, Pearson’s correlation, Particle
swarm optimization and Harris Hawks algorithm are listed in Table 2. Age, BMI, hyper-
tension, and heart disease are some characteristics that are consistent. These features were
chosen for further analysis.

2.4. Machine Learning Terminologies

The various stages of the machine learning process are data preparation and selec-
tion, model selection, model training on the data, performance evaluation, and model
deployment. Iterative experimentation and model improvement are frequently used in
the process to boost the model’s performance. The development of a model that accu-
rately generalizes to new data and resolves the issue at hand is the ultimate goal of the
machine learning process.

Successful hyperparameter tuning is a prerequisite for selecting the best model. The
goal of hyperparameter selection is to draw attention to the successful results from earlier
training cycles. Adjusting the algorithm’s parameters allow model improvement [27]. In
this study, we achieved optimised parameter values using the grid search optimisation
technique. Grid search is a tuning method that performs thorough parameter searching by
manually examining each value within the specifically defined hyperparameter space.

There are numerous techniques to use machine learning ensemble models, including
boosting, stacking, and bagging. By using stacking, we can train several models to address
similar problems and then combine the findings to produce a more potent model [44].
Utilising this idea, we constructed three stacks on two different levels. A visual example
of stacking is shown in Figure 7. The first stack consisted of logistic regression, decision
tree, random forest and K Nearest Neighbours (KNN). The second stack comprised of
tree-based algorithms, such as lightgbm, adaboost, catboost and xgboost. Finally, the above
stacks were further ensembled to form the final stack.

The results obtained by the models were interpreted using XAI techniques. The XAI
models used in this study are:

• SHAP (SHapley Additive exPlanations): It uses a model-neutral approach for analysing
the output of any machine learning model by figuring out how much each feature
contributed to the final prediction.

• LIME (Local Interpretable Model-agnostic Explanations): It is a technique for generat-
ing local interpretations of black-box models by approximating them with interpretable
models trained on subsets of the data.

• ELI5 (Explain Like I’m 5): It is a Python library that provides simple explanations of
machine learning models using a variety of techniques, including feature importance,
decision trees, and permutation feature importance.

• Qlattice: It is a visualization tool for exploring machine learning models that allows
users to interactively explore the model’s decision-making process by visualizing the
feature contributions to the final prediction.

• Anchor: It is uses rules and conditions to explain the model output. It uses the evalua-
tion metrics precision and coverage to identify the importance of that particular condition.
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Figure 7. Visual representation of stacking.

A machine learning pipeline is a series of interconnected data processing modules
that automate the end-to-end workflow of a machine learning project. It usually entails
data preparation, feature engineering, model selection, tuning of the hyperparameters, and
evaluation. The pipeline is designed to optimize the performance of the machine learning
models by providing a systematic and automated approach to the entire process. Figure 8
shows the ML pipeline used for the study.

Figure 8. Machine Learning pipeline.
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3. Results
3.1. Performance Metrics

Using classification metrics such as precision, F-1 score, accuracy, recall and AUC score
(Area Under the curve), we have assessed and compared our AI models. Our classifiers try
to determine whether a specific patient has a stroke or not.

• Accuracy: The accuracy is its capacity to distinguish between patients experiencing
a stroke and those who do not correctly. The proportion of true positive and true
negative outcomes in all analysed cases should be determined in order to determine
the prediction’s accuracy. The mathematical formula is:

Accuracy =
TP + TN

TP + TN + FN + FP
(1)

• Precision: It is a statistic that determines the proportion of patients who actually
suffered a stroke compared to all other patients. This implies that it also considers
patients who have received a false-positive stroke diagnosis. The equation is as follows:

Precision =
TP

TP + FP
(2)

• Recall: It is a measure of performance that is described as the ratio of patients who
had a stroke accurately to all the patients who had been affected. This statistic puts a
focus on false-negative situations. When there are few false-negative cases, the recall
is extraordinarily high. It is calculated using the following formula:

Recall =
TP

TP + FN
(3)

• F1 score: A evaluation metric that combines a model’s precision and recall scores. It is
calculated using the following formula:

F1 score = 2 × precision × recall
precision + recall

(4)

• AUC: The true positive rate versus the false-positive rate for various test scenarios is
plotted on the receiver operating characteristic (ROC) curve. It shows how effectively
the models distinguish between the binary classifications. The AUC is the region
beneath this curve. AUC values that are high show that the classifier is working
effectively.

3.2. Model Evaluation

The ML algorithms can precisely estimate a person’s risk of stroke and offer per-
sonalised recommendations for prevention and therapy by identifying trends and risk
factors. Additionally, they can help medical professionals diagnose patients more quickly
and accurately, improving patient outcomes. Using the Python integrated Conda virtual
environment, the classifiers were run. Important libraries including pandas, Scikit, seaborn,
matplotlib and NumPy were installed. An “Intel® core (TM) i5” CPU was utilised to train
the models, which used 8 GB of RAM. For this study, a 64-bit Windows operating system
was taken into consideration.

An 80:20 training-to-testing ratio was used to train all the models. The results from
several ML models are summarised in Table 3 for Pearson’s correlation, Mutual information,
Particle swarm optimization and Harris Hawks algorithm. For Pearson’s correlation,
xgboost gave the best performance with precision, F1-score, accuracy, recall and AUC
of 0.95, 0.95, 0.95, 0.95, 0.99, respectively. For mutual information, stack 2, gave the best
performance with precision, accuracy, F1-score, recall and AUC of 0.96, 0.96, 0.96, 0.96,
0.99, respectively. The loss metrics for the same shows log loss as 1.402, hamming loss
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as 0.040, jaccord score as 0.922 and Mathew’s correlation coefficient(MCC) as 0.918. For
Particle swarm optimization, stack 2, gave the best performance with precision, F1- score,
accuracy, recall and AUC of 0.95, 0.95, 0.95, 0.95, 0.99, respectively. At last, for Harris Hawks
algorithm, stack 2 gave the best performance with precision, accuracy, F1-score, recall and
AUC of 0.96, 0.95, 0.95, 0.94, 0.99, respectively. The loss metrics for the same shows log
loss as 1.651, hamming loss as 0.047, jaccord score as 0.908 and Mathew’s correlation
coefficient(MCC) as 0.904. The summary of testing results is portrayed in Table 3.

Table 3. The summary of the findings from the various machine learning models applied in this
study with respect to Pearson’s Correlation, Mutual Information, Particle swarm optimization and
Harris Hawks algorithm.

Pearson’s Correlation

Model Accuracy Precision Recall F1-Score AUC Log Loss Hamming
Loss

Jaccord
Score MCC

Random Forest 0.92 0.90 0.95 0.93 0.98 2.628 0.076 0.863 0.849

Logistic Regression 0.83 0.80 0.88 0.84 0.90 5.753 0.166 0.728 0.669

Decision Tree 0.89 0.89 0.90 0.89 0.93 3.746 0.108 0.806 0.783

KNN 0.92 0.89 0.95 0.92 0.92 2.752 0.079 0.857 0.842

SVM- Linear kernal 0.83 0.80 0.90 0.84 0.90 5.789 0.167 0.729 0.670

SVM- Sigmoidal
kernal 0.59 0.59 0.59 0.59 0.71 14.170 0.410 0.420 0.179

Stack 1 0.92 0.90 0.96 0.92 0.98 2.716 0.078 0.859 0.844

AdaBoost 0.90 0.89 0.92 0.90 0.97 3.445 0.099 0.822 0.800

CatBoost 0.85 0.81 0.92 0.86 0.93 5.274 0.152 0.751 0.700

LGBM 0.95 0.96 0.94 0.95 0.99 1.775 0.051 0.901 0.897

XGB 0.95 0.95 0.95 0.95 0.99 1.846 0.053 0.899 0.893

Stack 2 0.95 0.95 0.95 0.95 0.99 1.722 0.049 0.905 0.900

Final Stack 0.94 0.91 0.96 0.94 0.99 2.219 0.064 0.883 0.872

Mutual Information

Model Accuracy Precision Recall F1-Score AUC Log Loss Hamming
Loss

Jaccord
score MCC

Random Forest 0.94 0.92 0.96 0.94 0.98 2.130 0.061 0.887 0.877

Logistic Regression 0.83 0.80 0.89 0.84 0.89 5.735 0.166 0.729 0.671

Decision Tree 0.88 0.88 0.89 0.89 0.92 3.995 0.115 0.795 0.768

KNN 0.94 0.91 0.97 0.94 0.94 2.095 0.060 0.890 0.880

SVM- Linear kernal 0.83 0.80 0.89 0.84 0.89 5.948 0.172 0.721 0.659

SVM- Sigmoidal
kernal 0.59 0.60 0.56 0.58 0.67 14.259 0.412 0.407 0.174

Stack 1 0.94 0.91 0.97 0.94 0.99 2.077 0.060 0.890 0.881

AdaBoost 0.90 0.89 0.92 0.90 0.97 3.374 0.097 0.825 0.804

CatBoost 0.84 0.80 0.91 0.85 0.93 5.522 0.159 0.740 0.685

LGBM 0.96 0.96 0.95 0.96 0.99 1.527 0.044 0.915 0.911

XGB 0.95 0.95 0.95 0.95 0.99 1.687 0.048 0.907 0.902

Stack 2 0.96 0.96 0.96 0.96 0.99 1.402 0.040 0.922 0.918



Information 2023, 14, 435 12 of 27

Table 3. Cont.

Mutual Information

Model Accuracy Precision Recall F1-Score AUC Log Loss Hamming
Loss

Jaccord
score MCC

Final Stack 0.95 0.93 0.97 0.95 0.99 1.740 0.050 0.906 0.900

Random Forest 0.94 0.92 0.97 0.94 0.98 2.059 0.059 0.890 0.881

Logistic Regression 0.83 0.81 0.87 0.84 0.91 5.771 0.167 0.725 0.667

Decision Tree 0.91 0.91 0.91 0.91 0.95 3.125 0.090 0.834 0.819

KNN 0.92 0.88 0.97 0.92 0.95 2.823 0.081 0.856 0.840

SVM- Linear kernal 0.83 0.81 0.87 0.84 0.91 5.913 0.171 0.718 0.659

SVM- Sigmoidal
kernal 0.56 0.57 0.56 0.56 0.7 15.147 0.438 0.391 0.122

Stack 1 0.94 0.93 0.95 0.94 0.98 2.166 0.062 0.884 0.874

AdaBoost 0.90 0.88 0.94 0.91 0.97 3.338 0.096 0.830 0.808

CatBoost 0.87 0.83 0.94 0.88 0.94 4.510 0.130 0.783 0.745

LGBM 0.95 0.95 0.95 0.95 0.99 1.811 0.052 0.900 0.895

XGB 0.95 0.94 0.96 0.95 0.99 1.740 0.050 0.905 0.899

Stack 2 0.95 0.95 0.95 0.95 0.99 1.775 0.051 0.903 0.897

Final Stack 0.94 0.93 0.95 0.94 0.99 2.059 0.059 0.889 0.880

Particle swarm optimization

Model Accuracy Precision Recall F1-Score AUC Log Loss Hamming
Loss

Jaccord
score MCC

Random Forest 0.93 0.91 0.95 0.93 0.98 2.539 0.073 0.866 0.853

Logistic Regression 0.83 0.80 0.88 0.84 0.89 5.806 0.168 0.725 0.666

Decision Tree 0.91 0.92 0.90 0.91 0.94 3.107 0.089 0.834 0.820

KNN 0.91 0.88 0.96 0.92 0.94 3.001 0.086 0.847 0.829

SVM- Linear kernal 0.82 0.80 0.86 0.83 0.89 6.162 0.178 0.709 0.645

SVM- Sigmoidal
kernal 0.57 0.58 0.55 0.57 0.66 14.703 0.425 0.393 0.149

Stack 1 0.93 0.94 0.93 0.93 0.98 2.273 0.065 0.877 0.868

AdaBoost 0.89 0.86 0.93 0.89 0.96 3.817 0.110 0.809 0.781

CatBoost 0.86 0.83 0.92 0.87 0.93 4.723 0.136 0.773 0.731

LGBM 0.95 0.96 0.94 0.95 0.99 1.740 0.050 0.904 0.899

XGB 0.95 0.94 0.96 0.95 0.99 1.846 0.053 0.900 0.893

Stack 2 0.95 0.96 0.94 0.95 0.99 1.651 0.047 0.908 0.904

Final Stack 0.94 0.94 0.94 0.94 0.99 2.201 0.063 0.881 0.872

To avoid overfitting, hyperparameter tuning was performed on all the algorithms
using 5-fold cross-validation and Grid Search technique. The algorithms were run 10 times,
with the results averaged. Table 4 lists the hyperparameters chosen by the models for all
the four feature selection techniques.
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Table 4. Hyperparameters used for Grid Search.

Sl.no. Algorithm Mutual Information
Hyperparameters

Pearson’s Correlation
Hyperparameters

Particle Swarm
optimization

Harris Hawks
Algorithm

1. Random Forest (RF)

{“bootstrap” is True,
“n_estimators” is 1000,
“max_depth” is 90,
“max_features” is 2,
“min_samples_split” is
8, and
“min_samples_leaf” is
3}

{“bootstrap” is True,
“n_estimators” is 1000,
“max_depth” is 100,
“max_features” is 2,
“min_samples_split” is
8, and
“min_samples_leaf” is
3}

{“bootstrap” is True,
“n_estimators” is 300,
“max_depth” is 80,
“max_features” is 3,
“min_samples_split” is
8, and
“min_samples_leaf” is
3}

{“bootstrap” is True,
“n_estimators” is 1000,
“max_depth” is 110,
“max_features” is 3,
“min_samples_split” is
8, and
“min_samples_leaf” is
3}

2. Logistic Regression
(LR) {‘Penalty’: l2 and ‘C’:1} {‘Penalty’: l2 and ‘C’:1} {‘Penalty’: l2 and ‘C’:1} {‘Penalty’: l2 and ‘C’:1}

3. Decision tree (DT)

{‘criteria’:
‘entropy’,’splitter’:
‘best’,’max_depth’: 70,
‘max_features’: ‘log2’
10 for
“min_samples_split,” 1
for
“min_samples_leaf.”}

{‘criteria’:
‘entropy’,’splitter’:
‘best’,’max_depth’: 20,
‘max_features’: ‘log2’
10 for
“min_samples_split,” 1
for
“min_samples_leaf.”}

{‘criteria’:
‘gini’,’splitter’:
‘best’,’max_depth’: 20,
‘max_features’: ‘sqrt’
10 for
“min_samples_split,” 1
for
“min_samples_leaf.”}

{‘criteria’:
‘entropy’,’splitter’:
‘best’,’max_depth’: 20,
‘max_features’: ‘log2’
10 for
“min_samples_split,” 1
for
“min_samples_leaf.”}

4. K Nearest Neighbours
(KNN) {“n_neighbors” = 1} {“n_neighbors” = 1} {“n_neighbors” = 3} {“n_neighbors” = 3}

5. SVM—Linear kernal (Kernel: “linear,”
Probability: “True”)

(Kernel: “linear,”
Probability: “True”)

(Kernel: “linear,”
Probability: “True”)

(Kernel: “linear,”
Probability: “True”)

6. SVM—Sigmoidal
kernal

(Kernel: “Sigmoid,”
Probability: True)

(Kernel: “Sigmoid,”
Probability: True)

(Kernel: “Sigmoid,”
Probability: True)

(Kernel: “Sigmoid,”
Probability: True)

7. AdaBoost {‘Learning_rate’ = 1.0,
‘n_estimators’ = 1000}

{‘Learning_rate’ = 1.0,
‘n_estimators’ = 1000}

{‘Learning_rate’ = 1.0,
‘n_estimators’ = 1000}

{‘Learning_rate’ = 1.0,
‘n_estimators’ = 1000}

8. CatBoost

{‘border_count’: 32,
The learning rate is 0.03
“depth”: 3,
“l2_leaf_reg”: 5,
‘iterations’: 250}

{‘border_count’: 32,
The learning rate is 0.03
depth: 3, and leaf
registration: 1.
‘iterations’: 250}

{‘border_count’: 32,
The learning rate is 0.03
“depth”: 3,
“l2_leaf_reg”: 10,
‘iterations’: 250}

{‘border_count’: 32,
The learning rate is 0.03
“depth”: 3,
“l2_leaf_reg”: 5,
‘iterations’: 250}

9. LGBM

{‘lambda_l1’: 0,
‘reg_alpha’: 0.1,
‘lambda_l2’: 0,
‘num_leaves’: 127,
‘min_data_in_leaf’: 30}

{‘lambda_l1’: 0,
‘reg_alpha’: 0.1,
‘lambda_l2’: 0,
‘num_leaves’: 127,
‘min_data_in_leaf’: 30}

{‘lambda_l1’: 0,
‘reg_alpha’: 0.1,
‘lambda_l2’: 0,
‘num_leaves’: 127,
‘min_data_in_leaf’: 30}

{‘lambda_l1’: 0,
‘reg_alpha’: 0.1,
‘lambda_l2’: 0,
‘num_leaves’: 127,
‘min_data_in_leaf’: 30}

10. XGB

{“colsample_bytree” =
0.4,
“min_child_weight” =
1, “gamma” = 0.1, and
“max depth” = 8,
Learning rate: 0.15}

{“colsample_bytree” =
0.4,
“min_child_weight” =
1, “gamma” = 0.1, and
“max depth” = 8,
Learning rate: 0.15}

{“colsample_bytree” =
0.4,
“min_child_weight” =
1, “gamma” = 0.2, and
“max depth” = 8,
Learning rate: 0.15}

{“colsample_bytree” =
0.4,
“min_child_weight” =
1, “gamma” = 0.2, and
“max depth” = 8,
Learning rate: 0.15}

11. Stack 1

{average_probas: False,
meta_classifier: logistic
regression, use_probas:
True}

{average_probas: False,
meta_classifier: logistic
regression, use_probas:
True}

{average_probas: False,
meta_classifier: logistic
regression, use_probas:
True}

{average_probas: False,
meta_classifier: logistic
regression, use_probas:
True}

12. Stack 2

{average_probas: False,
max_iter: 9000,
use_probas: True,
meta-classifier: logistic
regression}

{average_probas: False,
max_iter: 9000,
use_probas: True,
meta-classifier: logistic
regression}

{average_probas: False,
max_iter: 9000,
use_probas: True,
meta-classifier: logistic
regression}

{average_probas: False,
max_iter: 9000,
use_probas: True,
meta-classifier: logistic
regression}

13. Final Stack

{max_iter = 9000,
average_probas: False,
meta_classifier =
logistic regression,
use_probas: True}

{max_iter = 9000,
average_probas: False,
meta_classifier =
logistic regression,
use_probas: True}

{max_iter = 9000,
average_probas: False,
meta_classifier =
logistic regression,
use_probas: True}

{max_iter = 9000,
average_probas: False,
meta_classifier =
logistic regression,
use_probas: True}

The AUC’s for the final stack models is described in Figure 9. When Pearson’s
correlation, Mutual information, Particle swarm optimization and Harris Hawks algorithm
were used, an AUC of 99% for all was obtained. Figure 10 depicts the precision-recall (PR)
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curves for final stack models. The mutual information technique, Pearson’s correlation,
Particle swarm optimization and Harris Hawks algorithm obtained an average precision
of 99%. The final stacked model’s confusion matrices are described in Figure 11. Mutual
information performed slightly better than other feature selection methods in this study. In
order to improve performance, this work combined heterogeneous classifiers with feature
selection algorithms. To assist doctors in forecasting strokes, the models can be utilised
in hospitals.

Figure 9. AUC curves for Final Stack model (a) Mutual Information, (b) Pearson’s Correlation,
(c) Particle swarm optimization and (d) Harris Hawks algorithm.
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Figure 10. PR curves for Final Stack model (a) Mutual Information and (b) Pearson’s Correlation,
(c) Particle swarm optimization and (d) Harris Hawks algorithm.

3.3. Explainable Artificial Intelligence (XAI)

Although XAI has the potential to advance the use of AI, it is still in the early
stages of acceptance in the healthcare sector. We can (semi-) automatically find appro-
priate models, optimise their parameters and their explanations, stakeholders, metrics,
safety/accountability level, and suggest ways of integrating them into clinical work-
flow [45]. In this study, five XAI approaches have been employed: QLattice, Eli5, SHAP,
LIME and Anchor. We can more effectively understand the significance of various char-
acteristics using the feature importance techniques mentioned above. The final stacking
models of Mutual information, Pearson’s correlation, Particle swarm optimization and
Harris Hawks algorithm were employed for interpretation [46].
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Figure 11. Confusion Matrix for Final Stack model (a) Mutual Information and (b) Pearson’s Correla-
tion, (c) Particle swarm optimization and (d) Harris Hawks algorithm.

SHAP uses each feature’s significance to the model’s prediction to explain the machine
learning model’s output [47]. It computes an insight of each characteristic to the output of
the model using game theory concepts and provides interpretable and clear explanations.
By using this process, the prediction’s accuracy is evaluated. The beeswarm plot and
force plot for local interpretation generated by SHAP analysis are displayed in Figure 12.
From the figure we can interpret that for mutual information age, avg_glucose_level,
bmi, smoking_status_formally smoked, Residence_type_Rural, hypertension_1, smok-
ing_status_never smoked, hypertension_0 were the main attributes to contribute for stroke
in a patient. For Pearson’s correlation, age, smoking_status_Unknown, avg_glucose_level
and bmi were the most important attributes for stroke prediction. For Particle swarm
optimization and Harris Hawks algorithm age and bmi were the most important features
for stroke prediction. The dependence plots are described in Figure 13.
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Figure 12. SHAP interpretation. Beeswarm plot for (a) Mutual Information and
(b) Pearson’s Correlation, (c) Particle swarm optimization and (d) Harris Hawks algorithm.

By constructing a local, interpretable model around the prediction point, LIME tech-
nique explains the machine learning models’ predictions [48]. By producing a subset of the
original features that are most crucial for the prediction and fitting a straightforward model
to account for the relationship between these features and the model’s output, it generates
locally interpretable explanations. Patients who experienced a stroke for mutual informa-
tion, Pearson’s correlation, Particle swarm optimization and Harris Hawks algorithm are
shown in Figure 14. From the figure, we can interpret that the green colour in the bar chart
represents the attributes that were important for the survival and the red colour represents
the attributes that contributed to a patient having a stroke.
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Figure 13. SHAP interpretation. Force plot (local interpretation) for (a) Mutual Information and
(b) Pearson’s Correlation, (c) Particle swarm optimization and (d) Harris Hawks algorithm.

Figure 14. LIME Interpretation. Survived patients’ prediction for (a) Mutual Information, (b) Pear-
son’s Correlation, (c) Particle swarm optimization and (d) Harris Hawks algorithm.
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A probabilistic graphical model is used by Qlattice, a machine learning platform
inspired by quantum mechanics, to discover intricate patterns and connections in data [49].
Before choosing the model that best solves the current issue, QLattice examines tens of
thousands of possible models. Some variables, such as labels, input attributes, and other
variables, must first be set up by the programmer. In this method, the variables are known
to as registers. From this XAI approach, other models can be derived after registers are
defined. “QGraphs” is the name of the model collection. These graphs consist of nodes
and edges. Each edge has a weight given to it, and each node has an activation function.
The features are used to create crucial knowledge when the “QGraph” is run. Python’s
implementation of QLattice makes use of the “Feyn” package. Figure 15 shows the QGraph
and the Equations (5)–(8), provides a description of the transfer function for the model,
for mutual information, Pearson’s correlation, Particle swarm optimization and Harris
Hawks algorithm. From the figure, we can see that age and avg_glucose_level are the most
important attributes for prediction of stroke. It also uses ‘add’ function to interpret results.

Figure 15. The explanation of model predictions using QGraph and transfer function
for (a) Mutual Information, (b) Pearson’s Correlation, (c) Particle swarm optimization and
(d) Harris Hawks algorithm.
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(a) logreg (5.2 age + 1.2 avgglucoselevel − 7.0) (5)

(b) logreg (5.4 age + 1.2 avgglucoselevel − 7.1) (6)

(c) logreg (5.6 age−6.8) (7)

(d) logreg (5.7 age−6.9) (8)

Another XAI method for deciphering and interpreting model predictions is Eli5. It
is a Python toolkit for visualising and troubleshooting predictions that makes use of a
standard API. It enables researchers to comprehend black-box models and has capabilities
for many platforms [50]. Figure 16 shows the role that various factors had in predicting
stroke for mutual information, Pearson’s correlation, Particle swarm optimization and
Harris Hawks algorithm methods. From the figure we can see that for mutual information,
bmi and residence_type_rural are the most important attributes, for Pearson’s correlation,
bmi, gender_male and age are the most important attributes. Particle swarm optimization
shows bmi and age as important features and lastly Harris Hawks algorithm shows age,
gender_Male and smoking_status_smokes as the important features.

Figure 16. Eli5 to explain model predictions for (a) mutual information and (b) Pearson’s correlation,
(c) Particle swarm optimization and (d) Harris Hawks algorithm.

Anchors use rule-based explanations to demystify the models [51]. A set of conditions
make the users understands the predictions. Table 5 shows the anchor explanations for
patients who had and who did not have stroke. Evaluation metrics such as precision and
coverage are used to validate each anchor.
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Table 5. Anchor explanations for five patients who had stroke and five patients who did not have
stroke for Mutual information, Pearson’s correlation, Particle swarm optimization and Harris Hawks
algorithm.

Mutual information

Instance Patient
Prediction Anchor Condition Precision Coverage

1 Non—stroke age <= 0.77 AND smoking_status_never smoked > 0.00 0.89 0.17

2 Non—stroke age <= 0.77 AND Residence_type_Rural <= 0.00 0.86 0.25

3 Non—stroke 0.77 < age <= 0.91 AND avg_glucose_level > 0.55 0.77 0.18

4 Non—stroke age <= 0.91 AND 0.26 < bmi <= 0.29 0.72 0.34

5 Non—stroke age <= 0.77 AND bmi <= 0.26 0.93 0.16

6 Stroke age > 0.52 AND heart_disease_1 > 0.00 0.83 0.14

7 Stroke 0.77 < age <= 0.91 AND smoking_status_formerly
smoked > 0.00 0.69 0.16

8 Stroke age > 0.77 AND heart_disease_1 > 0.00 0.73 0.11

9 Stroke age > 0.52 AND hypertension_1 > 0.00 0.77 0.20

10 Stroke age > 0.91 AND heart_disease_1 > 0.00 0.83 0.11

Pearson’s correlation

Instance Patient
Prediction Anchor Condition Precision Coverage

1 Non—stroke age <= 0.77 AND 0.30 < avg_glucose_level <= 0.57 0.87 0.42

2 Non—stroke age <= 0.77 AND smoking_status_Unknown > 0.35 0.90 0.15

3 Non—stroke age <= 0.77 AND avg_glucose_level <= 0.57 0.88 0.43

4 Non—stroke age > 0.77 AND avg_glucose_level > 0.57 0.78 0.18

5 Non—stroke age <= 0.77 AND bmi <= 0.26 0.97 0.15

6 Stroke 0.77 < age <= 0.92 AND 0.37 < avg_glucose_level <=
0.57 0.72 0.29

7 Stroke age > 0.52 AND avg_glucose_level > 0.37 0.67 0.42

8 Stroke age > 0.77 AND avg_glucose_level > 0.57 0.80 0.18

9 Stroke age > 0.92 AND heart_disease_1 > 0.00 0.76 0.06

10 Stroke age > 0.92 AND smoking_status_Unknown <= 0.00 0.68 0.20

Particle swarm optimization

Instance Patient
Prediction Anchor Condition Precision Coverage

1 Non—stroke age <= 0.77 ANDheart_disease_1 <= 0.00 0.88 0.48

2 Non—stroke age <= 0.77 ANDbmi <= 0.33 0.87 0.34

3 Non—stroke age <= 0.77 ANDbmi <= 0.33 0.91 0.35

4 Non—stroke age <= 0.77 ANDheart_disease_1 <= 0.00 0.87 0.48

5 Non—stroke age <= 0.93 ANDbmi <= 0.29 0.73 0.35
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Table 5. Cont.

Particle swarm optimization

Instance Patient
Prediction Anchor Condition Precision Coverage

6 Stroke age > 0.77 AND0.26 < bmi <= 0.33 0.65 0.41

7 Stroke age > 0.93 ANDhypertension_1 > 0.00 0.81 0.16

8 Stroke 0.77 < age <= 0.93 AND0.26 < bmi <= 0.29 0.64 0.40

9 Stroke age > 0.52 ANDbmi > 0.26 0.61 0.62

10 Stroke age > 0.77 AND0.26 < bmi <= 0.29 0.65 0.41

Harris Hawks algorithm

Instance Patient
Prediction Anchor Condition Precision Coverage

1 Non—stroke age <= 0.77 ANDsmoking_status_formerly smoked <=
0.00 0.89 0.41

2 Non—stroke age <= 0.77 ANDbmi > 0.33 0.89 0.15

3 Non—stroke age > 0.52 ANDsmoking_status_Unknown <= 0.00 0.60 0.60

4 Non—stroke 0.77 < age <= 0.94 AND0.26 < bmi <= 0.29 0.63 0.40

5 Non—stroke age <= 0.94 AND0.00 < smoking_status_never smoked
<= 1.00 0.82 0.23

6 Stroke age > 0.94 ANDheart_disease_1 > 0.00 0.75 0.12

7 Stroke 0.77 < age <= 0.94 ANDheart_disease_1 > 0.00 0.76 0.11

8 Stroke age <= 0.77 ANDbmi <= 0.26 1.00 0.15

9 Stroke age > 0.94 AND0.00 < smoking_status_never smoked
<= 1.00 0.73 0.14

10 Stroke age > 0.77 ANDsmoking_status_Unknown <= 0.00 0.62 0.41

According to the XAI techniques mentioned above, the beeswarm plot illustrates
how all the attributes combine to forecast strokes with respect to SHAP. Only the most
crucial features that improve stroke prediction are displayed in the force plot [52,53]. SHAP
can be used for both global and local interpretation. Multiple visualization plots are
available to understand the feature importance when compared to other XAI techniques.
We can observe in LIME how each attribute contributes to the stroke prediction. We have
visualised for parties who have survived, i.e., who did not have stroke [54,55]. In LIME,
we learn the weights of the attributes. But here we do not have global interpretation, we
have only local interpretation. This means that only individual patient predictions can be
analysed more thoroughly in LIME. Qlattice demonstrates which essential features lead to
stroke and offers a transfer equation to support the claim [56,57]. Qlattice uses quantum
computing technique, which is trending, and it trains the model to identify predictions.
But it takes a lot of computational time and resources compared to other methods. Eli5
displays the relative importance of each attribute in predicting strokes [58]. Eli5 is a very
efficient technique for tree based models such as decision tree, random forest. But as of
today, there is no support of Eli5 or other baseline models and deep learning classifiers.
Finally, anchor demonstrates how precisely the features can predict stroke using logical
explanations [59,60]. By using anchor, we can find out the best markers using conditions,
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but we cannot obtain the visualization graphs. With all the other techniques, visualization
plots are available except for anchor.

4. Discussion

In this research, machine learning was employed to determine whether a patient
might suffer from a stroke. A total of 5110 patients were included in the dataset. For
feature selection, Pearson’s correlation, Mutual information, Particle swarm optimization
and Harris Hawks algorithm were used. Five XAI approaches were used to improve our
understanding of the results and the comparison of the techniques were made. The ML
model can be used to predict strokes as a preliminary decision support system [61].

Age is a substantial risk factor for stroke, and our findings support this. Blood clots
and other issues that can result in stroke are more likely to occur as we age because the
blood vessels become less elastic and more vulnerable to injury. In addition, older people
are more likely to have other medical disorders such as diabetes, heart disease, and high
blood pressure that might raise their risk of stroke. Additionally, older men/women might
have a harder time recovering from the consequences of a stroke and might see more severe
and pervasive repercussions. Age, bmi, hypertension, average glucose level, and heart
disease were the top risk factors for stroke, according to our research.

Several studies have used different ML algorithms for better prediction of stroke.
Various ML techniques were utilised by Chetan et al. [62] to identify stroke before they
occur. To look for the traits that help detect strokes, they utilized supervised learning
methods like decision trees, random forests, and Naive bayes algorithm. Three methods
were used to run the dataset utilising a 70:30 ratio and 10-fold cross validation. An accuracy
of 98% was obtained. The feature ranker with a low score algorithm was used to determine
the impact of two features. By utilising various machine learning classification techniques,
Hamza et al. [63] attempted to create a supervised model that could forecast the presence
of a stroke in the near future depending on specific criteria. SVM, decision trees, random
forests, and logistic regression were applied in this study. Later, a voting classifier was
constructed using all of these classifiers. Random forest outperformed the other classifiers
with an accuracy of 94%. To predict stroke, Saumya et al. [64] utilized ML classifiers.
Logistic regression, naive bayes, KNN, decision trees, adaboost, xgboost, and random
forest were the models that were used. A maximum accuracy of 97% was obtained. Table 6
shows the comparison between the existing models with our proposed methodology.

Table 6. Comparison between existing models with our proposed methodology.

Sl. No. Model Classifiers Accuracy Explainable AI
Techniques

1. [62] Random forest, Decision tree and Naive
bayes algorithms 98.94% No

2. [63] SVM, Random forest, Decision tree, Logistic
regression and voting classifier 94.7% No

3. [64]
Logistic regression, naive bayes, KNN,
decision trees, adaboost, xgboost, and

random forests
97% No

4. Our proposed model

Decision trees, random forests, logistic
regression, SVM (Linear, sigmoidal), KNN,
AdaBoost, CatBoost, LGBM, XGBoost and

stacking models

96% LIME, Qlattice, SHAP,
ELI5, Anchor

5. Limitations and Future Directions

Before using this framework in healthcare institutions, extensive testing, several
external validations, and scalability assessments should be carried out. More feature
addition to the dataset and must be of high calibre. Additionally, the latest imaging
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modalities can be considered. Furthermore, deep learning techniques can be used if the
dataset is large. Web applications can also be developed for prediction of stroke.

The model must be equally valuable to healthcare practitioners as it is to a machine
learning expert in order to bridge the gap between medical and informatics professionals.

6. Conclusions

A stroke needs early intervention that can increase the likelihood of a full recovery
and lower the risk of complications. Hence, we predict stroke using machine learning
and XAI methods. The data used in this study included 5110 patients with 12 attributes.
Mutual information, Pearson’s correlation, Particle swarm optimization and Harris Hawks
algorithm were the four feature selection methods utilized. Among the four, mutual
information proved the best. A maximum accuracy of 96% was obtained by the stacked
model. Five XAI approaches were applied for the predictions of the model. They were
Anchor, QLattice, Eli5, SHAP, and LIME. Age, bmi, average glucose level, hypertension,
and heart disease were found to be the most crucial variables for the prediction of stroke.
Additionally, the proposed algorithm was compared with other related research, and
the effectiveness of establishing classifier dependability. Medical professionals can use
the classifiers as a decision support system for the prediction of stroke. Real-time stroke
screening might be implemented using a user interface, and this framework could be
expanded to forecast stroke in a broader population.
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