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Abstract: In photolithographic processes, nanometer-level-precision wavefront-aberration models en-
able the machine to be able to meet the overlay (OVL) drift and critical dimension (CD) specifications.
Software control algorithms take as input these models and correct any expected wavefront imperfec-
tions before reaching the wafer. In such way, a near-optimal image is exposed on the wafer surface.
Optimizing the parameters of these models, however, involves several time costly sensor measure-
ments which reduce the throughput performance of the machine in terms of exposed wafers per hour.
In that case, photolithography machines come across the trade-off between throughput and quality.
Therefore, one of the most common optimal experimental design (OED) problems in photolithogra-
phy machines (and not only) is how to choose the minimum amount of sensor measurements that will
provide the maximum amount of information. Additionally, each sensor measurement corresponds
to a point on the wafer surface and therefore we must measure uniformly around the wafer surface
as well. In order to solve this problem, we propose a sensor mark selection algorithm which exploits
genetic algorithms. The proposed solution first selects a pool of points that qualify as candidates to
be selected in order to meet the uniformity constraint. Then, the point that provides the maximum
amount of information, quantified by the Fisher-based criteria of G-, D-, and A-optimality, is selected
and added to the measurement scheme. This process, however, is considered “greedy”, and for this
reason, genetic algorithms (GA) are exploited to further improve the solution. By repeating in parallel
the “greedy” part several times, we obtain an initial population that will be the input to our GA.
This meta-heuristic approach outperforms the “greedy” approach significantly. The proposed solu-
tion is applied in a real life semiconductors industry use case and achieves interesting industry as
well as academical results.

Keywords: photolithography; optimal design of experiments; optimal experimental design; G-optimal;
D-optimal; A-optimal; control algorithm; optimization; genetic algorithms; compound criteria

1. Introduction

Moore’s law states that “every 24 months, the number of transistors that can be placed
on a chip doubles” [1]. Of course, keeping up with Moore’s law is a very difficult task
as it requires continuous improvement in an already very advanced field. Despite this,
recent advances in the integrated circuits (ICs) manufacturing process and specifically in
photolithography enable the community to be able to meet this very strict requirements.
Photolithography [2] is a very important part of the whole process because it is respon-
sible for transferring a desired pattern to a photosensitive material on the wafer surface
(photo-curable material; most typically, commercial photo resistance [3]) by exposing it
to ultraviolet (UV) or extreme-UV (EUV) light. Successful photolithography will yield
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wafers with a high overlay (OVL) and a small critical dimension (CD). OVL and CD are the
key performance indicators (KPIs) for the photolithography stage. Overlay is a measure
of the correct alignment between the various layers of the wafer and CD is known as
the minimum feature size which refers to the width of the lines, spaces, contact holes or
dots of critical circuit patterns. The better the OVL and the smaller the CD, the smaller
the exposed pattern and of course the smaller the exposed ICs on the wafer. This is why
photolithography is the most important stage of the ICs fabrication process. This is the
stage that drives Moore’s law.

EUV photolithography, a technology entirely unique to ASML, is the state of the
art (SoA) in photolithography and the stepping stone to keep up with Moore’s law. EUV
light’s wavelength is at 13.5 nanometers, i.e., 14 times shorter than DUV light, and is a key
enabler for small CD and better OVL. Hence, from 2010 onwards, the EUV platforms (NXE)
of ASML lead the race of keeping up with Moore’s law. In Figure 1, we see a visualization
of Moore’s law in terms of chip shrinkage together the photolithography machines that
achieve these results as well.

Figure 1. Chip shrinkage and photolithography machines of ASML (Figure based on image
(c) ASML [4,5]).

In Figure 2, the full light path from the EUV source to the silicon wafer is presented.
The light is generated in the source, sent into the illuminator which controls the light beam,
reflects off the mask with the chip pattern, before being focused in the projection optics
and exposing the wafer. The projection optics box of the EUV machine, which actually
consists of mirrors, is responsible for directing EUV light on the wafer surface. Ideally, the
wavefront of the light reaches the wafer surfaces without any optical imperfections. This
would expose a perfect wafer but of course this is almost never the case.

Platforms for new products such the one of ASML in Figure 3 are built on these break-
throughs. Platforms that are able to produce wafers with high performance (throughput),
high precision at the nanometer level (overlay), and optimized imaging capabilities (focus
and critical dimension uniformity) [4].

Photolithography machines are some of the most complex machines in terms of
hardware and software that exist in the industry. With more than fifty million lines of
code-base and thousands of hardware modules, being able to orchestrate and control the
machine such that it meets the extremely strict OVL and CD requirements is a very difficult
task. Hardware itself cannot achieve such perfection. For this reason, a vital part of the
machine is software control algorithms which deal with any kind of hardware imperfections.
Software will enable the machine to meet the OVL and CD KPIs which will verify the
quality of the machine. In principle, the main idea behind this is that the machine is able
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to model accurately, at the nanometer level, the expected wavefront anomalies. Then, by
knowing what to expect, software will optimize the corresponding knobs on the machine,
such as mirror positions, for example, such that it compensates for the expected aberrations.
In that case, the expected fingerprint will be corrected before reaching the wafer surface,
which means that the desired pattern will be exposed with minimum imperfections. In this
case, we understand that being able to build accurate models is one of the most crucial and
demanding tasks for the photolithography process. These models are the key enablers for a
successful exposure.

Figure 2. This sequence shows the full light path from the EUV source to the silicon wafer. The light
is generated in the source (bottom-right), sent into the illuminator (mid-right) which controls the
light beam, reflects off the mask with the chip pattern (top), before being focused on the projection
optics (mid-left) and exposing the wafer (mid-bottom) (Figure based on image (c) ASML.

Figure 3. NXE:3400 system with outer covering as it stands in the cleanroom (Image© ASML;
used with permission).

Building such models, however, is also very time costly. During the model creation
phase several sensor measurements are needed. These measurements will serve as a
reference and the model parameters will be optimized based on them. Of course, the more
the measurements, the bigger the accuracy, however, we are then against the throughput
vs. quality trade-off. As mentioned above, throughput, in terms of wafers per hour (wph),
is also very important and chip manufacturers cannot afford any throughput loss on the
photolithography process. Usually, the number of points to measure is predetermined by
the time budget of the process. Then, we are called to find which points to measure such
that the measurements in those points will provide the maximum amount of information
needed to optimize the models. Hence, we are called to solve this specific optimization
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problem, namely that of how the best subset of points can be selected to measure out of a
set of available locations on the wafer surface, in order to obtain maximum information
regarding the fingerprint estimation model without introducing a significant throughput
loss. This is a typical optimal experimental design (OED) problem.

The optimal experimental design (OED) problem has been a center of interest of both
academia and industry for a very long time already. Since the first scientific paper on this
topic was published by Smith in 1918 [6] and to this day, after numerous papers and research
in this field, advances in this area are quite remarkable. In our paper, as mentioned above,
we examine a certain application of OED in the photolithographic process. OED problems
can be linear or nonlinear based on the model nature. Nonlinear models need to be solved
with heuristic approaches. However, heuristics are not optimal, especially for complex
systems with high dimensionality, nonlinear responses and dynamics, multiphysics, and
uncertain and noisy environments. OED for linear models [7,8], on the other hand, are
using criteria based on the information matrix derived by the model. These criteria can
be analytically calculated and are different flavors of the dispersion of that matrix. The
so-called Fisher-based criteria comprise G-, D-, and A-optimality. The disadvantage of
this approach, however, is that most of these algorithms are greedy and most of the times
are not optimal. In this paper, we are proposing a hybrid method incorporating both a
deterministic part and a meta-heuristic genetic algorithm (GA)-based part. On the one
hand, the stochasticity of GA can compensate for the greedy approach of the first step,
and on the other hand, the GA can identify hidden patterns in the combination of good
solutions created previously and exploit this information for creating the final solution.
This innovative solution in combination with the real life use case from the industry serves
as a promising alternative for similar problems.

An outline of the rest of this paper is as follows. Section 2 addresses the formulation
problem discussing the theory and basic concepts of the OED problem on the one hand,
and presents the specific photolithographic OED use case on the other. In Section 3,
the proposed solution is presented, and Section 4 exhibits the results of our solution.
Finally, Section 5 elaborates upon the conclusions and the future work.

2. Problem Formulation
2.1. Optimal Experimental Design (OED)

An experiment is a process carried out under carefully controlled conditions in order
to establish some kind of knowledge on a specific topic. This knowledge is expressed by a
model, which is the key element of an experiment. The model is related to the experimental
responses, or to the experimental observations, or to the corresponding experimental factors.
The purpose of the experiment itself is to define an accurate model. Experiments are
designed to optimize the parameters of a model or for estimating the responses of an already
fitted model. In this paper, we are interested in optimizing the parameters of an OVL model,
for example. An optimally designed experiment, in this case, will provide the maximum
information in the most efficient way in order to gain knowledge about the model.

Even under the most protected laboratory environment, however, it is often not possi-
ble to avoid random experimental errors. Such errors can either be small and harmless or
can also be catastrophic for the experiments under certain conditions of noisy experiments
or highly dimensional models, for example. For this reason, statistical methods are essential
for the optimal design and analysis of the experiment, such that these will provide the max-
imum amount of information independently of those error factors. Optimal experimental
design (OED) is a field between mathematics and computer science, which deals with this
specific topic of designing optimal experiments exploiting various statistical methods.

In OED problems, the key input is the model. OED designs either depend on the
model to be fitted to the data, or for linear models on the values of the parameters of the
models. As mentioned above, the model is describing the relation between the observed
response Y and the experimental factors X. Depending on the use case, models can be
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linear or nonlinear. In this paper, linear polynomial models are examined. More specifically,
let us consider the linear model Y = Xb + ε with:

1. Y being an N-component column of experimental observations;
2. X being an N × p matrix of known elements known as information matrix;
3. b being a vector of size p of unknown parameters;
4. ε being an N component vector of residuals with E(ε) = 0 and D(e) = (σ)2 I, where

E and D stand for the expectation operator and dispersion matrix, respectively.

As mentioned above, the goal of the whole experiment is to build a model that is as
close as possible to reality. From the above model, the information matrix X is the only
known input. The information matrix is in reality the basis functions of the model polyno-
mial. During the process of model selection, the corresponding basis functions are obtained
and the information matrix is formed. This process is very interesting, but it is beyond
the scope of this paper. In our work, we consider the information matrix X as known.
In that case, the unknown parts of the model equation are the b vector of the unknown
parameter and the noise ε. Hence, in order to build our model, our real task is to accurately
estimate the parameter vector b.

For parameter estimation, there are different approaches depending on the model that
is used. The most common and still very effective one for linear models is the least squares
method (LST).

In Figure 4, the whole process of parameter estimation is presented. On the top box,
the real measurements take place. This is the experiment that takes place. The output of
the measurements plus the added noise is the real value Y. The bottom box contains the
modeling part. As we can see, the information matrix X is already known and does not
change throughout the process. On the other hand, the parameters vector b is the one
that gets updated. On the right part of the schema, least squares optimization (LST) takes
place. Input to the LST algorithm is the real measurement Y and the model output Ŷ. The
output of the LST algorithm will be the update of the parameters vector b such that the
least squares of the differences between Y and Ŷ

‖Y− X · b‖2

is minimized. This will mean that the parameters estimates are successful and our model
output Ŷ is as close to the real measurement of Y as possible; hence, our model is accurate.

All of this process, however, is highly dependent on the quality of the real measure-
ments performed during the experiment. If the measurements are not informative enough,
then the output of the LST algorithm is also not trustworthy. And, this results in a bad
model despite the rest of the process working fine. Additionally, in most of the use cases,
there is only a limited budget of “experiments” that can be performed. Here, by experiment,
we mean one measurement. In this case, the problem of selecting the most informative
subset of available measurements is crucial for the success of the process. Hence, the
optimal design of the experiment is vital for ensuring the quality of the whole process of
model optimization. The OED problem is defined as selecting an n-point design of a set of
N candidate points to optimize for a certain design criterion. In most of the OED problems,
as already mentioned above, we assume that we have:

1. A given model;
2. An optimality criterion;
3. A fixed sample size of n-points out of a candidate set of N-points.

And, the problem is how to take n independent observations of the given design
space (candidate points). The solution of this problem is the optimal experiment design
(OED) which maximizes the confidence in the selected model parameters for providing
maximum information [9]. Optimal designs can be (a) approximate or (b) the exact optimal
designs. Approximate designs are obviously easier to extract since they are probability
measures defined on a compact and known design space (set of N candidate points) [10].
This optimization problem finds the optimal probability measure in terms of a certain
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design criterion. The design criterion should reflect the amount of information gained if a
certain experimental design is chosen.

Real Measurement +

ε

Experiment - Reality

Basis functions /
Information matrix

Parameters vector

Model

Figure 4. Parameter estimation process.

2.2. Optimality Criteria

The final goal of an OED problem is to build an accurate model with optimized
model parameters. As mentioned above, however, the only input available to us is the
information matrix X of size N × p. By applying linear algebra computations, we can
obtain X′Xb = X′Y. The goal of the OED problem is to construct experimental designs
that consist of choosing n rows of X out of set of candidate rows N in such a way that the
information matrix X′X is optimal in the sense of the chosen optimality criterion [11].

Normalized model uncertainty (NMU) is a measure of the uncertainty in the model
prediction due to the uncertainty in the model parameters. It is defined as the square root
of the trace of the product of the variance–covariance matrix of the estimated parameters
and the Hessian matrix of the model prediction function. The mathematical formula for
normalized model uncertainty (NMU) is:√

trace
[
(XTX)−1XTΣX(XTX)−1H

]
,

where X is the design matrix, where each row represents a different design point and
each column corresponds to a different predictor variable. Σ is the variance–covariance
matrix of the estimated parameters of the model. H is the Hessian matrix of the model
prediction function evaluated at the design points. The trace operator returns the sum of
the diagonal elements of a matrix. In this case, it returns the sum of the diagonal elements
of the product of two matrices: the variance–covariance matrix and the Hessian matrix.
The square root is taken of this sum to obtain the NMU. Normalized model uncertainty
(NMU) is a measure of the model’s lack of fit, and it can be used as a criterion for exper-
imental design optimization. However, NMU is not a direct criterion for experimental
design, and it needs to be combined with an design criterion that represents the objective
of the experiment.

The design criteria are used to analyze, evaluate and compare different design alterna-
tives. These criteria are different flavors of the dispersion of the information matrix, which
forms the basis functions of the model. Assuming that X′X is non-singular, the following
optimality criteria (among others) can be involved for minimizing the functions of (X′X).
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2.2.1. D-Optimality

D-optimality is a criterion for optimal experimental design that aims to minimize the
determinant of the variance–covariance matrix of the estimated parameters. It focuses on
good model parameter estimation [12] and furthermore makes both the variance and the
covariance among the model parameter estimates very small.

This criterion ensures that the estimated parameters are as precise as possible and
that the design provides the most information about the parameters by minimizing the
determinant of the |XT · X|−1 (D from determinant). In this formula, XT is the transpose
of the design matrix, and XT · X is the product of the transpose and the original design
matrix. The inverse of this product, |XT · X|−1, represents the inverse of the variance–
covariance matrix of the estimated parameters. The variance–covariance matrix of the
estimated parameters represents the uncertainties and correlations between the parameters.
The determinant of this matrix represents the overall magnitude of the uncertainty of the
estimated parameters. Thus, by minimizing the determinant, the D-optimality criterion
seeks to minimize the overall uncertainty of the estimated parameters.

D-optimality is commonly used in linear regression and other types of linear models,
but it can also be used for nonlinear models and other types of statistical analyses.

2.2.2. A-Optimality

A-optimality seeks to minimize the trace of the inverse of the variance–covariance
matrix of the estimated parameters |XT · X|−1. The A-optimality criterion is based on the
principle of minimizing the average variance of the estimated parameters. Specifically, it
seeks to minimize the trace of the inverse of the information matrix, which is the expected
value of the variance–covariance matrix of the parameter estimates. A design that is
A-optimal will result in parameter estimates that are expected to have the smallest average
variance across all possible values of the true parameter values. A-optimal designs are
particularly useful when all parameters are of equal interest and importance and when the
goal is to estimate them with equal precision.

2.2.3. G-Optimality

Another criterion that is used in experimental design to select an optimal design for
a given model is G-optimality. It is based on the principle of minimizing the maximum
eigenvalue of the variance–covariance matrix of the estimated parameters. In other words,
G-optimality seeks to minimize the maximum variance of the estimated parameters across
all possible values of the true parameter values. A design that is G-optimal is one that
minimizes the largest variance of the estimated parameters. Mathematically, G-optimality
can be formulated as: G(D) = min λmax

[
(X(D)TX(D))−1], where D is the set of design

points, X(D) is the design matrix that contains the predictor variables at the design points,
and λmax is the largest eigenvalue of the matrix. In practice, G-optimality is useful when
the goal is to estimate the parameters with the most accuracy, regardless of their relative
importance or the experimental resources available. However, it may not be the most
appropriate criterion if some parameters are of greater interest than others, or if the experi-
mental resources are limited and a smaller number of design points is required. In such
cases, other criteria such as A-optimality or D-optimality may be more appropriate.

2.3. Fingerprint Estimation in Photolithography Process Use Case

As mentioned before, the most important KPIs for a photolithography machine are
overlay (OVL) and critical dimension (CD). OVL is a critical parameter in photolithography
as it determines the alignment accuracy between the different layers being printed on the
wafer. Overlay errors can result in misregistration between the different layers, which can
cause defects in the final device and reduce the yield. Critical dimension (CD) is another
important parameter in photolithography that refers to the size of the features being printed
on the wafer. CD control is important because variations in CD can have a significant
impact on the performance and yield of the final device.
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In photolithography, fingerprint estimation (FE) refers to the process of characterizing
the spatial variations in the critical dimensions (CDs) and overlay (OVL) of the features
being printed. These variations can arise from a variety of sources, such as imperfections in
the mask or in the lithography process itself. Fingerprint estimation is typically performed
using specialized metrology tools that can measure the CDs and OVL of the features at
various locations on the wafer. The resulting data are then analyzed to extract information
about the spatial variations in the CD and OVL, which can be used to create a “fingerprint”
of the lithography process. A vital part of the FE process involves the modeling of the OVL
and CD. OVL and CD modeling involves developing mathematical and statistical models
to predict the impact of different process parameters on OVL and CDs. These models can
be used to optimize the lithography process by adjusting the process parameters in real
time to achieve the desired OVL and CD specifications. Overall, fingerprint estimation is an
important tool in photolithography for ensuring the high yield and consistent performance
of the lithography process.

A model in general, and of course also OVL and CD models, is a mathematical or
statistical representation of a system or process, a polynomial. A model consists of two key
components: basis functions and parameters. The choice of basis functions depends on the
nature of the problem and the characteristics of the data being modeled. Parameters of the
model on the other hand, are the values that are estimated from the data and are used to
define the model. The parameters determine the specific values of the basis functions that
best fit the data.

In our specific use case, we need to provide the model for OVL. A linear model

m(x, y) = Φ · p

is used for our purposes. Φ is the information matrix which consists of the basis function
φ(x, y) and p are the parameters of our model. In the expanded version of the model below,
each row corresponds to a certain point on the wafer surface. The first row, for example,
describes the OVL in point (1, 1). Hence, as we can see, the wafer consists of N available
points on which we can measure. Furthermore, the OVL polynomial has P coefficients or
parameters. As described above, the information matrix Φ is already known to us, and in
that case, the goal of FE is to estimate the parameters p of our model.

m1(x1, y1)
m2(x2, y2)

...
mN(xN , yN)

 =


ϕ1(x1, y1) ϕ2(x1, y1) · · · ϕq(x1, y1)
ϕ1(x2, y2) ϕ2(x2, y2) · · · ϕq(x2, y2)

...
...

. . .
...

ϕ1(xN , yN) ϕ2(xN , yN) · · · ϕq(xN , yN)




p1
p2
...

pq


In Figure 5, the process of FE is presented. Since the basis functions of the model φ(x, y)

are already predefined, the goal of the FE process is to obtain the best estimation of
the model parameters p which are obtained by minimizing the L2 norm of the “real”
measurements m(x, y) (on the top part of Figure 5) and the “modeled” results m̂(x, y), the
least squares optimization (LST). In this case, the inputs to the least squares algorithm
are m(x, y) and m̂(x, y) and the output is the update to the coefficients.
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Figure 5. Fingerprint Estimation as a block diagram.

However, one of the key parts of the process is obtaining the real measurements
m(x, y). The quality of these measurements can directly affect the quality of the FE.

Unfortunately, these sensor measurements are time costly and are significantly affect-
ing the throughput of the photolithography machine. Hence, we do not have the budget
to measure all available N points on the wafer. In most cases, the maximum number
of measurements that can be performed is a very small subset of the available points.
In this case, we need to design our experimental space, i.e., the sensor measurements, such
that even the small subset of available measurements can provide the maximum amount of
information. Optimal experimental design (OED) can be used to optimize the design of
experiments when measuring the wafer surface by selecting an optimal subset n of all the
available sampling points N.

Thus, the specific problem that we need to solve is that of how n can be selected out of
N points for measuring, such that the measurements will provide us with the maximum
amount of information for fine tuning the parameters of our model. In our case, N = 933
and n = 221. Additionally, due to the nature of the problem, we have one constraint. We
have to measure around the wafer surface as uniformly as possible and also not sample
points that are too close to each other. In the following section, namely that of Materials
and Methods, the proposed solution to the above described problem is presented.

3. Materials and Methods

The only information that is available to us at this point is the matrix Φ, i.e., the infor-
mation matrix. The goal of our algorithm is to provide an NMU design of our OED problem.
As mentioned above, NMU can be calculated at any point x, y on the wafer:√

trace
[
(ΦTΦX)−1

ΦTΣΦ(ΦTΦ)
−1H

]
NMU optimality, however, is not our only concern. We are also interested in uniformly

sampling from the wafer. Hence, our optimality criteria are (1) NMU optimal design and
(2) uniform sampling.

In this section, we present a method for solving the optimal experimental design (OED)
problem of selecting n = 221 out of N = 933 available points on the wafer, which will
provide the maximum amount of information to estimate the parameters of the OVL model.
The high-level diagram of the genetic algorithm-enhanced sensor mark selection (GAESMS)
is presented in Figure 6.
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Figure 6. High-level algorithm diagram.

In the first two blocks, we obtain the input to our OED problem, N = 933, and the size
of the measurement scheme; in other words, we obtain the budget of our OED problem,
n = 221. In the following block, we need to determine the size of the initial population
of the GA. In our case, we set size of population = 30. In the following blocks, we enter
the core functionality of the GAESMS algorithm which will be described in detail in the
coming sub-sections.

3.1. Sensor Mark Selection Based on Poisson-Disc Sampling and D-Optimality

In sensor mark selection problems, the goal is to select a subset of points from a
larger set of candidate points such that the selected points provide the most informative
measurements for a given application. Two important criteria for selecting these points
are spatial randomness and sample uniformity. Spatial randomness refers to the evenness
of the distribution of the selected points across the area of interest. A spatially random
distribution of points helps ensure that the selected points are representative of the entire
area, rather than being biased towards certain regions. This is important because biased
samples can lead to inaccurate or incomplete measurements, which can ultimately impact
the quality and reliability of the application. Sample uniformity, on the other hand, refers
to the evenness of the distance between selected points. A uniform distribution of points
helps ensure that each point contributes equally to the overall measurement and that
the measurements are not biased towards certain areas. This is particularly important in
applications where the measured quantity varies significantly across the area of interest,
as a non-uniform sample may miss important features or over-represent certain regions.

In summary, both spatial randomness and sample uniformity are critical criteria
for selecting sensor marks in order to ensure accurate and representative measurements.
By considering these criteria, we can select a subset of points that provides the most
informative measurements and improves the overall performance of the application.

In our problem as well, as already mentioned above, instead of only an NMU-based
criterion, we also need to provide a uniform design. For this reason, we incorporate
Poisson-disc sampling as part of the sensor mark selection algorithm.

Poisson-disc sampling with nearest neighbors is a method used for generating spatially
random point sets on a two-dimensional surface [13,14]. This technique is particularly
useful in sensor mark selection problems, as in our case, where it is essential to ensure both
spatial randomness and sample uniformity. The goal is to generate a set of points that cover
the area of interest while avoiding overlaps and producing a uniform distribution.

To ensure spatial randomness, the algorithm disqualifies the nearest neighbors of a
point as candidate points. Specifically, for each new point, the algorithm checks the nearest
neighbors of all existing points and removes them from the list of potential candidate points.
This prevents points from being too close to each other and ensures a spatially random
distribution. The algorithm continues this process, iteratively selecting new points until
the entire surface is covered by a set of non-overlapping discs.
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By adjusting the parameters of the algorithm, such as the number of nearest neighbors
to be excluded, the user can control the spatial distribution and sample uniformity of the
generated point set.

In summary, Poisson-disc sampling with nearest neighbors is a powerful algorithm
that ensures both spatial randomness and sample uniformity in the sensor mark selection
problems. By generating a spatially random and uniform point set, this technique enables
accurate and efficient sampling for a wide range of applications.

In Algorithm 1, the process of sensor mark selection based on the Poisson-disc sam-
pling and D-optimality is presented. In the first step, we obtain the coordinates (x, y) of the
available points N. Then, we initialize the number of nearest neighbors to 32 and calculate
the Euclidean distances between all points and their nearest neighbors. Next, we initialize
an empty active points list and an empty inactive points list. We select a random point and
add it to the active points list.

Algorithm 1 Sensor marks selection based on Poisson-disc sampling and D-optimality

1: Get coordinates (x,y) of all candidate points N on the wafer surface
2: Initialize the number of nearest neighbors—NearestNeighboors = 32
3: Calculate the Euclidean distances between all points and their nearest neighbors
4: Initialize an empty activepointslist = []
5: Initialize an empty inactivepointslist = []
6: Select a random point and add it to the active points list
7: while size of active points list <221 do
8: Initialize a list of candidatepoints = inactivepoints list
9: Initialize an empty list of disquali f iedpoints = []

10: For each active point, add its NearestNeighboors to the disquali f iedpoints list
11: Remove any disqualified points from the candidatepoints list
12: if size of candidatepoints list == 0 then
13: NearestNeighboors = NearestNeighboors− 4
14: Go to Step 10
15: end if
16: Calculate D-optimality of the scheme for every point on the candidatepoints list
17: Add to activepoints list the point that contributes most to the D-optimality of the

scheme
18: end while

In the main loop of the algorithm, we repeatedly add points to the active points list
until we selected 221 points. In each iteration of the loop, we first initialize a list of candidate
points and a list of disqualified points. We add the nearest neighbors of all active points to
the disqualified points list and remove any disqualified points from the candidate points
list. If the candidate points list is empty, we decrease the number of nearest neighbors by 4
and repeat the loop.

Next, we calculate the D-optimality of the scheme for every point on the candidate
points list and add the point that contributes the most to the D-optimality of the scheme
to the active points list. As mentioned before, NMU cannot be used on its own since, on
the one hand, it is not a direct criterion for experimental design, and on the other hand,
it is computationally expensive. Finally, we repeat this process until we have selected
221 points.

In Figure 7, a nice visualization of the progress of the above algorithm is presented.
In green, we see the points that qualify as candidates at a specific iteration of the process
while the points that are already part of the scheme are shown in blue. In this case, the
k nearest neighbors of the already selected points are disqualified, with k depending on
the iteration of the algorithm since we start with k = 32 and this is further reduced.
Hence, the disqualified points are the ones belonging to the area that the red circles define.
In a very careful look, we notice that the red circles in the center are larger than the circles
on the edge of the wafer. This is because the points in the center of the wafer were selected
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at an earlier stage of the points on the edge. Hence, at that step of the process, the exclusion
zone defined by the k disqualified neighbors is bigger (for enforcing uniforming) but as the
process continues, a large k yields no available points. In that case, k decreases as described
above, and the circle of the exclusion zone becomes smaller.

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.15
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-0.05

0

0.05

0.1
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Figure 7. In green, we see the feasible points that can be added to the sampling scheme.

In the end of the above process, we obtain a scheme containing 221 selected points,
which are uniformly sampled and with spatial randomness ensured, which, most impor-
tantly, ends at the same time as a near D-optimal design.

3.2. Improving Solution with Genetic Algorithms (GAs)

In the previous part of our algorithm, we created an initial population of,
in this case, 30 solutions. The strategy though that we followed can be considered “greedy”
since we add to the schemes the point that contributes more to the D-optimality. A greedy
algorithm makes locally optimal choices at each step with the hope of finding a global
optimum, but it may not always lead to the best solution overall. It is important to strike
a balance between the optimality criterion and practical considerations when designing
an algorithm for a real-world problem. Hence, at this part of the algorithm, we propose
genetic algorithms to balance out the greedy approach. In fact, one of the strengths of GAs
is that they can help overcome local optima that might be encountered with a purely greedy
approach.

In our problem, after ensuring the uniformity of the samples, we aim to find an optimal
solution in terms of G-, D-, and A-optimality, which is a multi-objective optimization
problem. Multi-objective optimization seeks to find solutions that produce the best values
for one or more objectives, typically having a series of compromising options known as
Pareto optimal solutions rather than a single optimal solution. In our case, we simplify the
multi-objective problem as a single objective by aggregating multiple objectives into one
using a weighted sum. Our use case allows for this simplification since the three different
objectives are very similar, representing different metrics of the same goal. Thus, the cost
function of our genetic algorithm is the compound criterion of G-, D-, and A-optimality,
similar to the second step of the process.

The genetic algorithm draws its inspiration from the natural selection process.
It is a population-based search algorithm that applies the survival of the fittest principle.
The main components of the genetic algorithm are chromosome representation, selection,
crossover, mutation, and fitness function computation. The genetic algorithm process
involves the initialization of an n-chromosome population (Y), which is usually randomly
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created, but in our proposed strategy, the initial population is created using a deterministic
approach, except for the first two random points. This detail plays a significant role in the
quality of the results and the robustness of the proposed algorithm. We propose a chro-
mosome representation approach for optimizing sensor placement configurations where
each chromosome represents a candidate sensor placement configuration and consists of
a 1D binary array with a length of 933, as shown in Figure 8. The elements in the array
correspond to available points that can be selected for sensor placement. A value of 0 indi-
cates that a specific point is not selected in the final scheme, while a value of 1 signifies its
inclusion. This binary encoding allows the GA to explore the solution space and identify
optimal sensor placement configurations.

Figure 8. Chromosome structure.

Then, the fitness of each chromosome in Y is calculated, and two chromosomes,
designated C1 and C2, are selected based on their compound criterion fitness values.
The single-point crossover operator with the crossover probability (Cp) is applied to C1
and C2 to produce an offspring, O. The offspring O is then subjected to the uniform
mutation operator with mutation probability (Mp) to create O′. O′ is then added to the new
population, and this process is repeated until the new population is complete. Mutations
are performed in pairs. If a gene assumes a value of 1 (which means that it is selected) and
it is mutated to a value of 0 (not selected), then another one of the genes, having a value of
0, is picked at random and its value becomes 1. Likewise for genes assuming value 0. Thus,
the number of active points is maintained after each mutation occurs. GA dynamically
modifies the search process using the probabilities of crossover and mutation to arrive
at the best solution. GA can change the encoded genes, and it can evaluate multiple
individuals to generate multiple ideal results, giving it a higher ability for global search.
The core part of the GA is the fitness function. In our solution, we propose a compound
criterion of G-, D-, and A-optimality instead of using only one type of optimality. Using
a compound criterion that combines multiple types of optimality (such as D-, G-, and
A-optimality) in a GA fitness function can be beneficial for several reasons. Firstly, using
a single type of optimality can result in the GA getting trapped in a local optima. Local
optima are solutions that appear to be optimal in the immediate vicinity but are not the
globally optimal solution. By using a compound criterion that considers multiple types of
optimality, the GA can search for a solution that is not only locally optimal but also globally
optimal. Secondly, a compound criterion can help balance different types of optimality.
For example, a solution that is highly optimized for D-optimality may not be optimized
for G-optimality or A-optimality. By combining these different types of optimality, the
GA can search for a solution that is optimized across all dimensions. Finally, a compound
criterion can help ensure that the GA converges to a solution that is practical and usable in
real-world situations. For example, a solution that is optimized for D-optimality may not be
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feasible to implement due to other practical considerations such as cost or manufacturing
constraints. By combining different types of optimality, the GA can search for a solution
that is both optimal and feasible to implement. More specifically, we define the fitness
function as:

fitness = 0.4 ·G-Optimality + 0.3 ·D-Optimality + 0.3 ·A-Optimality

+ max(0, (|221−
N

∑
i=1

δ(solutioni, 1)|)× 10,000) (1)

In this scenario, the multi-objective optimization problem requires that all objec-
tives are equally taken into account while giving slightly more weight to G-optimality.
This is achieved by assigning a weight of 0.4 to G-optimality, and weights of 0.3 to both
D-optimality and A-optimality, in the compound criterion used for evaluating the fitness
of the solutions generated by the GA. By giving more weight to G-optimality, we can bias
the optimization process towards generating solutions that have a good overall fit to the
data, while still taking into account the other objectives. This can help avoid the problem of
getting trapped in the local optima, since the GA will be better able to explore the search
space and find better solutions that are not necessarily optimal in any one objective but
that are good overall. Furthermore, the use of multiple objectives in the fitness function
can help generate more diverse and robust solutions, since this allows the GA to explore
a larger space of potential solutions. This can help avoid over-fitting to the training data
and improve the generalization performance of the model. In the given fitness function,
we have a constraint that the solution should not have more than 221 elements. If a solu-
tion violates this constraint, we need to penalize it to discourage the GA algorithm from
selecting it. Penalizing a solution means assigning a high cost to it, which in turn lowers
its fitness value. In our case for ensuring that we have 221 points in the final solution, the
fitness function first checks whether the sum of the elements in the solution is equal to
221. The Kronecker delta function is used to count the occurrences of the value of 1 in the
binary array representing the solution. For each element in the array, if it is equal to 1, the
Kronecker delta function evaluates to 1, indicating the presence of one. The count of such
occurrences is then summed up using the sigma notation ∑N

i=1 δ(solutioni, 1). If it is not,
we assign a penalty to the solution by adding a very high value (100,000) to the sum of the
elements in the solution. This will make the fitness value of the solution extremely high,
which means it will have a very low chance of being selected by the GA algorithm, since
we are solving a minimization problem. Finally, the GA will have the following settings:

1. The initial population consists of 30 solutions, which were created using the sensor
mark selection based on the Poisson-disc and D-optimality techniques described
above;

2. The size of the population is set to 100, meaning that there will be 100 solutions in
each generation;

3. The algorithm will run for 50 generations;
4. The probability of crossover is set to 0.6, meaning that there is a 60% chance that the

two parent solutions will be combined to produce a new offspring solution in each
crossover event;

5. The probability of mutation is set to 0.05, meaning that there is a 5% chance that each
gene in a solution will be mutated during a mutation event;

6. Elitism is enabled, which means that the best solution from the previous generation
will always be included in the next generation;

7. The fitness function will be maximized, meaning that the algorithm will try to find
solutions with the highest possible fitness value.

In our case, the genetic algorithm significantly improves the solution in terms of G-, D-
and A-optimality, as demonstrated in Section 4.
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4. Experimental Results

The newly proposed OED strategy is evaluated using G-, D-, and A-optimality, the
Fisher-based criteria describing the different flavors of dispersion, and in accordance,
the amount of information that a certain solution can provide. As mentioned above,
the uniformity of the selected marks on the wafer is also a requirement, but since it has
already been taken into account during the creation of the search space for our solution
and consecutively ensured from the Poisson-disc sampling part of the algorithm, it is not
needed to be included in the evaluation criteria.

In Figure 9, the selected marks on the wafer surface are represented. The points that
were finally selected to participate in the sampling scheme are denoted in red, while the
points that were not are shown in gray. All together, these form the candidate points. From
Figure 9 we can safely conclude that the solution satisfies the uniformity requirement.

Figure 9. Solution representation on the wafer surface.

In Table 1, the results of the 10 different runs of our algorithm are presented. From
this table, we can draw two important conclusions. On the one hand, obviously the results
are of high quality. As one can see, G-optimality is in the worst case 0.106, while we can see
that for the rest of the runs, it is between 0.099 and 0.097.

From the theory of optimal experimental design, it is known that any G-optimality
score below 1.00 is considered a satisfactory result. The proposed algorithm of
Magklaras et al. [15] achieves a G-optimality of around 0.261 which is considered a very
good result. This result is achieved without improving the solution. In our proposed
strategy, not only did we achieve a 10 times better result than the expected, but the result
was also 3 times better than that obtained by Magklaras et al. [15] by exploiting GAs in the
final step. So, compared to previous work on the same problem, we can safely conclude for
the success and superiority of our proposed solution.

Similarly, D-optimality also achieves high scores. In Figure 10, we see that there
is an outlier of −93.555 and the rest of the run achieves a score that is less than −94.1.
A-optimality is also around 0.31 with only one outlier at 0.337, as shown in Figure 10.
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Table 1. Experimental results.

Run G-Optimality D-Optimality A-Optimality Fitness Function

1 0.106 −94.189 0.319 −28.118
2 0.098 −94.283 0.316 −28.151
3 0.098 −94.283 0.316 −28.151
4 0.097 −94.358 0.314 −28.174
5 0.097 −94.434 0.313 −28.197
6 0.099 −93.555 0.337 −27.925
7 0.098 −94.266 0.316 −28.145
8 0.097 −94.373 0.314 −28.178
9 0.097 −94.373 0.314 −28.178
10 0.097 −94.373 0.314 −28.178

Figure 10. G-, D-, and A-optimality results bar plots.

The second important conclusion is that, as can be seen from Table 1, all
G-, D-, and A-optimality scores are not only precise but also accurate. The dispersion
of all three metrics is low and it seems that the genetic algorithm converges around certain
values. For G-optimality at 0.097, for D-optimality around −94.373, and for A-optimality
around 0.314. The observation that the genetic algorithm (GA) converges to the same
solution over multiple independent runs is an important finding. GA is a stochastic op-
timization algorithm, meaning that it uses randomization to explore the search space.
As a result, the algorithm may find different solutions each time it is run, and the conver-
gence to the same solution over multiple runs is not guaranteed. However, the fact that the
GA converges to the same solution over multiple independent runs suggests that the pro-
posed solution is robust, meaning that it is less sensitive to variations in the randomization
used by the algorithm. The robustness of the solution is an important property because it
indicates that the solution is more likely to be useful in practice. In real-world applications,
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the inputs and conditions can vary, and a robust solution is more likely to perform well
across different scenarios. Additionally, the observation that the GA converges to the same
solution over multiple runs increases the confidence in the optimality of the proposed
solution, as it suggests that the solution is not just a lucky outcome of the randomization
used by the algorithm.

Finally, we have to mention that our algorithm runs in a simple workstation (CPU
Intel i5) in only 10 min and using Python programming language. We understand that, in a
non-prototyping but in a real-life industry scenario, this performance can be drastically
improved. However, this is not necessary since this is an offline process and there is no
strict requirement in terms of execution time.

5. Conclusions

The proposed algorithm is mixed since, in the first part, we follow a deterministic
procedure for creating the initial population and in the second part, we use a meta-heuristic
approach in order to improve the solution we already have. A possible point of improve-
ment could be reducing the execution time of our algorithm. Currently, it is obtaining
good results in 10 min; however, by applying certain parallelization techniques, this can be
further reduced. This is not a constraint though since our process runs offline, and in this
case, execution time is not an issue.

In conclusion, the results obtained from this study are highly promising and satisfying
for a real-life industry problem. The proposed genetic algorithm was able to converge
to a robust solution that achieved significant improvements in the optimality criteria.
This indicates the potential of the GA approach to be used in similar industrial applications.
Additionally, this study provides valuable insights for future research on the optimization
of the process parameters in the manufacturing industry. Overall, the results demonstrate
the effectiveness of the proposed GA approach in tackling real-life industry problems and
opens up possibilities for further research in this area.
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