
Citation: Ji, J.; Li, Z.; Xu, S.; Ge, Y.;

Tan, J.; Zhang, Y. Efficient

Non-Sampling Graph Neural

Networks. Information 2023, 14, 424.

https://doi.org/10.3390/

info14080424

Academic Editors: Pierpaolo Basile

and Birgitta Dresp-Langley

Received: 13 May 2023

Revised: 5 July 2023

Accepted: 19 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

Efficient Non-Sampling Graph Neural Networks
Jianchao Ji *, Zelong Li , Shuyuan Xu, Yingqiang Ge, Juntao Tan and Yongfeng Zhang

Computer Science, Rutgers University, Piscataway, NJ 08854, USA; zelong.li@rutgers.edu (Z.L.);
shuyuan.xu@rutgers.edu (S.X.); yingqiang.ge@rutgers.edu (Y.G.); juntao.tan@rutgers.edu (J.T.);
yongfeng.zhang@rutgers.edu (Y.Z.)
* Correspondence: jianchao.ji@rutgers.edu

Abstract: A graph is a widely used and effective data structure in many applications; it describes
the relationships among nodes or entities. Currently, most semi-supervised or unsupervised graph
neural network models are trained based on a very basic operation called negative sampling. Usually,
the purpose of the learning objective is to maximize the similarity between neighboring nodes while
minimizing the similarity between nodes that are not close to each other. Negative sampling can
reduce the time complexity by sampling a small fraction of the negative nodes instead of using all of
the negative nodes when optimizing the objective. However, sampling of the negative nodes may fail
to deliver stable model performance due to the uncertainty in the sampling procedure. To avoid such
disadvantages, we provide an efficient Non-Sampling Graph Neural Network (NS-GNN) framework.
The main idea is to use all the negative samples when optimizing the learning objective to avoid the
sampling process. Of course, directly using all of the negative samples may cause a large increase in
the model training time. To mitigate this problem, we rearrange the origin loss function into a linear
form and take advantage of meticulous mathematical derivation to reduce the complexity of the loss
function. Experiments on benchmark datasets show that our framework can provide better efficiency
at the same level of prediction accuracy compared with existing negative sampling-based models.

Keywords: graph neural networks; non-sampling learning; computational efficiency

1. Introduction

Over the past few years, learning from graph-structured data has seen rapid growth,
since a graph is an efficient means to represent the information of nodes and their relation-
ships. Graph neural networks (GNN) are deep learning methods applied on graphs. One
of the key motivations of GNN models lies in the long-term history of developing effective
graph representation methods. To learn the features from the graph-structured data, Deep-
Walk [1] used random walk to extract features from the graph. More recently, researchers
have made efforts in develop graph neural network (GNN) models. GNN learning can
be classified as supervised learning, semi-supervised learning or unsupervised learning.
Supervised learning models assume the availability of a supervisor, who classifies the
training examples into different classes and utilizes the class information of each instance in
the training process, whereas unsupervised learning models identify the class information
heuristically and semi-supervised learning models lie between supervised learning and
unsupervised learning; only a few training instances have class information in the training
process.

In recent years, many efforts have been made to develop unsupervised learning
models for GNN, and an increasing number of GNN models have been shown to be
effective [2,3]. In unsupervised learning, we do not have access to the label information
for each node during the training process. To differentiate between positive and negative
nodes, most current unsupervised learning models rely on a basic operation known as
negative sampling. This process randomly selects some disconnected nodes from the target
node to serve as negative samples (in contrast to the nodes that are connected to the target

Information 2023, 14, 424. https://doi.org/10.3390/info14080424 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14080424
https://doi.org/10.3390/info14080424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-3110-4481
https://doi.org/10.3390/info14080424
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14080424?type=check_update&version=2

Information 2023, 14, 424 2 of 12

nodes, which are treated as positive samples). Although negative sampling enhances
the training efficiency, it can also destabilize the model training. This is because the
sampled negative nodes may differ in various runs, as has been demonstrated in previous
studies [4].

Inspired by recent progress in non-sampling recommendation and factorization ma-
chines [5–8], we develop a non-sampling approach to train a GNN. More specifically, we
propose a Non-Sampling Graph Neural Network (NS-GNN) framework that can be applied
to train unsupervised GNN models. This framework allows us to take all of the positive
and negative nodes into consideration and eliminate negative sampling from the training
process. A natural problem that arises when using all samples for training is the training
efficiency, since, for each node, the number of negative nodes (i.e., nodes not connected to
this node) is huge. To mitigate this problem, we first adopt a linear activation function in
the loss function, which is shown to be effective in many tasks [9,10]. Next, we provide
a mathematical derivation to reformulate the loss function, which enables us to achieve
better computational efficiency without compromising the accuracy. To evaluate the perfor-
mance of our NS-GNN framework, we apply the framework to three GNN models, namely
GraphSage-mean, GraphSage-pool [11] and a graph convolution network [12]. Experimen-
tal results show that, in most cases, the framework achieves better computational efficiency
with the same level of prediction accuracy.

Regarding the remainder of this paper, we first introduce the related work in Section 2.
Then, in Section 2, we introduce our NS-GNN framework in detail. In Section 3, we show
how to apply the framework to different GNN models. We discuss the experiment results
in Section 4 and conclude the work in Section 5.

2. Materials and Methods

In this section, we introduce the related works and our method.

2.1. Related Work

Graph neural networks (GNNs) [13] are a powerful tool in machine learning, partic-
ularly when learning from data structured in graphs. Graphs, with nodes representing
entities and edges illustrating relationships, form a significant part of many data-driven
fields, from social networks to transportation and e-commerce.

Machine learning models are traditionally used for structured or unstructured data
(such as tabular data, images, and text) and often fall short when it comes to graph data.
For instance, while a convolutional neural network (CNN) [14] is excellent for grid-like
data (e.g., images), it does not capture the irregular structures and relational information
inherent in graph data.

GNNs extend the principles of deep learning to graph data, transforming the way in
which we handle complex interrelated data and providing breakthroughs in various appli-
cations, such as social networks [15–17], natural language processing [18–21], computer
vision [22–25] and recommendation [26–28]. The introduction of GNNs addressed these
challenges by introducing a method that can learn directly from graph data, preserving
and leveraging the inherent relational information. With this capability, GNNs represent
a significant advancement in machine learning, particularly when dealing with intricate
relational data.

Recently, a growing number of GNN models have been developed. For example,
DeepWalk [1] learns node embeddings for the graph by random walk to simulate the
expectation in the training corpus. A graph convolutional network (GCN) [12] uses a
Laplacian matrix to transmit the node feature information from the neighbor nodes to
the target node. The GCN follows the neighborhood aggregation scheme, where each
node gathers features from its neighboring nodes, creating an aggregated feature. This
feature is then passed through a transformation, generally a simple linear transformation,
followed by a non-linear activation function such as ReLU. In essence, the GCN leverages

Information 2023, 14, 424 3 of 12

the graph’s topology and the nodes’ features to learn a function that generates powerful
node embeddings, beneficial for tasks such as node classification and link prediction.

While GCNs provide a strong foundation, they treat each neighboring node equally
during aggregation, which might not always be the optimal strategy. Graph Attention
Networks (GATs) [29] introduce an attention mechanism to tackle this issue. Attention
mechanisms allow models to assign different degrees of importance to different nodes in
the aggregation process, making them more adaptive to the input data. A GAT computes
the attention coefficients between a node and its neighbors, which are then used to weight
the contribution of each neighbor during aggregation. The attention coefficients are learned
in such a way as to maximize the model’s performance on the downstream task, making
GATs quite powerful for many graph-based learning tasks.

Unlike traditional GNNs, which are transductive and generate embeddings for only
the nodes seen during training, GraphSAGE [11] is an inductive method. It can create
embeddings for new nodes or entirely new graphs, unseen during training, by leveraging
node feature information. GraphSAGE achieves this by learning a function that generates
a node’s embedding by sampling and aggregating features from its local neighborhood.
By defining the aggregation function and the neural network parameters, GraphSAGE
can produce a node-level embedding capable of capturing the graph’s structure and the
nodes’ features. Compared to GCNs, GraphSAGE splits the whole graph into several small
batches, which increases the node convergence to a large extent, but the training time of
one epoch in GraphSAGE is slower than that of the GCN since the embedding utilization in
GraphSAGE is smaller [30]. Graph Isomorphism Networks (GINs) [31] were introduced to
tackle the limitations of previous GNNs, which were unable to distinguish between certain
types of graphs, a property known as distinguishing graph isomorphism. GINs, with their
unique aggregation scheme, can capture the complete structural information of graphs,
enabling them to discern different graph structures. GINs use a multilayer perceptron
(MLP) in the update step, which gives them the power to capture complex patterns in the
graph data. MLP’s versatility, along with the unique aggregation mechanism, makes GINs
quite expressive and powerful for graph-structured data.

Overall, graph neural networks represent a broad area with various types of models
and applications. For a more comprehensive review of GNNs and their applications,
readers may refer to some recent surveys, such as [32–35].

In the following sections, we begin by introducing the notations utilized throughout
this paper. Subsequently, we provide background information on GNNs and present our
non-sampling approach (NS-GNN). Initially, we outline the general framework, followed
by a detailed explanation of how the NS-GNN approach enhances the computational
efficiency. Furthermore, a dedicated subsection discusses the application of the NS-GNN
framework across various GNN models.

2.2. Preliminaries and Notations

A graph G is often defined as a tuple G = (V, E), where V denotes the set of nodes
(or vertices), and E denotes the set of edges. Each edge is a pair (u, v) indicating a re-
lationship or connection between nodes u and v. An essential aspect of graph data is
that the data points (i.e., nodes) are not isolated but interconnected in complex and often
meaningful ways.

Traditional machine learning models, from linear regression and decision trees to
more sophisticated models such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs), were not designed to handle this type of relational data. While
adaptations and pre-processing techniques (such as graph feature extraction [36]) have
been employed, these often lead to sub-optimal results or the loss of valuable information.

GNNs offer an alternative approach by directly operating on the graph structure. They
use the graph’s topology and node features to learn a function that generates a robust
node-level representation or embedding.

Information 2023, 14, 424 4 of 12

A typical GNN model operates in an iterative message-passing framework. The steps
involved are as follows.

• Message Passing or Propagation: Each node in the graph sends out message to its
neighboring nodes [13]. This information could be the node’s original feature vector
or a transformed version of it. Mathematically, the message m(k)

u→v from node u to node
v at the kth iteration can be written as a function M of their features h(k)u and h(k)v and
node embedding vectors zu,v:

m(k)
u→v = M(h(k)u , h(k)v , zu,v) (1)

• Aggregation: Each node aggregates the messages received from its neighbors. Let
us denote the set of neighbors of node u as Nu [12]. The aggregation step can be
represented as an aggregation function A over the messages from the neighbor nodes:

m(k)
u = A({m(k)

v→u|v ∈ Nu}) (2)

• Update: Each node updates its feature vector based on the aggregated message. This
update can be modeled as an update function U:

h(k+1)
u = U(h(k)u , m(k)

u) (3)

With the help of message-passing, aggregation and update functions, GNN models
can learn the structure and the context of the model. These functions facilitate the exchange,
accumulation and evolution of information across the nodes of the graph. The message-
passing function serves as a communication method, ensuring the spread of local node
information throughout the network. The aggregation function, on the other hand, plays
a critical role in gathering information, allowing each node to draw knowledge from its
neighbor nodes. Then, the GNN model will use this aggregated information to refine each
node’s features, leading to more robust and informative representations that ensure the
structural and contextual aspects of the graph [12]. These three functions make sure GNNs
to effectively learn from graph-structured data, setting them apart from traditional machine
learning models.

2.3. Problem Formalization

In this section, we provide an abstract formalization of unsupervised learning for
GNNs, which is used in the remaining parts of the paper. Table 1 introduces the basic
notations that are used in this paper. Given a graph G, the purpose of unsupervised
learning is to train a scoring function f (zT

u zv), which is able to distinguish the neighbor
nodes of node u, which is v ∈ N(u), and the nodes that are not neighbours of u, which
are v /∈ N(u). Therefore, the goal of an unsupervised learning model is to minimize the
difference between the neighbor nodes (or positive nodes) and maximize the difference
between the nodes that are not connected to each other (or negative nodes) [36]. Based on
these definitions, the loss function of an unsupervised learning model can be formulated as

L = ∑
u∈V

∑
v∈N(u)

− f (zT
u zv)︸ ︷︷ ︸

LP

− ∑
u∈V

∑
v/∈N(u)

f (−zT
u zv)︸ ︷︷ ︸

LN

(4)

where the LP term represents the loss of the positive nodes and the LN term represents the
loss of the negative nodes, and f (·) is a monotonic activation function, which is usually the
log-sigmoid function log σ(·). The purpose of the loss is to maximize the similarity of the
connected nodes (LP term) and minimize the similarity of disconnected nodes (LN term).

Information 2023, 14, 424 5 of 12

Table 1. Summary of the notations in this work.

Symbol Description

G A graph
V All nodes in a graph

u, v Nodes in graph
N(u) Set of neighboring nodes of node u
zu, zv Embedding vector of nodes u and v

zu,i, zv,i i-th dimension of node embedding zu, zv
d Dimension of the embedding vectors

cuv Weight of the node embedding
f (u, v) Predicted score between nodes u and v

2.4. Non-Sampling Graph Neural Network

If we wish to develop a non-sampling GNN framework, we need to take all of the
negative samples into consideration, i.e., the LN term in Equation (4) should sum over all
nodes v /∈ N(u). We first equivalently rewrite Equation (4) in the following form:

L = ∑
u∈V

∑
v∈N(u)

− f (zT
u zv)− ∑

u∈V
∑

v/∈N(u)
f (−zT

u zv)

= ∑
u∈V

∑
v∈N(u)

− f (zT
u zv) + f (−zT

u zv)︸ ︷︷ ︸
LP

− ∑
u∈V

∑
v∈V

f (−zT
u zv)︸ ︷︷ ︸

LA

(5)

where the LA term denotes the sum over all nodes. From this equation, we can see that
the time complexity for the calculation of the loss function is huge. More specifically, the
time complexity of f (zT

u zv) is O(d), where d is the size of the dimension. Therefore, the
time complexity of the calculation of the whole loss function is O(d|V|2). If we apply this
method to real-world datasets, the computational time would be unrealistic. As a result,
we require an efficient method of reformulating the loss function through mathematical
derivations. We provide further details in the subsequent sections.

2.5. Improving Time Efficiency

To improve the time efficiency, the first step is to identify the most time-consuming
part. In practice, most graphs are sparse, meaning that each node in the graph has only a
few neighboring nodes. As a result, the calculation of the LP term in Equation (5) is feasible,
but the calculation of the LA term would dominate the time complexity since it sums over
all node pairs. As a result, we need to decompose the LA term and seek more efficient
implementations of Equation (5).

However, if the activation function f (·) is non-linear, it is very difficult for us to
decompose and simplify the LA term.

To solve this problem, similar to recent advances in graph neural network research [9],
we adopt a linear activation function. More specifically, since zT

u zv itself is already a
monotonic increasing function and it is decomposable, we use zT

u zv to replace f (zT
u zv)

(in particular, log σ(zT
u zv)) in the loss function. In the experiments, it is found that the

model can provide the same level of prediction accuracy with such substitution but better
efficiency. In this case, the loss function can be reformulated as

L = ∑
u∈V

∑
v∈N(u)

(
−(zT

u zv) + (−zT
u zv)

)
− ∑

u∈V
∑

v∈V
−zT

u zv

= ∑
u∈V

∑
v∈N(u)

−2(zT
u zv)︸ ︷︷ ︸

LP

− ∑
u∈V

∑
v∈V
−zT

u zv︸ ︷︷ ︸
LA

(6)

Information 2023, 14, 424 6 of 12

Since the time complexity of calculating LA is very high, we examine the LA term. The
LA term can be represented as the following:

LA = ∑
u∈V

∑
v∈V
−zT

u zv = ∑
u∈V

∑
v∈V

d

∑
i
−zu,izv,i (7)

where zu and zv are the node embeddings of node u and node v, and zu,i and zv,i represent
the i-th element of the corresponding embedding vector. By manipulating the inner product,
LA can be rewritten as the following:

LA = ∑
u∈V

∑
v∈V

d

∑
i
−zu,izv,i = − ∑

u∈V

d

∑
i

zu,i ∑
v∈V

d

∑
i

zv,i (8)

From the above equation, we can see that zu,i and zv,i are separated from each other
and we can disentangle the parameters in LA and rearrange them in an more efficient way.
Then, we apply Equation (8) into Equation (6) and obtain the final loss function as

L = ∑
u∈V

∑
v∈N(u)

−2(zT
u zv)︸ ︷︷ ︸

LP

+ ∑
u∈V

d

∑
i

zu,i ∑
v∈V

d

∑
i

zv,i︸ ︷︷ ︸
LA

(9)

Algorithm 1 is the pseudocode of our method. As mentioned before, LA contributes
the most significantly to the complexity of the loss function. However, through the oper-
ation applied above, we are able to decrease this complexity, which can be a crucial step
when dealing with large-scale problems. Initially, the complexity of the loss function was
O(d|V|2). In practice, this could lead to prohibitively long computation times, especially
when dealing with large datasets and high-dimensional embeddings. After applying our
operation, the complexity has been reduced to O(d|V|). This is a significant improvement:
the computational time now scales linearly with the size of the vocabulary |V|. In practical
terms, this reduction in complexity means that our algorithms will run faster, enabling us
to deal with larger datasets, more complex models and more sophisticated applications.
Furthermore, the reduced computational requirements make the approach more accessible,
as it can now be implemented on hardware with fewer resources. The loss function can
be applied over existing graph representation learning methods such as GCN [12] and
GraphSAGE [11] to improve the efficiency of these models, compared with training the
loss based on negative sampling methods.

Algorithm 1 Efficient Calculation of Loss Function

Initialize node embeddings zu and zv for all nodes u, v ∈ V
while not converged do

Compute the loss for LP = ∑u∈V ∑v∈N(u)−2(zT
u zv)

Compute the loss for LA = ∑u∈V ∑v∈V −zT
u zv

Simplify LA = ∑u∈V ∑d
i zu,i ∑v∈V ∑d

i zv,i
Compute final loss L = LP + LA

Update the embeddings using gradient descent on L
end while

3. Results

In this section, we list the experimental results and evaluate both the efficiency and
accuracy of the Non-Sampling Graph Neural Network (NS-GNN) framework.

Information 2023, 14, 424 7 of 12

3.1. Experimental Setup

We first introduce the datasets, baseline methods, evaluation metrics and parameter
settings.

We conduct our experiments on three benchmark datasets for graph neural network
research, which are NELL, PubMed and Cora. Some statistical details of these three datasets
are shown in Table 2.

NELL [37]: The NELL dataset is extracted from the knowledge graph introduced
in [37]. We follow the same pre-processing scheme as described for GCNs in [12]. The
dataset consists of 55,864 relation nodes and 9891 entity nodes.

PubMed [38]: The PubMed dataset includes 19,717 scientific publications on dia-
betes from the PubMed database. Each publication in the dataset is described by a term
frequency–inverse document frequency (TF/IDF) weighted word vector in a dictionary
consisting of 500 unique words.

Cora [39]: The Cora dataset consists of 2708 scientific publications classified into
one of seven classes. The citation network consists of 5429 links. Each publication in the
dataset is described by a 0/1-valued word vector indicating the absence/presence of the
corresponding word from the dictionary.

3.2. Baselines Methods

We apply the NS-GNN framework to the following frequently used graph neural
network models for comparison.

• GCN [12]: The graph convolutional neural network (GCN) model uses convolutions to
learn the representations of the nodes in the graph under a neural network architecture.

• GraphSAGE [11]: This is an inductive learning graph neural network framework that
can use node feature information to generate embeddings for unseen vertices.

All of the models are implemented by PyTorch, an open-source library. Moreover, we
use the baselines implemented by Pytorch geometric [40], which is an open-source toolkit
for graph neural networks.

3.3. Evaluation Metrics

For each model, we first use unsupervised learning to learn the embedding of each
node in the graph. In the next step, we split the whole dataset into a training set, validation
set and testing test. Then, we use the embedding learned from the unsupervised learning
and adopt a logistic regression over the training set to train the classifier and use the
validation set to avoid overfitting. We then test the learned classifier on the testing set.

For each dataset, there are multiple classes, and each node in the graph only belongs to
one of these classes. In the testing set, we use our trained model to perform the classification
and compare the predicted label with the ground-truth label. Then, we report the accuracy
of the prediction result, which is defined as

Accuracy =
Correctly Classified Nodes

Total Nodes
(10)

3.4. Parameter Settings

For every model, we establish an embedding dimension default size of d = 64.
This numerical value is not randomly selected; rather, it is determined from a number
of previous studies, initial experiments and computational limitations. This ensures the
optimal equilibrium between intricacy and manageability. Nevertheless, acknowledging
the potential significance of this parameter, we perform an ablation study, methodically
altering the size of the embedding dimension to comprehend its effect on our models’
performance.

All of the NS-GNN models undergo `2 normalization to circumvent the issue of over-
fitting. This method reduces the magnitude of the weight vectors without changing their
direction, helping to prevent extreme weight values and maintain the model’s capacity to

Information 2023, 14, 424 8 of 12

generalize from training to unseen data. However, for the negative sampling-based base-
lines, we skip this normalization step. The decision to do so stems from our observations
that the sigmoid loss function, which we employ in these cases, tends to produce better
experimental results without normalization.

Table 2. Basic statistics of the datasets.

Dataset #Nodes #Edges #Features #Classes

NELL 65,755 266,144 5414 210
PubMed 19,717 44,338 500 3
Cora 2708 5429 1433 7

4. Discussion

In this section, we discuss the results of our method.

4.1. Computational Efficiency

We apply the NS-GNN framework to the GCN, GraphSAGE-mean and GraphSAGE-
max models, where GraphSAGE-mean is the GraphSAGE model under the mean-pooling
aggregation function, while GraphSAGE-max is the GraphSAGE model under the max-
pooling aggregation function. We use NS-X to denote the model in which we apply our
non-sampling framework to model X. For a fair comparison, all results are run on a single
NVIDIA Geforce 2080Ti GPU. The operating system is Ubuntu 16.04 LTS. For all models,
the dimension is set as 64 and the number of training epochs is 50. The experimental results
regarding the accuracy and running time for each dataset are shown in Table 3.

Table 3. Experimental results regarding accuracy, efficiency and speedup.

Dataset NELL PubMed Cora

Metric Accuracy Time Speedup Accuracy Time Speedup Accuracy Time Speedup

GraphSAGE-mean 0.214 876.7 s / 0.703 58.6 s / 0.685 6.1 s /
NS-GraphSAGE-mean 0.241 235.1 s 3.72 0.718 12.1 s 4.84 0.652 2.5 s 2.44

GraphSAGE-max 0.471 929.2 s / 0.698 68.1 s / 0.679 5.9 s /
NS-GraphSAGE-max 0.520 276.6 s 3.35 0.711 13.1 s 5.19 0.681 3.6 s 1.63

GCN 0.441 271.5 s / 0.694 2.1 s / 0.677 1.2 s /
NS-GCN 0.461 210.7 s 1.28 0.706 2.0 s 1.05 0.683 1.1 s 1.09

We can see that, compared to the baselines, in most cases, our NS-GNN framework
achieves better training efficiency than the corresponding baseline. For example, if we apply
NS-GNN to GraphSAGE under the max-pooling aggregation function (GraphSAGE-max)
on the PubMed dataset, the training time is 13.1 s, while the original negative-sampling
based model requires 68.1 s. Acceleration is performed around 5 times. For other models
and datasets, our non-sampling framework also achieves better efficiency and the speedup
ranges from 1.09 times to 4.8 times.

4.2. Classification Accuracy

In this section, we discuss the classification performance of the NS-GNN framework.
We compare the prediction accuracy of the three sampling-based models, GraphSAGE-
mean, GraphSAGE-max and GCN, with their corresponding non-sampling versions.

As seen in Table 3, our framework outperforms the baselines in terms of prediction
accuracy in most cases. The reason that NS-GNN can deliver superior performance in less
time under linear activation is that sampling-based models only consider a portion of the
negative samples in the dataset. However, our NS-GNN framework can take all of the
negative samples in the dataset into consideration, which largely offsets the influence of
using linear activation while achieving better efficiency.

Information 2023, 14, 424 9 of 12

Another interesting observation from Table 3 is that the NS-GNN framework has
better performance on NELL and PubMed than Cora. This is because NELL and PubMed
possess significantly more nodes and edges compared to the other dataset. When dealing
with large graphs, the benefits of using our non-sampling training framework become
more pronounced. This is because the negative sampling approach can only consider a
small fraction of the negative nodes, while our non-sampling framework can incorporate
all negative nodes for training, thereby utilizing more comprehensive information from
the graph.

4.3. Influence of Embedding Dimension

In Figure 1, we show the accuracy of the NS-GNN framework under different embed-
ding dimensions d. In most cases, models will demonstrate better performance with larger
dimensions d. However, a larger dimension will also result in a longer model training time.
Therefore, we need to achieve a trade-off between the performance and training time. As
we can see in Figure 2, in most cases, the performance becomes relatively stable around
dimension 50–100. As a result, we recommend an embedding dimension in this range for
the best trade-off.

𝒖𝟏

𝒗𝟏

𝒗𝟐

𝒗𝟑

𝒖𝟏

𝒗𝟑

𝒗𝟐

𝒗𝟒

𝒗𝟓 AGGREGATE

𝒗𝟏

Figure 1. An illustration of the GNN model. The left side features a sample of a graph, while the
right side depicts the process of message passing and aggregation.

Figure 2. Performance in terms of accuracy under different embedding dimensions d.

5. Conclusions

In this paper, we propose the Non-Sampling Graph Neural Network (NS-GNN), a
novel non-sampling training framework for graph neural networks (GNNs) that fully
leverages all the negative samples within a dataset during model training. Our rigorous
experiments on three diverse datasets illustrate that this framework can markedly enhance
the training efficiency while maintaining a comparable level of classification accuracy.

The exploration of decomposable non-linear activation functions is not only pivotal
to the NS-GNN framework but also holds considerable potential to benefit other types of
models beyond GNNs. One particularly promising application lies in the domain of knowl-
edge graphs, where these activation functions could help to extract and represent more
complex relationships among entities. Furthermore, in the context of pre-trained language
models, these functions could enhance their ability to understand and generate language,
thereby contributing to improvements in a myriad of natural language processing tasks.

Information 2023, 14, 424 10 of 12

Simultaneously, we also foresee the potential of these activation functions in various
other fields, such as collaborative filtering for recommendation systems, anomaly detection
in time-series data or even bio-informatics, where the methods used for GNNs have started
to exhibit significant benefits.

Alongside these exciting prospects, it is essential to continue applying the NS-GNN
framework against other contemporary graph neural network models, across different
datasets and tasks. This will allow us to further understand the strengths, limitations and
potential improvements that can be made to our proposed model.

In conclusion, this study marks the beginning of a long and promising journey in the
exploration and development of the Non-Sampling Graph Neural Network framework.
We look forward to further exploring this exciting area and pushing the boundaries of what
GNNs can achieve.

Author Contributions: Conceptualization, J.J., Z.L. and Y.Z.; methodology, J.J. and S.X.; software, J.J.
and Z.L.; validation, J.J. and Z.L.; formal analysis, J.J. and Y.G.; investigation, J.J. and J.T.; writing—
original draft preparation, J.J., Z.L., Y.G. and Y.Z.; writing—review and editing, J.J., S.X., J.T. and Y.Z.;
supervision, Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Publicly available datasets were analyzed in this study. Data can be
found at https://github.com/pyg-team/pytorch_geometric (accessed on 11 July 2023).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

GNN Graph Neural Network
NS-GNN Non-Sampling Graph Neural Network
GAT Graph Attention Network
GCN Graph Convolutional Network

References
1. Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710.
2. Yang, L.; Gu, J.; Wang, C.; Cao, X.; Zhai, L.; Jin, D.; Guo, Y. Toward Unsupervised Graph Neural Network: Interactive Clustering

and Embedding via Optimal Transport. In Proceedings of the 2020 IEEE International Conference on Data Mining (ICDM),
Sorrento, Italy, 17–20 November 2020; pp. 1358–1363.

3. Henaff, M.; Bruna, J.; LeCun, Y. Deep convolutional networks on graph-structured data. arXiv 2015, arXiv:1506.05163.
4. Wang, M.; Gong, M.; Zheng, X.; Zhang, K. Modeling dynamic missingness of implicit feedback for recommendation. Adv. Neural

Inf. Process. Syst. 2018, 31, 6669.
5. Rendle, S. Factorization machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia,

13–17 December 2010; pp. 995–1000.
6. Chen, C.; Zhang, M.; Zhang, Y.; Ma, W.; Liu, Y.; Ma, S. Efficient heterogeneous collaborative filtering without negative sampling

for recommendation. Proc. AAAI Conf. Artif. Intell. 2020, 34, 19–26. [CrossRef]
7. Li, Z.; Ji, J.; Fu, Z.; Ge, Y.; Xu, S.; Chen, C.; Zhang, Y. Efficient Non-Sampling Knowledge Graph Embedding. In Proceedings of

the Web Conference 2021, Online, 12–23 April 2021; pp. 1727–1736.
8. Chen, C.; Zhang, M.; Ma, W.; Liu, Y.; Ma, S. Efficient non-sampling factorization machines for optimal context-aware recommen-

dation. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 2400–2410.
9. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.
10. Katharopoulos, A.; Vyas, A.; Pappas, N.; Fleuret, F. Transformers are rnns: Fast autoregressive transformers with linear attention.

In Proceedings of the International Conference on Machine Learning, Vienna, Austria, 12–17 July 2020; pp. 5156–5165.
11. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Adv. Neural Inf. Process. Syst. 2017, 30.

https://github.com/pyg-team/pytorch_geometric
http://doi.org/10.1609/aaai.v34i01.5329

Information 2023, 14, 424 11 of 12

12. Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2017, arXiv:1609.02907.
13. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The graph neural network model. IEEE Trans. Neural Netw.

2008, 20, 61–80. [CrossRef] [PubMed]
14. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017

International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6.
15. Chen, J.; Ma, T.; Xiao, C. FastGCN: Fast Learning with Graph Convolutional Networks via Importance Sampling. arXiv 2018,

arXiv:1801.10247.
16. Yang, L.; Liu, Z.; Dou, Y.; Ma, J.; Yu, P.S. Consisrec: Enhancing gnn for social recommendation via consistent neighbor aggregation.

In Proceedings of the 44th international ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual
Event, 11–15 July 2021; pp. 2141–2145.

17. Liu, Y.; Zeng, K.; Wang, H.; Song, X.; Zhou, B. Content matters: A GNN-based model combined with text semantics for social
network cascade prediction. In Proceedings of the Advances in Knowledge Discovery and Data Mining: 25th Pacific-Asia
Conference, PAKDD 2021, Virtual Event, 11–14 May 2021; Proceedings, Part I; Springer: Berlin/Heidelberg, Germany, 2021;
pp. 728–740.

18. Yao, L.; Mao, C.; Luo, Y. Graph convolutional networks for text classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, Honolulu, HI, USA, 29–31 January 2019; Volume 33, pp. 7370–7377.

19. Wu, L.; Chen, Y.; Ji, H.; Liu, B. Deep learning on graphs for natural language processing. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; pp. 2651–2653.

20. Schlichtkrull, M.S.; Cao, N.D.; Titov, I. Interpreting Graph Neural Networks for {NLP} with Differentiable Edge Masking. In
Proceedings of the International Conference on Learning Representations, Virtual Event, 3–7 May 2021.

21. Wu, L.; Chen, Y.; Shen, K.; Guo, X.; Gao, H.; Li, S.; Pei, J.; Long, B. Graph neural networks for natural language processing: A
survey. Found. Trends® Mach. Learn. 2023, 16, 119–328. [CrossRef]

22. Wang, X.; Ye, Y.; Gupta, A. Zero-shot recognition via semantic embeddings and knowledge graphs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6857–6866.

23. Pradhyumna, P.; Shreya, G. Graph neural network (GNN) in image and video understanding using deep learning for computer
vision applications. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication
Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 1183–1189.

24. Shi, W.; Rajkumar, R. Point-gnn: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 1711–1719.

25. Han, K.; Wang, Y.; Guo, J.; Tang, Y.; Wu, E. Vision GNN: An Image is Worth Graph of Nodes. Proc. Adv. Neural Inf. Process. Syst.
2022, 35, 8291–8303.

26. Wu, C.; Wu, F.; Cao, Y.; Huang, Y.; Xie, X. FedGNN: Federated Graph Neural Network for Privacy-Preserving Recommendation.
arXiv 2021, arXiv:2102.04925.

27. Gao, C.; Wang, X.; He, X.; Li, Y. Graph neural networks for recommender system. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data Mining, Virtual Event, 21–25 February 2022; pp. 1623–1625.

28. Wu, S.; Tang, Y.; Zhu, Y.; Wang, L.; Xie, X.; Tan, T. Session-based recommendation with graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 346–353.

29. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2018, arXiv:1710.10903.
30. Chiang, W.L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C.J. Cluster-gcn: An efficient algorithm for training deep and large graph

convolutional networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 257–266.

31. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the International
Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.

32. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S.Y. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]

33. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

34. Kefato, Z.T.; Girdzijauskas, S. Self-supervised graph neural networks without explicit negative sampling. arXiv 2021,
arXiv:2103.14958.

35. Tam, P.; Song, I.; Kang, S.; Ros, S.; Kim, S. Graph Neural Networks for Intelligent Modelling in Network Management and
Orchestration: A Survey on Communications. Electronics 2022, 11, 3371. [CrossRef]

36. Zhuge, W.; Nie, F.; Hou, C.; Yi, D. Unsupervised single and multiple views feature extraction with structured graph. IEEE Trans.
Knowl. Data Eng. 2017, 29, 2347–2359. [CrossRef]

37. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Sardinia, Italy,
13–15 May 2010; pp. 249–256.

38. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective classification in network data. AI Mag. 2008,
29, 93. [CrossRef]

http://dx.doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
http://dx.doi.org/10.1561/2200000096
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.3390/electronics11203371
http://dx.doi.org/10.1109/TKDE.2017.2725263
http://dx.doi.org/10.1609/aimag.v29i3.2157

Information 2023, 14, 424 12 of 12

39. McCallum, A.K.; Nigam, K.; Rennie, J.; Seymore, K. Automating the construction of internet portals with machine learning. Inf.
Retr. 2000, 3, 127–163. [CrossRef]

40. Fey, M.; Lenssen, J.E. Fast Graph Representation Learning with PyTorch Geometric. arXiv 2019, arXiv:1903.02428.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1009953814988

	Introduction
	Materials and Methods
	Related Work
	Preliminaries and Notations
	Problem Formalization
	Non-Sampling Graph Neural Network
	Improving Time Efficiency

	Results
	Experimental Setup
	Baselines Methods
	Evaluation Metrics
	Parameter Settings

	Discussion
	Computational Efficiency
	Classification Accuracy
	Influence of Embedding Dimension

	Conclusions
	References

