Y information

Article

NARX Technique to Predict Torque in Internal Combustion Engines

Federico Ricci

check for
updates

Citation: Ricci, F,; Petrucci, L.;
Mariani, F.; Grimaldi, C.N. NARX
Technique to Predict Torque in
Internal Combustion Engines.
Information 2023, 14, 417. https://
doi.org/10.3390/info14070417

Academic Editors: Marco Leo and

Sara Colantonio

Received: 25 June 2023
Revised: 14 July 2023

Accepted: 16 July 2023
Published: 20 July 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

, Luca Petrucci *”, Francesco Mariani

and Carlo Nazareno Grimaldi

Engineering Department, University of Perugia, Via Goffredo Duranti, 93, 06125 Perugia, Italy;
federico.ricci@unipg.it (ER.); francesco.mariani@unipg.it (EM.); carlo.grimaldi@unipg.it (C.N.G.)
* Correspondence: luca.petrucci89@gmail.com

Abstract: To carry out increasingly sophisticated checks, which comply with international regulations
and stringent constraints, on-board computational systems are called upon to manipulate a growing
number of variables, provided by an ever-increasing number of real and virtual sensors. The
optimization phase of an ICE passes through the control of these numerous variables, which often
exhibit rapidly changing trends over time. On the one hand, the amount of data to be processed,
with narrow cyclical frequencies, entails ever more powerful computational equipment. On the
other hand, computational strategies and techniques are required which allow actuation times that
are useful for timely and optimized control. In the automotive industry, the ‘machine learning’
approach is becoming one the most used approaches to perform forecasting activities with reduced
computational effort, due to both its cost-effectiveness and its simple and compact structure. In
the present work, the nonlinear dynamic system we address is related to the torque estimation of
an ICE through a nonlinear autoregressive with exogenous inputs (NARX) approach. Preliminary
activities were performed to optimize the neural network in terms of neurons, hidden layers, and the
number of input parameters to be assessed. A Shapley sensitivity analysis allowed quantification of
the impact of each variable on the target prediction, and therefore, a reduction in the amount of data
to be processed by the architecture. In all cases analyzed, the optimized structure was able to achieve
average percentage errors on the target prediction that were always lower than a critical threshold of
10%. In particular, when the dataset was augmented or the analyzed cases merged, the architecture
achieved average prediction errors of about 1%, highlighting its remarkable ability to reproduce the
target with fidelity.

Keywords: machine learning; NARX technique; ICE; torque; time-series modeling

1. Introduction

The control of internal combustion engines (ICEs) is becoming ever more complex
due to both the increasingly stringent regulations on pollutant emissions and customers’
requirements for improved performance [1-3]. Because of the increasing engine complex-
ity, the analytical data instruments must manage huge amounts of data from numerous
physical sensors during the engine calibration and run-time operations [4,5]. In this way,
considerable computational efforts are required to optimize the engine performance, thus
leading to a dramatic increase in operating times and costs [6]. Therefore, the main ef-
forts of automotive researchers have aimed to discover advanced technologies capable of
effectively monitoring the engine parameters [7-9]. Machine learning (ML) approaches
are increasingly proposed in many automotive applications such as virtual sensors [10,11],
fault diagnosis systems [12], and performance optimizations [13] for real-time and low-cost
hardware implementation and compact configuration [14]. Their capability to forecast
parameters employing interpolation-based algorithms of known intermediate values can
reduce the number of analyzed operating points, thus leading to notable advantages in
terms of memory and computational speed [15-17].

Among the ML approaches, a non-linear autoregressive network with exogenous
inputs (NARX) [18,19], i.e., a recurrent dynamic neural network used to model nonlinear
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dynamic systems and applied in time series, seems to be a promising method to perform
signal analysis inherent to the internal combustion engine. Taghavi et al. [20] compared the
capability of a NARX structure to predict the start of combustion of a HCCI (homogeneous
charge compression ignition) one-cylinder Ricardo engine with multi-layer perceptron
(MLP) and radial basis function (RBF) networks. The NARX architecture showed the best
regression coefficient and reduction of computational time. Kitanovic et al. [21] utilized
NARX to minimize the fuel consumption of a parallel hydraulic hybrid powertrain system
of a transit bus. Quantities like instantaneous vehicle speed, driveshaft torque, hydraulic
machine load, and hydro-pneumatic accumulator gas pressure were selected as inputs to
the architecture. Fuel consumption decreases and a value of about 80% of the optimally
achievable fuel savings can be reached by the NARX approach. Hamid Asgari et al. [22]
reported the ability of open-loop and closed-loop NARX models to predict the dynamic
behavior of a single-shaft gas turbine over different operational ranges. Salehi et al. [23]
showed the effectiveness of a NARX structure to model a fuel flow control system of a
turboshaft gas turbine engine.

Within this context, the present work uses the NARX technique for the prediction
of the torque delivered by an internal combustion engine (ICE). The neural architecture
used was trained and tested on experimental data from physical sensors and an ECU
(engine control unit) under different operating conditions, on a port fuel injection (PFI)
three-cylinder spark-ignition (SI) engine.

In the first part of the work, preliminary activities were carried out on a specific case
to find out the best combination of neurons and hidden layers able to predict a defined
target with the lowest errors [24]. A preliminary activity was also performed using the
Shapley method, which allowed definition of the less influential parameters for the torque
prediction [25]. A new neural NARX structure was therefore defined, starting from the
reduced dataset, by following the same procedure adopted for the first architecture. Even
in this case, the target is to select the best combination of neurons and the number of hidden
layers able to predict the defined target with the lowest errors. The performance of the
tested architectures was compared and the structure performing best was chosen to predict
a series of provided torque signals.

The results showed that the optimized structures were able to reproduce the target
torque in all cases analyzed. In particular, the structures operating with reduced inputs
exhibited higher performance with smoother fluctuations, consistent behavior, and average
percentage errors always lower than a critical threshold of 10%. When the initial dataset
was augmented or the analyzed cases randomly merged, the best architecture achieved
average prediction errors up to 1%, and in any case always lower than 4%.

2. Experimental Setup

Tests were carried out on a 999 cc 3-cylinder engine SMART W451T turbocharged with
16 valves and pent-roof combustion chambers (Table 1). The maximum power of 84 CV
was produced at 5250 rpm and the maximum torque was equal to 120 Nm at 3250 rpm. The
internal cylinder bore was 72 mm while the piston stroke was 81.8 mm. The compression
ratio was equal to 10:1. The engine was designed to operate with port fuel injection (PFI)
with the igniter, i.e., spark, centrally located. Standard European market gasoline (E5, with
RON =95 and MON = 85) was injected at a fixed absolute pressure of 4.2 bar using port fuel
injectors (Mitsubishi 1465A337). A Borghi & Saveri eddy current brake dynamometer of
600 CV was coupled with the crankshaft to ensure the engine speed in the firing condition
(Figure 1). A Vascat electric motor of 66.2 kW was added in a tandem configuration to
control the engine speed both in motored and firing conditions. All the engine parameters,
such as, for instance, ignition timing, injector energizing, turbocharged rate, and so on, were
controlled using an EFI EURO-4 engine control unit (ECU). The signals from thermocouples
TCK and PTX 1000 pressure sensors were respectively acquired by data acquisition system
modules of National Instruments type CFP-CB-3 and type CFP-AI-110. The indicated
analysis was performed through a Kistler Kibox combustion analysis system (maximum
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temporal resolution of 0.1 CAD) that acquired the pressure signals from the piezoresistive
sensors (Kistler 4624A) placed in the intake and exhaust ports, the in-cylinder pressure
of the piezoelectric sensor (Kistler 5018) placed on a side of the combustion chamber
beside the flywheel, the ignition signal from the ECU, and the absolute crank angular
position measured by an optical encoder (AVL 365C). Due to structural and mechanical
limitations, only the combustion chamber beside the flywheel was fitted with a piezoelectric
sensor, which was used to determine the indicated mean effective pressure (IMEP). The
determination of the fuel consumption was realized using a dynamic fuel meter AVL 733S.
A torquemeter placed close to the engine crankshaft was used to determine the torque
delivered by the engine. The speed of the turbocharger was measured by a rotational speed
sensor Picoturn Ptem V1.1. During the engine operations, all the mentioned quantities
were recorded by dedicated software provided by Eurins srl called AdaMo Hyper, which
allows simultaneous control of speed, torque, and the valve throttle position of the engine
both in firing and motored conditions. Figure 1 summarizes the experimental layout.

Table 1. Main features of the metal engine.

Displacement 999 cc
Cylinders 3 Cyl./4V per Cyl.
Bore 72 mm
Stroke 81.8 mm
Compression ratio 10:1
Engine configuration Inline
Power 84 CV at 5250 rpm
Torque 120 Nm at 3250 rpm

Dynamic fuel
meter

Fuel

pressured /
Cooled air v A

— Eddy current il

Exhaust gas dynamometer

Air inlet

Signals frflh Slow sensors
Signals frgllb Fast sensors

DAQ National AdaMO Hyper

Instruments Signals flom/to engine

Figure 1. Experimental setup and acquisition system used to carry out the activities.

3. Artificial Neural Network Setup and Methods

The proposed method was fine-tuned, working on the dataset resulting from the
experimental activities carried out on the three-cylinder PFI engine. The prediction of the
delivered torque was performed via a NARX approach [26,27], i.e., a recurrent dynamic
neural network used to model nonlinear dynamic systems and applied in time-series
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modeling [28]. Such a network is composed of a series—parallel architecture (i.e., open-loop)
or a parallel one (i.e., close-loop) (Figure 2). In the series—parallel architecture, the desired
output value (t) is predicted from the present and past values of the input x(t) and the true
past value of the time series y(t). In the parallel architecture, the prediction is performed
from the present and past values of x(t) and the predicted value of §(t). A series—parallel
architecture is used during the training phase because of the availability of the true past
value of the time series. Then, the architecture is converted into a parallel one, useful for
multi-step-ahead forecasting.

()

—| TDL —* Feed Forward BiY TDL Feed Forward A|j(’)
— DL — Network — TDL Network

x(1) x(1)

Series-Parallel
architecture

Parallel

architecture

Figure 2. Architectures of the NARX neural network. TDL stands for tapped delay line, which delays
an input by the specified number of sample periods and provides an output signal for each delay.

Five transient cycles (TC), each with 5760 samples, were realized through the AdaMo
actuation, which caused the engine to run with variable engine speed and throttle valve
opening. In such work, the engine speed varied from 1000 to 3500 rpm. The torque
delivered by the engine continuously changed as a result (Figure 3). The target of the

present activity was to predict such a parameter at the five conditions proposed.
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Figure 3. Delivered torque trend for the five tested datasets. The dotted boxes indicate the signals to
be predicted as subsequently described.

Data from the ECU, pressure sensors, thermocouples, and torquemeter were acquired
by AdaMo with a sampling frequency of 10 Hz. A total of 12 variables, considered among
the most characteristics, were chosen as input to the neural structure to predict the torque
delivered by the engine, namely:
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Entire Dataset

- Pressure sensors and thermocouples:
temperature of the air before the filter (TC_Air_Intake), temperature and pressure of
the air at the intake pipe (TC_ETB_OUT and MAP), pressure and temperature of the
exhaust gas before (TC_Turbine IN, P_Turbine IN) and after the turbine (TC_Turbine
OUT and P_Turbine OUT), temperature of the engine oil (TC_Engine Oil).

- Engine control unit actuation:
activation time of the injector (InjectionTime) and ignition timing of the spark (SparkAd-
vance) at the first cylinder beside the flywheel.

- AdaMo actuation:
throttle valve opening (Throttle Position) and engine speed (Engine speed).

For each transient cycle analyzed, the entire dataset was composed of an input matrix
of [12 x 5760] samples and an output matrix of [1 x 5760] (Figure 4a,b). For this application,
5760 samples represented a duration of approximately 120 s. This duration is similar to the
length of the ECE-15 homologation cycle segment that involves the highest vehicle speeds.
For the sake of completeness, Appendix A reports the input trend of the used variables for
the TC-2 case.

JPU' 2 X T J -
o INPUT [12 x 5760] OUTPUT [1 x 5760 Training
Recorded | __________________ Recorded °C  TC_Air_Intake
variables T frecoraed
3 Xk} ..mipm.. " °C 7C ETB OUT INPUT
per quantity e
TC2 mbar  MAP 12X [1 x 4608]
{
““1-3-;“5-7-6-(;““ °C  IC_Turbine IN A OUTPUT (Torque)
mbar  P_Turbine IN —n —x4;cs1—
a3 °C  TC_Turbine OUT
.................. Torque [Nm]
13 x 5760 mbar  P_Turbine OUT Test
°C  TC_Engine Oil INPUT
TC4 i A - —
__________________ us  InjectionTime g .
13 x 5760 CADaTDC  SparkAdvance OUTPUT (Torque)
TCS %  Diottle Position Coxns
""""""""" pm  Engine speed
13 x 5760
(a) (b) (c)

Figure 4. (a) Description of the entire dataset used in this activity; (b) division between input and
output parameters for each case analyzed and displayed in (a); (c) dataset segmentation for the
training and test session.

The definition of the neural structure in terms of number of neurons and hidden layers
was performed through preliminary analysis. A random case among the five tested, i.e.,
TC2, Figure 3, was chosen for this purpose. According to the criteria analyzed in [29]:

- The number of hidden neurons should be between the size of the input layer and the
size of the output layer.

- The number of hidden neurons should be 2/3 the size of the input layer, plus the size
of the output layer.

- The number of hidden neurons should be less than twice the size of the input layer.

A maximum of 2 hidden layers composed of different numbers of neurons (9,12,15,18,21,23)
(Figure 5) were tested, comparing the corresponding training performances. The structure
showing the best performance in training was chosen for the test session.

A parallel preliminary analysis was also carried out by using the SHAP (Shapley
additive explanation) method to evaluate the impact of the single measured quantities
(Figure 4a) on the objective function (i.e., torque) [30]. SHAP aims to explain the prediction
of an instance by calculating the contribution of each characteristic to the prediction [25].
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The average absolute Shapley values (ABSV) [31] allowed the authors to quantify the
impact of the single measured quantities on the objective function. The less influential
variables were deleted from the initial dataset and the same analysis, previously executed
with the entire dataset, was performed. Finally, the performance of the neural structure
on the entire and reduced dataset was compared through the prediction of the delivered
torque in the analyzed TC2. The structure providing the best results was employed for the
torque prediction in the five analyzed cases. For each transient cycle, the training session
was realized in the MATLAB environment on 80% of the entire dataset, while the test
session regarding the torque prediction was performed with the remaining 20% (Figure 4c).

Hidden 1

Hidden 2

Output

9,12,15,18,21,23
1 9,12,15,18,21,23

Figure 5. NARX structure used to perform the prediction of the torque delivered by the engine.
A maximum of 2 hidden layers composed of different numbers of neurons (9,12,15,18,21,23) were
selected to optimize the performance.

4. Results and Discussion

As reported in the previous section, the definition of the neural structure was per-
formed through preliminary activities considering the transient cycle TC-2. Of the provided
dataset, 80% was used for the training session. The training performance of 42 different
combinations of neurons and hidden layers was evaluated in terms of RMSE [24]. As de-
picted in Figure 6, each combination shows an RMSE value under the acceptable threshold
of 5% [32]. In particular, the structure composed of 2 hidden layers with 21 and 23 neurons
respectively presented the best performance with an RMSE value equal to 3.37%. Such a
structure, i.e., {21 23}, was selected for the next step, i.e., the test session, to predict the 20%
of the remaining torque signal.

*

[9] [12] [15] [18] [21] [23]

5] 15) L) Ll B ] (101 5] el il las

5 e A [ e e 1 e e e e e e

Figure 6. RMSE values for training of different combinations of neurons and hidden layers, based on
the provided initial dataset. The red box indicates the combination chosen for the test session, i.e., the
one composed by 2 hidden layers with 21 and 23 neurons, respectively.

Before testing the selected structure, the less influential input variables identified by
the Shapley analysis on TC-2 were deleted from the initial dataset. Figure 7 shows the
results of the sensitivity analysis carried out using the average absolute Shapley values.
The temperature of the exhaust gas after the turbine, TC_Turbine OUT, the throttle po-
sition, and the engine SparkAdvance presented the lowest percentage of impact on the
torque prediction.
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TC Engine Oil )
P_Turbine OUT 1

P_Turbine IN ]
TC _Turbine IN 1
TC ETB OUT )
MAP
TC Air_Intake 1

" Engine speed —— )

0 2 4 6 8 10 12 14 16 18 20

Percentage of impact , [%]

Figure 7. Shapley analysis: global interpretation of the feature’s importance for the torque prediction.

By excluding such quantities, the number of inputs was reduced from 12 to 9. Follow-
ing the considerations reported in the Section 3, a new neural structure optimization was
required. Even in this case, a maximum of 2 hidden layers composed of different numbers
of neurons (7,9,12,15,17) was selected following the architecture depicted in Figure 5, for
a total of 25 combinations, for the corresponding evaluation of the performance during
the training phase. The structure showing the best RMSE in training was chosen for the
test session. As depicted in Figure 8, each combination showed an RMSE value under the
acceptable threshold of 5%. In particular, it is worth mentioning that the combinations
never exceeded 4% RMSE, unlike the cases analyzed by considering the entire provided
dataset (Figure 6). This means that, on average, the learning ability of the neural structures
improved when operating with the reduced dataset, together with the computational time.
With the reduced dataset, the structure {17 15} performed the best, with RMSE = 3.21%, and
for that reason was chosen to predict the torque signals.

I I T T I

*
*

4.0
~ 38
S *
~
§ 3.6 [
VY
3.2
(7]

A EE R R R C IR ERIE

Figure 8. RMSE values for training of different combinations of neurons and hidden layers, based on
the reduced dataset. The red box indicates the combination chosen for the test session.

Figure 9 displays the torque signals predicted by the two tested architectures, i.e., {21 23}
for the entire dataset and {17 15} for the reduced one. For each forecast, the average deviation of
the prediction from the target throughout the range was computed (Equation (1)):

|Target, —Predicted,; |

iﬂ:l [ "i"arget- =X 100]

Err = ! @)
n

where n is the number of samples considered for the test case and i the ith sample. Several
samples wrongly predicted equal to 10% were set to be considered as acceptable for the
prediction. The average percentual error, i.e., Errayg, was also computed to draw attention
to the global prediction quality. For this kind of application, a maximum critical threshold
of 10 is established for Errayg.
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Figure 9. (a) Torque signals predicted by the NARX structure {21 23} (green curve) and {17 15} (red
curve) and (b) corresponding %Err in forecasting the target (black curve in (a)).

From a qualitative standpoint, both models can reproduce the target trend. However,
it is straightforward to observe how the structure trained on the entire dataset, i.e., {21 23},
shows larger amplitude fluctuations in the portions where the target tends to oscillate, par-
ticularly with overstated peaks in the regions of greatest torque, where the Err approaches
43%. On the contrary, the structure trained on the reduced dataset, i.e., {17 15}, manages
to confine the peaks while remaining consistent with the trend of the target, presenting
significantly smaller variations. Furthermore, at the extremes of the range analyzed, it
exhibits a behavior that is much more consistent with the target than with the architecture
{21 23}. The structure {17 15} has a maximum Err of 39% and an average of 7.01%, effectively
placing it below the crucial area of 10%. In contrast, the Errayg of the structure {21 23}
is equivalent to 11.44%, which is not acceptable. Considering the structure {17 15}, the
biggest errors occurred in the area between 530 and 550 s, when the target signal oscillated
around a torque value of roughly 25 to 15 Nm. At 39% inaccuracy, this amounts to an
error of around 5 Nm. Given the nature of the target signal, such an error can still be
considered a singularity, and in any event, inconsequential, especially when the average
error value achieved is 7.97%. Furthermore, as shown in Figure 3, TC-2, the neural structure
was trained on a small number of samples characterized by low variability, whereas the
torque signal suddenly varied sample by sample during the test session. Therefore, such a
condition further highlights the forecasting capabilities of the proposed structure. Based on
these considerations, the structure {17 15} trained on the reduced dataset was definitively
chosen for the prediction of the remaining four torque signals.

Figure 10 shows the forecasting results obtained by the neural structure {17 15} on
the reduced dataset. Starting from the transient cycle TC-1, it is possible to highlight the
opposite nature of such a dataset with respect to TC-2. TC-1 is characterized by high
variability in the range utilized for the training sessions and by a torque signal almost
constant in the test range. The structure had some issues tracking the frequent oscillations
of the target signal, but it always managed to keep the forecast error Err below 1.2%. The
average percentage error Errayg equals 0.43%, i.e., under the critical threshold of 10%, which
testifies to the quality of the prediction. Moreover, the {17 15} forecast follows the target
fluctuation across most of the analyzed range. The last three dynamic cycles examined in
this work (i.e., TC-3, TC-4 and TC-5) are segments of transient cycles of the NEDC-EUDC
type [33,34], which are characterized by a significant fluctuation of the quantities involved
throughout the range of analysis (Figure 3). In terms of quality, the neural structure can
track the oscillations of the target torque signal. In comparison to the TC-1 case, the average
error values are higher, but still less than 10%: Errayg is equal to 1.64%, 3.03%, and 2.62% for
TC-3, TC-4, and TC-5, respectively. For TC-3, the prediction error was always under 10%,
while TC-4 and TC-5 showed singularities with Err over 10%. At TC-4, 48 predictions over
1150 target samples showed Err > 10% which represents about 4% of the total prediction. At
TC-5, that value increased to 52, which represents 4.5% of the total samples to be predicted.
Such results make the NARX prediction consistent in the cases analyzed.
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Figure 10. (left side) Comparison between the target torque signals (black curves) and the ones
predicted by {17 15} (red curve) with (right side) the corresponding %Err.

As a final attempt, all of the trends were merged (TC-1 + TC-2 + TC-3 + TC-4 +TC-5)
and a comparison was made between the prediction made by the structure {17 15} operating
with the reduced dataset and the prediction made by the structure {21 23} operating with
the complete dataset, to evaluate the quality of the performance when both were operating
with longer dynamic cycles, i.e., characterized by a greater number of samples than those
previously examined. As a result, the input dataset was a matrix of [9 x 28,800] values
for the structure {17 15} and one of [12 x 28,800] values for the structure {21 23}, whereas
the output dataset was [1 x 28,800]. The test specifications are shown in Figure 11. Of
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the provided dataset, 80% was used for the training session and 20% for the test. In other
words, the NARX structure was required to fully predict the TC-5 (Figure 3).

Training Test Training Test
INPUT INPUT INPUT INPUT
12 X [1 X 23,040] 12X [1 X 5760] 9% [1 X 23,040] 9x [1 X 5760]
OUTPUT OUTPUT OUTPUT OUTPUT
(Torque) (Torque) (Torque) (Torque)
[1 x 23,040] [1 x 5760] [1 x 23,040] [1 X 5760]

(a) (b)

Figure 11. Specification of training and test session performed by (a) the NARX structure {21 23} on
the entire dataset created by merging the transient cycles of Figure 3 and by (b) the NARX structure
{17 15} on the dataset with a reduced number of inputs, according to the Shapley analysis.

Figure 12 shows the obtained findings of the forecasting activities carried out on
the dataset of Figure 11. In general, both structures improved their performance, both
qualitatively and quantitatively. From a qualitative point of view, the structures can
perfectly reproduce the continuous changes of the target torque signals, differently from
the other cases previously analyzed. This evidence is most likely attributable to the larger
sample size expected for the training activity. From a quantitative point of view, both
structures can guarantee an average error Errayg of less than 10%: {21 23} equals 1.13%
and {17 15} of 0.99%. The structure {21 23} trained on the entire dataset made a number of
predictions with Err greater than 10%, equal to 115 samples, and {17 15} did the same. Such
a number corresponds to 2% of the total samples predicted. To sum up, even in this case,
the structure {17 15} trained on the reduced dataset performed best.

50 F T T T xﬂ T =
Target ‘
Predicted [17 15] '\1 /j
o0 ISl ]
£ A [ |
%30 j J A \‘
3 %0 AW -
g | Vo I ha¥)
2 \M\’A\_ﬂm Mﬁ}’ y VMF M {M’v
20 | ’ | 1
10 . . . . .
0 1000 2000 3000 4000 5000 6000 (a)
Samples [#]
40 - ; - - :

w
o
T
% % W sawae cme
1

Err [%]

01
0 1000

2000 3000

Samples [#]

4000 5000 6000 (b)

Figure 12. (a) Comparison between the target torque signals (black curves) and the ones predicted by
{17 15} (green curve) and {21 23} (red curve) with (b) the corresponding %Err.
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To validate the assumption that NARX can improve predictive performance when

trained on a larger dataset, the 5 dynamic cycles proposed (Figure 3) were randomly
merged in the following manner to produce new cycle dynamics represented by 288,000
samples: TC-2 + TC-5 + TC-1 + TC-3 + TC-2. The predictive performance of the structure
{17 15} was evaluated and the findings are displayed in Figure 13. Even in these cases, 80%
of the provided data (input =1 x [9 x 23,040] and output = [1 x 23,040]) were used for
the training session and 20% for the test (input =1 x [9 x 5760] and output = [1 x 5760]).
The structure {17 15} reproduced the target trend with Errayg of less than 10% and equal
to 3.62%. Altogether, 223 samples, corresponding to about 4% of the total, were wrongly
predicted by the structure. In particular, the maximum errors occurres close to the largest
and most sudden changes in torque values. However, considering TC-2 (Figure 9), the
architecture improved its forecasting performance.

Target
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Figure 13. (a) Comparison between the target torque signals (black curves) and the ones predicted by
{17 15} (red curve) with (b) the corresponding %Err.

5. Conclusions

The present work analyzes the performance of a nonlinear autoregressive with ex-

ogenous inputs (NARX) technique to predict the torque of an internal combustion engine.
The neural architecture used was trained and tested on experimental data from physical
sensors and the engine control unit under different operating conditions, on a port fuel
injection three-cylinder spark-ignition engine. In a preliminary phase of the work, the
optimization process of the NARX network used is presented. This activity is outlined in
two fundamental steps: the first consists of the optimization of the internal structure of
the network in terms of the number of hidden layers and the number of neurons per layer;
the second consists of the Shapley sensitivity analysis aimed at evaluating the physical
input quantities which most influence the target, i.e., the torque. The main findings are
summarized below:

The training performance of different combinations of neurons and hidden layers was
evaluated in terms of RMSE on a specific case from the five analyzed in this work.
All combinations showed RMSE values below the acceptable threshold of 5%. The
structure with 2 hidden layers and 21 and 23 neurons, respectively, showed the best
performance with an RMSE equal to 3.37%.

The Shapley analysis performed on the entire dataset allowed identification of the
least influential input variables for the prediction. These variables were excluded and
therefore the number of inputs was reduced from 12 to 9.

The NARX structure optimization performed on the reduced dataset showed the
capability of the 25 combinations of neurons and hidden layers tested to achieve
RMSE values below 5% during the training session. In particular, the structure with
{17 15} neurons in 2 hidden layers showed the best performance with an RMSE of
about 3%.

The forecasting performance of the tested structures, i.e., {21 23} for the entire dataset
and {17 15} for the reduced one, were evaluated on a specific case (TC-2). Both archi-
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tectures reproduced the trend target; in particular, {17 15} showed smaller amplitude
fluctuations and more consistent behavior with the target. An average error Errayg of
about 7%, i.e., below the acceptable threshold of 10%, was shown by such a structure.
Conversely, {21 23} generated Errayg of 11.44%, above the acceptable threshold.

- The structure {17 15} was evaluated on four other different cycles. It was able to follow
the oscillations of the target signal, showing average errors always lower than 10%.

- The five cycles tested were merged and both structures, i.e., {21 23} for the entire
dataset and {17 15} for the reduced one, performed better than the previous activities.
The structure {17 15} showed Errayg of 0.99%, and {21 23} showed 1.13%.

- The five cycles were randomly merged and the forecasting performance of {17 15} was
evaluated. Such an architecture showed Errayg of about 3.6% and an excellent ability
to reproduce the target.

Several elements can be investigated in future study to improve the performance of
the NARX technique for torque prediction in internal combustion engines. For instance,
adding advanced optimization techniques and evaluating hyperparameter-optimizing
approaches may enhance the training process. Furthermore, carrying out experiments with
a wider and more diverse dataset, including various engine-operating conditions, may
help in assessing the model’s generalization capabilities. Investigating the potential of
ensemble techniques or hybrid models integrating NARX with other prediction algorithms
may result in improved accuracy and robustness with the aim to replace physical sensors
in torque computation for internal combustion engines.
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Nomenclature
ERR Percentage error

ERRavg  Average percentage error
ANN Artificial neural network

ECU Engine control unit

FFANN Feed forward artificial neural network
HCCI Homogeneous charge compression ignition
ICE Internal combustion engine

ML Machine learning

MLP Multi-layer perceptron
MON Motor octane number
NARX Nonlinear autoregressive network with exogenous inputs

PFI Port fuel injection

RBF Radial basis function
RMSE Root-mean-square error
RON Research octane number
SI Spark ignition

TDL Tapped delay line
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