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Abstract: Most current non-intrusive load monitoring methods focus on traditional load characteristic
analysis and algorithm optimization, lack knowledge of users’ electricity consumption behavior
habits, and have poor accuracy. We propose a novel attention-guided bidirectional dynamic graph
IndRNN approach. The method first extends sequence or multidimensional data to a topological
graph structure. It effectively utilizes the global context by following an adaptive graph topology
derived from each set of data content. Then, the bidirectional Graph IndRNN network (Graph
IndRNN) encodes the aggregated signals into different graph nodes, which use node information
transfer and aggregation based on the entropy measure, power attribute characteristics, and the
time-related structural characteristics of the corresponding device signals. The function dynamically
incorporates local and global contextual interactions from positive and negative directions to learn
the neighboring node information for non-intrusive load decomposition. In addition, using the
sequential attention mechanism as a guide while eliminating redundant information facilitates
flexible reasoning and establishes good vertex relationships. Finally, we conducted experimental
evaluations on multiple open source data, proving that the method has good robustness and accuracy.

Keywords: non-intrusive load decomposition; global context semantics; attention guidance mechanism;
dynamic aggregation; adaptive graph topology

1. Introduction

Electricity has become an indispensable resource for human life with the increase
in social population and the continuous progress of various industries. However, due
to the reduction and depletion of fossil resources, means of effectively saving electricity
resources and preventing waste have become of great concerned. In the power saving
process, power consumption management and energy efficiency optimization are essential:
non-intrusive load monitoring (NILM) [1] is used to estimate the power demand of each
device in the case of monitoring the total power demand signal recorded by a single meter of
multiple devices, to formulate corresponding energy-saving measures, that is, it is adequate
to improve energy consumption management and energy efficiency analysis to achieve
maximum cost savings. In addition, non-intrusive load detection can more accurately
understand the composition of users’ electricity consumption, help power companies
formulate electricity prices and allocate resources scientifically and rationally, and at the
same time, provide a more accurate basis for planning and scheduling issues in the power
system. In addition, non-intrusive load monitoring (NILM) can prompt electrical appliance
users to intuitively understand the power consumption and operation of various equipment
in different periods and regulate and adjust power consumption behavior.

In the early stage, to achieve accurate non-intrusive load monitoring (NILM), most of
them used simple machine learning methods for optimization analysis, such as k-nearest
neighbor (k-NN) [2], support vector machine (SVM) [3], matrix decomposition [4], etc.
These methods mainly implement power measurement by sampling within intervals of
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seconds or minutes. Hidden Markov models [5] benefited from the conversion of con-
sumption levels that simulated the actual energy consumption of the target equipment and
were widely used in the early stages. Although the early methods were energy-saving,
they required manual participation in feature setting and screening. Their accuracy often
depended on human subjectivity, so they heavily relied on previous expert experience
and were challenging to apply on a large scale. In recent years, the successful application
of deep learning technology in many fields also provides a new idea for non-intrusive
load monitoring (NILM). For example, the convolutional neural network [6] automatically
learns practical details by changing the activation state of neurons, overcoming the need
for human participation in feature selection, and the setting is widely used. Nonetheless,
convolutional networks perform poorly in the establishment of long-term dependencies.
Long short-term memory [7] and recurrent neural networks [8] have attracted attention
because of their ability to learn long-term relationships; that is, they can learn long-term
distance information on sequence data. At the same time, to avoid redundant information
being reused, forgetting gates are used to achieve memory selection. Although these meth-
ods maximize information and reduce errors caused by manual participation, capturing
details from signals in non-intrusive load monitoring (NILM) is difficult. There is a lack
of sufficient knowledge on users’ electricity consumption habits which results in the poor
accuracy of monitoring or decomposition models and suboptimal generalization perfor-
mance. To address these issues, we propose an attention-oriented bidirectional dynamic
graph IndRNN method, which aggregates and transfers node information by building
a topological graph, and extracts device-specific power usage from aggregated signals,
aiming to perform accurate non-intrusive load monitoring (NILM).

The main contributions of this study are listed below.

• A new attention-guided bidirectional dynamic graph IndRNN method (AttG-BDGNets)
is proposed, which is the first attempt to enhance node representation in the form
of dynamic aggregation in the NILM task, and utilize node aggregation and transfer
capabilities to explore the relationship between equipment and power.

• Model the NILM sequence through a bidirectional independent recurrent neural net-
work and establish long-distance dependencies while learning contextual semantics.
Furthermore, utilize the local attention guidance layer to enhance the feature repre-
sentation through the complementary relationship between a dynamic graph and
temporal features.

• The designed weighted loss function optimizes the dynamic graph and the bidirec-
tional independent recurrent neural network separately so that each branch can obtain
the optimal representation. It is worth noting that the vertex relationship (the edge
between nodes) is jointly calculated by the planar Euclidean distance and the spatial
cosine similarity; that is, the vertex relationship is explored from both temporal and
spatial aspects. Finally, evaluation and verification were performed on two baseline
datasets, REDD and UK-Dale, and the best prediction and classification performances
were achieved.

The remainder of this article is organized as follows: Section 2 mainly reviews work
related to non-intrusive load monitoring (NILM). Section 3 focuses on the proposed AttG-
BDGNets monitoring framework and gives the working principles and functions of differ-
ent components; Section 4 provides experimental results and analysis and discusses and
visualizes the experimental results; the summary and future research plan are given in
Section 5.

2. Relate Works

In the early stage, the non-intrusive load monitoring (NILM) methods mainly focused
on simple machine learning. For example, Gong F. et al. [3] proposed a PSO-based-SVM’s
non-intrusive load monitoring load decomposition method and used the power difference
method to detect the switch state of electrical equipment, and at the same time, used the
multi-feature classification (MFC) function of PSO-SVM to identify the switch state of elec-
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trical equipment. To obtain the energy consumption of electrical appliances in buildings,
Liu H. et al. [9] proposed a weighted current harmonic vector to increase the weight of
valuable harmonics and geometrically calculated the harmonic vector so that all informa-
tion in the feature can be preserved; and established a decomposition model based on
multi-objective particle swarm optimization is proposed, and the error sum and standard
deviation are used as objective functions. To realize non-intrusive load monitoring and de-
composition from two aspects of load identification and load decomposition, Lin J. et al. [10]
first based their work on the load characteristics of the database and used the load decision
tree algorithm to analyze and identify the equipment composition of the mixed electrical
equipment group. Li Z. et al. [11] proposed a new clustering decomposition algorithm to
solve the problems of low non-intrusive load decomposition capability and low precision
when two electrical appliances start and stop simultaneously. Firstly, the measured power
was analyzed, and DBSCAN was used to analyze the filtered noise. At the same time,
the remaining power points are clustered through the adaptive Gaussian mixture model
to obtain the cluster centers of electrical appliances. Finally, the corresponding current
waveforms are correlated to improve the recognition accuracy. Lin Y. H. et al. [12] proposed
a particle swarm optimization (PSO)-based DSM NILM system to effectively monitor and
manage industrial, commercial, and residential electricity loads. To realize the load decom-
position of the non-intrusive load monitoring system, Xiao Y. et al. [13] proposed a load
event matching method based on graph theory based on the improved Kuhn–Munkras
algorithm. Focusing on the low accuracy of non-intrusive load monitoring in traditional
statistical methods, Mao Y. et al. [14] proposed a non-intrusive load monitoring model
based on conditional random field (CRF). Based on user power consumption data, the
linear conditional random field generates the state characteristic function and state transfer
function. Although these simple machine learning methods can improve the accuracy and
efficiency of non-intrusive load monitoring, they require manual participation in feature
design and screening and heavily rely on the experience and knowledge of experts. It is
challenging to meet the growing application requirements, and at the same time, it is time
consuming and expensive, with low monitoring accuracy and poor applicability.

In recent years, deep learning methods have received extensive attention in many
fields, such as medical image generation and detection, relying on their strong self-learning
ability [15–18]. Many researchers have been inspired to apply these techniques to NILM
tasks. For example, Kelly et al. [19] applied deep neural networks to non-intrusive load
monitoring tasks and achieved accurate predictions, then used memory networks such as
LSTM to process the high-frequency time series to predict the start time, end time, and
average power demand of each device. Considering the problems of explosive gradients,
vanishing gradients, and network degradation in deep neural networks, Jia Z. et al. [6]
proposed a non-intrusive load monitoring method based on bidirectional extended con-
volution for learning low-frequency data, mainly relying on temporal convolution. The
residual block of the network solves the problem of vanishing and exploding gradients. At
the same time, expanding the receptive field encourages the network to learn better feature
representations to improve the model’s overall performance. Hwang H. et al. [7] found that,
when non-intrusive load monitoring is performed on low-frequency data, the power usage
patterns that change over time will disappear. Features cannot be correctly acquired to clas-
sify devices, and a new non-intrusive method is proposed. A load monitoring model that
can learn datasets with unbalanced data classes utilizes long short-term memory (LSTM) to
extract features and improve the feature representation ability of LSTM through predicted
feedback. Zhang et al. [20] proposed an energy-decomposed sequence-to-point learning
method, where the midpoint of the device window is regarded as the classification output
of the neural network, and the aggregation window is used as input. Shin et al. [21] pro-
posed a sub-task gating network (SGN) that combines two CNNs, a regression sub-network,
and a classification sub-network for a non-intrusive load monitoring task. Wei J. et al. [22]
proposed a method for applying work state mining and sequence transition models to
non-intrusive load monitoring. First, we determined the operating power of each appliance
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in different operating states and generated a combined code to represent the operating
states of all appliances. Then, the total energy consumption signal and combined status
codes are trained on a sequence-to-sequence model that considers run-time dependencies.
The model integrates the time scale information and signal amplitude characteristics of the
power working state and converts the power consumption into a state code for load decom-
position. Jaramillo et al. [23] aimed to fill the gaps in load modeling and NILM knowledge,
providing deri with information for the “green deal” transition, and supporting standard-
ization. Kong W. et al. [24] proposed a practical and effective non-intrusive load monitoring
method for estimating the energy consumption of commonly used multifunctional appli-
ances (Type II appliances). Considering the fact that the traditional non-intrusive load
monitoring algorithm has long-term problems such as a high misjudgment rate and low
precision of decomposed power values, a non-intrusive load with an attention mechanism
based on a sequence-to-sequence (seq2seq) model is proposed, namely a monitoring model.
The model first embeds the input active power time series into a high-dimensional vector,
extracts information with a long short-term memory (LSTM)-based encoder, selects the
most relevant information for decoding, and finally, disaggregates the decoder wrapped
with an attention mechanism result. Rafiq H. et al. [8] proposed an NILM algorithm, which
uses data augmentation to generate synthetic data for training the deep convolution of each
target device due to the low accuracy of decomposition of new unseen data, which is unsuit-
able for practical applications. Neural network models also devise an evaluation method
that relies on the device-predicted total and ground-truth energies to provide details on the
algorithmically predicted total overlapping energies, missing energies, and extra energies.
Moradzadeh A. et al. [25] combined the Laplacian feature map (LE), convolutional neural
network (CNN), and recurrent neural network (RNN) to transfer the significant features
and specific values of the energy consumption curve of household appliances to a low-
dimensional space and use the recurrent convolutional network to improve the structure
of the fully connected layer significantly CNN, so that there is no over-fitting problem in
the identification and separation of HEA types, and it has high accuracy. Nie Z. et al. [26]
used a sequential point deep neural network and constructed a comprehensive strategy
non-intrusive load monitoring technology based entirely on the deep feature-guided at-
tention mechanism. Faustine A. et al. [27] considered that the performance of the device
classifier is highly dependent on the signal characteristics of the load, but it is difficult to
effectively distinguish between similar signals, which increases the difficulty of subsequent
device classification, and proposed a weighted cycle graph (WRG) for representing these
signals and improve the performance of device classification. Jiao X. et al. [28] considered
that many existing research methods have specific load decomposition errors when dealing
with multi-modal devices. A non-intrusive load monitoring model based on a graph neural
network is proposed. The graph structure is used to represent the relevant information
between data nodes, combined with the long-term and short-term memory to extract the
data’s time-domain characteristics while retaining the power data’s time characteristics.
The correlation between different modes of equipment is improved, and the decomposition
error is reduced. Jie Y. et al. [29] proposed a non-intrusive load decomposition model based
on a graph convolutional network (GCN) by fully mining the user’s electricity consump-
tion habits. The model first uses the time features extracted from the user’s electricity
consumption habits and constructs the power sequence as graph data based on the spectral
graph theory as network input; then, based on the graph convolutional neural network,
extracts the power attribute characteristics of each electrical appliance and its correlation
time-dependent structural features for non-intrusive load decomposition. These methods
effectively improve the representation of key information in non-intrusive load monitoring
tasks, but there is a lack of interaction between different information. At the same time, they
aim to explore high-level semantic features while ignoring the rich semantics contained
in low-level features so that when obtaining the high-order features of the model, which
cannot be effectively represented, the final recognition and decomposition accuracy will
be affected.
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3. Proposed AttG-BDGNets Approach

In this section, we focus on AttG-BDGNets to improve the performance of non-
intrusive load monitoring (NILM). First, the problem of non-intrusive load monitoring
is formulated, and the basic principles and architecture of the network are introduced.
Following this, the individual modules of the proposed method will be described in detail.

3.1. Non-Intrusive Load Monitoring Problem

Non-intrusive load monitoring (NILM) was first proposed by George W. in 1992.
Assuming that the total power consumption of all devices is (x1, · · · , xT), there are M
metered devices under test and K unmetered devices, T is the sampling time indicating
the length of the input sequence; the main task of our proposed AttG-BDGNets is to
decompose them from M and K device contribution. It is worth noting that the total
power consumption consists of the power consumption of all devices (both metered and
unmetered) and some unknown noise terms. The total power consumption at time t for a
set of metered M and unmetered devices K is shown in the equation.

xt =
M

∑
i=1

yi
t +

K

∑
j=1

(zj
t + εt) (1)

where yi
t represents the power consumption contribution of the ith device under test at time

t; zj
t represents the power consumption of the jth unmetered device at time t; εt represents

the power consumption contribution of the noise term at time t.

3.2. Overview

The overall network structure of AttG-BDGNets is shown in Figure 1. The proposed
AttG-BDGNets monitoring method consists of two essential modules: the dynamic graph
convolution module (DynamicGCM) and the attention guidance module (AGM). The dy-
namic graph convolution module (DynamicGCM) aims to gather and transmit functions to
obtain the hidden dynamic information in the NILM sequence. Simply put, the load actions
included in the NILM sequence have good steady-state and transient performance; that is,
their transition process should be taken into account when obtaining transient characteris-
tics and the instantaneous power and switching transient characteristics, so the extraction
process of steady-state features is more accessible to obtain than transient features. The
dynamic graph convolution module (DynamicGCM) can capture this dynamic information
and use the dynamics of the inter-layer neighborhood. The aggregation strategy learns
node representations from the graph and directly associates distant correlation graph nodes
to effectively learn longer temporal dependencies, forming an effective interaction between
steady-state features and transient features. AGM mainly includes a local attention guid-
ance layer and a bidirectional independent recurrent neural network module, in which
the bidirectional independent recurrent neural network (Bi-IndRNN) models the power
consumption data sequence in different periods from the positive and negative directions
and obtains contextual semantic details, fully capturing the correlation between changes
in electricity usage data and household members’ electricity usage behavior. The local
attention guidance layer (LAG) combines the global features captured by the dynamic
graph convolution module (DynamicGCM) with the contextual semantics acquired by
the bi-independent recurrent neural network (Bi-IndRNN), forming a complementary
relationship between them to improve the semantic representation ability, which is when
the representation effect of fς is not good. This guide layer is used to highlight the repre-
sentation of fir and prevent fς from affecting fir. On the whole, we first process the input
NILM sequence and input the initial dynamic graph convolution module (DynamicGCM)
and bidirectional independent recurrent neural network (Bi-IndRNN), respectively, to
obtain the corresponding feature semantics fς and fir, and use the local attention-guided
layer to perform the feature fusion to strengthen semantic representation; finally, accurate
prediction is achieved.
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Figure 1. The overall network structure of AttG-BDGNets. The IndRNN in the blue box represents a
bidirectional independent recursion neural network (Bi-IndRNN), the green rightward arrow repre-
sents the forward propagation of IndRNN, and the red leftward arrow represents the backpropagation
of IndRNN; fir represents the output characteristics of the initial layer bidirectional independent
recursion neural network; αatt(·) and α′att(·) represent the local attention embedding module we
designed and the local attention guidance layer, respectively; AGM represents the attention guidance
module; fς and f ′ς represent the first and second layer outputs of the dynamic graph convolution,
respectively; DynamicGCM represents the dynamic graph convolution module; x represents the
input sample; χsub represents the reconstruction of x, which is the input of the dynamic graph
convolution module; “Outputs” and “Inputs” represent the resulting output and input, respectively.

3.3. DynamicGCM

Graph convolution (GCN) [30] is a network that can directly perform convolution
operations on topological graphs and mainly achieves feature capture by converging node
features [26]. The dynamic graph convolution module we designed not only learns node
representation through node aggregation and transfer functions but also realizes dynamic
aggregation between layer neighborhoods, which promotes the correlation between all
devices and total power consumption, as well as a correlation between the unmetered
device and the metered device under test. In addition, a dependency relationship may also
be formed between associated nodes that are far away.

Assume that the metered device under test is M, the unmetered device is K, the total
power sequence of all devices is x = {x1, · · · , xχ}, T is the sampling time, the sliding
window length is L, and the ith power sequence is xi = {xi, · · · , xL}. Secondly, the sliding
window is moved by jth sampling time points. Finally, T − L + j power sequences are
obtained so that each power sequence can be represented as a topological graph, where
there are N nodes in the graph, that is, N devices contribute to each power sequence. There
is a correlation between the nodes, and this correlation is called the edge weight between
nodes. To put it simply, we build a topology map with power sequences. Each power
sequence has several electrical devices that generate power in different periods, and each
device is a node of the topology graph. Formally, the topological graph ς is shown in
Equation (2). 

ς = (ν, ε)

ν = {ν1, · · · , νN}, N ≤ M + K
ε = {ε1, · · · , εN}

(2)

where ν represents the set of nodes, and ε represents the set of edges.
In order to obtain more efficient associations and achieve accurate predictions, at

sampling time point t, we performed an optimization operation on the topology map, as
mathematically shown in equation.
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
fς = σ(D̃−

1
2 ÃD̃−

1
2 χsubΘ)

Ã = A + I
D̃ = ∑ Ã

(3)

where D̃ represents the degree matrix of the adjacency matrix A; I represents the identity
matrix; A represents the adjacency matrix, which is composed of nodes and edges; fς

represents the output features of the first layer of graph convolution; Ã represents the
renormalization of the adjacency matrix A Lass processing; Θ represents the weight matrix;
and χsub represents the input power sequence.

Assuming that there are devices m and n at the sampling time point t and power
sequence χsub, that is, nodes νm and νn, if there is an association between them, an edge
will be formed, and if there is no correlation, there will be no edge. At the same time, to
establish an effective dependency and association relationship between them, it is necessary
to promote the network to learn a better node representation. We take the weighted mean
of the planar Euclidean distance and spatial cosine to compute the edge weights. The
calculation process is shown in the equation.

Am,n =


1
2 [||νm − νn||22 +

νm ·νn
||νm ||||νn || ] νm 6= νn

1 νm = νn

0 otherwise

(4)

where || · ||2 indicates two paradigms, which is equivalent to the plane Euclidean distance;
|| · || indicates the modulus of the characteristics of node vm; and νm = νn indicates that the
node is a self-loop node.

Although the traditional node aggregation method effectively aggregates the structural
information of adjacent nodes, it causes the captured semantic information to spread only
in a local area. It is difficult to fully capture the dependencies between distant nodes. That is
to say, in the classic graph convolutional network (GCN), the graph is fixed throughout the
convolution process, which reduces the representation performance of the nodes. Therefore,
we realize the aggregation of inter-layer information through dynamic aggregation. The
topological graph structure can be seen here. The process is gradually refined, and the
node representation is further optimized. In addition, this aggregation method can fuse the
current embedded features and the graph information used in the previous layer, which is
used to improve the ability of the graph structure to capture global details. The dynamic
aggregation process is shown in equation.

f ′ς = σ(D̃−
1
2 ÃD̃−

1
2 fςΘ′) + λ fς (5)

where λ represents the parameter factor, which is set to 0.35. σ(·) indicates the activate
function of LeakyReLu.

3.4. AGM

AGM mainly consists of a bidirectional independent recurrent neural network (Bi-
IndRNN) [31] and a local attention [32] guidance layer. Among them, Bi-IndRNN models
the input NILM sequence from both positive and negative directions, aiming to explore
the correlation between the total power and all devices and to construct the long-distance
dependence between them in different periods. The traditional recurrent neural network
(RNN) cannot effectively solve the problems of gradient disappearance and gradient ex-
plosion during the training process, and it is not easy to learn long-term relationships.
In addition, all neurons in the RNN layer are entangled, and their behavior is complex.
Although the extended short-term memory network (LSTM) effectively solves these prob-
lems, using the hyperbolic tangent and Sigmoid functions will cause the gradient to decay
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with the layer. Compared with RNN and LSTM neural networks, the neurons in the same
layer of Bi-IndRNN are independent. The information between channels will spread and
explore between multi-layer IndRNNs over time, and information can be cross-linked.
Layer propagation improves the interpretability of neurons. At the same time, using unsat-
urated activation functions such as Relu solves the problem of gradient disappearance and
explosion within and between layers, which enhances the robustness of the model and is
excellent in processing long-term data more excellent. The Bi-IndRNN hidden layer state
update at sampling time point t is shown in the equation.{−→

ht = σ(
−→
W χsub +

−→µ �
−−→
ht−1 +

−→
b )

←−
ht = σ(

←−
W χsub +

←−µ �
←−−
ht−1 +

←−
b )

(6)

where
−→
ht and

←−
ht represent the state update of the hidden layer in the positive and negative

directions, respectively; � represents the Hadamard product;
−→
b and

←−
b represent the

bias value of the forward and reverse; −→µ and←−µ represent the weight of the forward and
reverse, respectively. The state update of the hidden layer can obtain the initial features fir
of Bi-IndRNN, as shown in equation.

fir =
−→
ht +

←−
ht (7)

Due to the differences in power at different sampling time points and the state of the
device, at the same time, the feature semantics (global and context details) at different
levels have different emphases. Fusing these different feature semantics with a simple
concatenation strategy brings only slight performance improvements and increases the use
of redundant information. To fully use the feature information at each level, the global
semantics obtained by the dynamic graph convolution module, and the contextual semantic
details obtained by Bi-IndRNN, we designed a local attention guidance layer to enrich
their semantics. This operation does not sacrifice. In the case of any details, it makes up for
the lack of semantic representation of a single feature and forms an effective interaction.
Furthermore, when one of the features of one party is underrepresented, to avoid excessive
interference with this feature, we add a residual design to emphasize the importance of
the features of the other party. The local attention guidance layer is computed on the
initial dynamic graph convolutional feature of fς and the Bi-IndRN feature of fir, as shown
in equation. {

α = αatt( fς, fir)

fag = fir + α fir
(8)

where fag denotes the initial features of the local attention guidance layer; α denotes
the attention map; and αatt(·) denotes the local attention operation. Furthermore, the
calculation of the second local attention guidance layer is shown in the equation.{

α′ = α′att( f ′ir, f ′ς)
f ′ag = f ′ς + α′ f ′ς

(9)

where f ′ag denotes the final features of the local attention guidance layer; α′ denotes the at-
tention map; and α′att(·) denotes the local attention operation. Furthermore, the calculation
of the feature f ′ir is as follows:

−→
h′t = σ(

−→
W fag +

−→µ �
−−→
h′t−1 +

−→
b )

←−
h′t = σ(

←−
W fag +

←−µ �
←−−
h′t−1 +

←−
b )

f ′ir =
−→
h′t +

←−
h′t

(10)
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Subsequently, a superficial linear layer with a Tanh activation function is used to restore
the desired output size, and the output value is multiplied by the maximum power of the
device in the interval [0, 1] to construct a reasonable energy prediction, and at the same
time, by matching the corresponding threshold to obtain the device status, the specific
calculation is shown in the equation.

Oout = Tanh(Liner( f ′ag))W
′ + b′ (11)

where W ′ and b′ represent weight and bias values, and Liner(·) represents linear operation.

3.5. Loss Function

To accurately predict the energy and simultaneously perform state classification, we
design a weighted loss function that tunes and optimizes the network while minimizing the
absolute error. Among them, τMSE can not only accelerate the convergence speed but also
reduce the gradient of the loss function as the error decreases, which helps the prediction
result to be more stable. However, it is vulnerable to unmeasured discrete devices in
the NILM sequence data or ignores the effects of these unmeasured devices, which leads
to problems such as fitting or extraction explosion in the network during training; thus,
the τKL loss function is introduced to assist τMSE to adjust and optimize the model. The
weighted loss function of τtotal is shown in the equation:{

τtotal = τMSE + βτKL

τMSE = 1
Nc

∑Nc
c=1(Yc −Oc

out)
2 (12)

where τMSE indicates the mean squared error (MSE) loss; and τKL indicates the KL di-
vergence loss. β indicates the weighted factor, and β = 0.3. Nc indicates the numbers of
total sample.

In summary, we train the AttG-BDGNets method to generate predicted labels to match
the actual labels and use a weighted loss function to optimize the proposed method. At the
same time, the AdamW optimizer backpropagation is used to update the dynamic graph
convolution module (DynamicGCM) weight and bias parameters of the Attention Guidance
Module (AGM); the following Algorithm 1 demonstrates the representation learning and
training process of the proposed AttG-BDGNets method on NILM-related data.

Algorithm 1: Training of AttG-BDGNets-based NILM-related data
Input: In the training set D, the sequence feature matrix input by AttG-BDGNets is
χsub; the adjacency matrix Amn = (vm,n)N×N of DynamicGCM, the dynamic
graph features fς and f ′ς; the output features fag and f ′ag of AGM. Weighted loss
function τtotal and optimizer of AdamW.
for ι = 0 to ιMax do

if ι = 0 then
fς ← ς(A, χsub) ;

fir ← (
−→
ht , χsub) + (

←−
ht , χsub) ;

fag ← αatt( fir, fς)

else
f ′ς ← fς + λ fς ;
f ′ag ← f ′ς + αatt( f ′ς, f ′ir)

end
The output of AttG-BDGNets is calculation as Oout according to Equation (11);

end
output: optimization the training during by weighted loss τTotal and AdamW,
according to Equation (12).
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4. Experimental Results

To evaluate the effectiveness of the proposed AttG-BDGNets approach, we demon-
strate it on open source baseline datasets, namely REDD and UK-DALE. This section briefly
explains the dataset’s source and provides the experimental results and detailed analysis.

4.1. Data Preparation

REDD. This datum measures the electricity usage of six residences in the United
States, the total energy consumption data within a sampling period of 1 s, and the energy
consumption data of household appliances within a sampling period of 3 s. It includes
power data and device-specific usage of the main channel. It uses data to train a variety
of specific appliances such as refrigerators, washers and dryers, microwave ovens, and
dishwashers, one of which is used for model testing and remaining training [20].

UK-Dale. This dataset is mainly a household appliance level power dataset, which
contains the power consumption level of five households in the UK for more than two years.
Similarly, we focus on data from refrigerators, washing machines and dryers, microwave
ovens, and dishwashers. We call a specific electrical appliance, with kettles as an additional
target, unmetered or noise-item devices. Among them, two are used as testing samples,
and the remaining ones are used as training samples [19].

4.2. Evaluation Index

To evaluate our proposed AttG-BDGNets method, the mean absolute error (MAE) and
F-score are used as evaluation metrics. These evaluation metrics are calculated as shown in
the equation. {

MAE = 1
M+K ∑M+K

i=1 |Y
i
pre −Yi

gt|
F1 = 2TP

TP+2FP+FN)

(13)

where Yi
pre, Yi

gt represent the predicted power and absolute power of the ith device at the
sampling time point t, respectively; the F-score value is designed to measure the accuracy
of each device in the on/off state, and TP, FP, and FN, respectively, denote true positives,
false positives, and false negatives. At the same time, when the adequate power of a specific
device is greater than the set threshold, we consider the device to be in the “On” state, and
when the active power is less than or equal to the set threshold, the device is considered to
be in the “O f f ” state.

4.3. Parameter Settings

In the AttG-BDGNets method, the number of dynamic graph convolutional layers
is set to 2, and the number of Bi-IndRNN layers is set to 4; that is, the initial feature
extraction block contains two layers of Bi-InRNN. The number of local attention guidance
layers is set to two; to ensure that the proposed AttG-BDGNets method obtains better
prediction and classification performance, AdamW is used to optimize and adjust the
network, and the initial learning rate is set to 1× 10−3, whilst the cosine annealing algorithm
(CosineAnnealingWarmRestarts) is used to dynamically adjust the learning rate and set the
code loss rate to 0.15, the batch processing to 128, and the number of iterations to 100. In
addition, to ensure the smooth progress of the experiment, participate in the experiment.
All methods are written on ubuntu18 using Python3.7.6, and the deep learning library
includes Numpy and Pytorch1.7.0 + cu110, etc. At the same time, training and testing are
completed on two RTXA5000 GPU graphics cards.

4.4. Ablation Study

To verify whether each module in the proposed NILM method of AttG-BDGNets has
a positive effect on the entire network’s performance, we evaluated and demonstrated
each component on two open source NILM baseline data, namely REDD and UK-Dale.
Furthermore, the corresponding experimental results and analysis are provided to prove
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the effectiveness of each component. Table 1 presents the prediction and classification
performance of the different components.

Table 1. Experimental results of different components. “DynamicGCM” and “Bi-IndRNN” indicate
that only this module is used in the proposed AttG-BDGNets method; “ACL+RNN” indicates that
we replace Bi-IndRNN with RNN; τMSE and τKL indicate that we use this loss function instead of the
weighted loss we designed; “–” indicates REDD baseline data. There are no “Kettle” samples. Bold
words indicate the best prediction and classification performances.

Model Dataset
REDD UK-Dale

MAE F1 MAE F1

DynamicGCM

Fridge 23.09 0.798 22.56 0.794
Washer 25.62 0.727 8.72 0.508

Microwave 16.02 0.561 7.09 0.593
Dishwasher 15.67 0.608 12.54 0.665

Kettle – – 8.14 0.943

Overall average 20.2 0.677 11.81 0.701

Bi-IndRNN

Fridge 23.87 0.781 23.59 0.779
Washer 26.02 0.715 9.33 0.486

Microwave 16.88 0.547 8.12 0.584
Dishwasher 17.03 0.584 13.78 0.651

Kettle – – 10.08 0.925

Overall average 20.95 0.657 12.98 0.685

AGL+RNN

Fridge 22.52 0.804 21.55 0.801
Washer 24.16 0.734 8.31 0.511

Microwave 15.39 0.571 6.83 0.599
Dishwasher 15.22 0.619 12.04 0.67

Kettle – – 7.44 0.947

Overall average 19.32 0.682 11.23 0.706

τMSE

Fridge 21.73 0.804 21.36 0.804
Washer 23.91 0.738 7.54 0.517

Microwave 14.72 0.574 5.44 0.603
Dishwasher 14.58 0.622 11.76 0.674

Kettle – – 6.81 0.95

Overall average 18.73 0.684 10.52 0.709

τKL

Fridge 21.39 0.801 22.6 0.805
Washer 23.48 0.744 7.59 0.514

Microwave 14.88 0.571 5.49 0.603
Dishwasher 14.37 0.624 11.46 0.677

Kettle – – 6.14 0.961

Overall average 18.53 0.685 10.65 0.712

AttG-BDGNets

Fridge 21.18 0.812 20.36 0.808
Washer 23.54 0.748 7.32 0.522

Microwave 14.39 0.579 5.18 0.606
Dishwasher 14.32 0.624 11.38 0.678

Kettle – – 6.25 0.952

Overall average 18.35 0.691 10.09 0.713

From Table 1, we can draw the following conclusions:
(1) In the NILM method of the proposed AttG-BDGNets, all components play a

positive role in the model’s overall performance; in particular, they cooperate in obtaining
an optimal performance. For example, on the UK-Dale baseline dataset, the average F1
value of the proposed method using the weighted loss function of τtotal optimization is 0.001
and 0.004 higher than that of τKL and τMSE, respectively, and the MAE is reduced by 0.56
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and 0.43. The possible reason is that the weighted loss function and different loss functions
are used to optimize DynamicGCM and AGM, respectively, reducing the absolute error
between them. It is worth noting that the τKL loss function achieves the best performance
on the Kettle sample of the UK-Dale sequence data. For example, the MAE and F1 values
are, respectively, 0.11 lower and 0.09 higher than the NILM method of AttG-BDGNets. The
proposed state-BDGNets and the NILM method obtained the best performances among all
REDD devices.

(2) Compared with the Bi-IndRNN module, DynamicGCM has shown excellent predic-
tion and classification capabilities on both data types. For example, on the REDD baseline data,
the average MAE and F1 decreased by 0.93 and increased by 0.02, respectively—especially
on the Dishwasher equipment, where the MAE decreased by 1.36 and the F1 value increased
by 0.024. There are two possible reasons for this. On the one hand, DynamicGCM uses
the node aggregation and transfer function in the layer, the detailed information is obtained
to the maximum extent, and the repeated use of redundant noise is avoided. On the other
hand, DynamicGCM realizes feature reuse through dynamic aggregation between layers,
further avoiding details regarding the loss of information whilst efficient long-distance de-
pendencies are established and applicable global semantics are captured, enhancing node
representations and enabling the network to better track power device usage. Furthermore,
this component is also demonstrated to improve the prediction and classification performance
of e AttG-BDGNets method.

(3) AGL+RNN also showed strong competitiveness on the two baseline datasets. For
example, the average F1 values of REDD and UK-Dale are 0.682 and 0.706, respectively.
Compared with Bi-IndRNN, and there are differences in long-distance modeling and
neuron interpretability—namely that modeling better captures the context details. In
particular, Bi-IndRNN can better solve the problem of gradient disappearance and the
explosion problem during the training phase and prevent the network from falling into
an optimal local state. It is worth noting that the NILM method of the proposed AttG-
BDGNets is more suitable for predicting and classifying devices with more operations,
such as washing machines and dishwashers; it is less sensitive to the consumption signals
of devices with fewer operations, such as kettles, microwave ovens, and refrigerators.
Alternatively, it may be that the activation time of these devices is short and the operating
state is lesser, so the proposed method cannot effectively predict the state of the device.
In addition, to intuitively demonstrate that the weighted loss function can promote the
proposed AttG-BDGNets method to learn better, Figure 2 shows the effect of different loss
functions in the first 100 iterations of the model.

Figure 2. Different loss functions in the first 100 iterations of our models: (a) denotes the accu-
racy of different loss functions; and (b) represents the loss convergence of different loss functions.
τMSE + βτKL indicates the weighted loss function of our proposed, and AccτMSE+βτKL indicates the
accuracy of train.
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Figure 2 shows that, under the same learning rate, the weighted loss function τMSE + βτKL
we designed converges relatively quickly, the decline is stable and relatively smooth, and
the loss and accuracy tend to be stable after the 70th round. Compared with the weighted
loss function τMSE + βτKL, we designed the convergence speed of the τMSE and τKL loss
functions are poor. At the same time, the loss functions τKL and τMSE have multiple short-term
intersections, and the loss (τMSE, τKL) and accuracy (AccτMSE , AccτKL) tend to be stable after
60 rounds, but under the same conditions, τMSE converges faster than τKL. None of these loss
functions oscillate too much; there is no severe fitting phenomenon.

4.5. Comparison with Other NILM Methods

To demonstrate the effectiveness and advancement of the proposed AttG-BDGNets
method, we verified all methods on two open source NILM baseline data, namely REDD
and UK-Dale, and gave the corresponding analysis. The experimental results of different
NILM methods are shown in Table 2.

Table 2. Experimental results of different NILM methods.

Model Dataset
REDD UK-Dale

MAE F1 MAE F1

DAE

Fridge 30.14 0.735 27.94 0.658
Washer 28.59 0.423 15.07 0.318

Microwave 25.02 0.261 14.67 0.349
Dishwasher 28.88 0.469 23.19 0.525

Kettle – – 12.33 0.896

Overall average 28.16 0.482 18.64 0.549

LSTM

Fridge 44.28 0.699 43.97 0.221
Washer 36.28 0.215 18.04 0.350

Microwave 19.35 0.577 9.02 0.384
Dishwasher 27.33 0.424 39.98 0.601

Kettle – – 20.14 0.827

Overall average 31.81 0.479 26.23 0.477

BERT

Fridge 32.42 0.736 27.59 0.761
Washer 35.72 0.538 8.98 0.467

Microwave 18.89 0.502 7.83 0.289
Dishwasher 22.61 0.516 17.45 0.632

Kettle – – 7.88 0.902

Overall average 27.41 0.573 13.94 0.61

CNN

Fridge 38.19 0.634 30.27 0.637
Washer 38.37 0.257 14.38 0.259

Microwave 20.16 0.429 8.95 0.357
Dishwasher 26.18 0.509 28.04 0.537

Kettle – – 11.21 0.789

Overall average 30.72 0.457 18.57 0.516

SGN

Fridge 27.73 0.615 17.72 0.799
Washer 30.48 0.654 12.97 0.593

Microwave 18.81 0.437 8.26 0.519
Dishwasher 17.74 0.538 12.11 0.526

Kettle – – 10.1 0.923

Overall average 23.69 0.561 12.23 0.672
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Table 2. Cont.

Model Dataset REDD UK-Dale

MAE F1 MAE F1

LDwA

Fridge 23.88 0.776 15.42 0.821
Washer 25.97 0.72 9.65 0.664

Microwave 13.14 0.658 5.69 0.575
Dishwasher 10.56 0.714 9.77 0.627

Kettle – – 7.68 0.981

Overall average 18.38 0.717 9.64 0.733

GCN

Fridge 17.66 0.858 30.17 0.194
Washer 30.09 0.668 12.35 0.485

Microwave 20.65 0.421 8.77 0.268
Dishwasher 10.38 0.584 41.96 0.562

Kettle – – 18.33 0.908

Overall average 19.69 0.632 22.31 0.483

AttG-BDGNets

Fridge 21.18 0.812 20.36 0.808
Washer 23.54 0.748 7.32 0.522

Microwave 14.39 0.579 5.18 0.606
Dishwasher 14.32 0.624 11.38 0.678

Kettle – – 6.25 0.952

Overall average 18.35 0.691 10.09 0.713

From the experimental results in Table 2, we found that:
(1) On baseline datasets REDD and UK-Dale, the average result of the AttG-BDGNets

method is better than other NILM methods and has a tremendous competitive advantage
over most devices, but devices that handle fewer operations exist. There are disadvantages,
however, including the MAE of the refrigerator in the REDD data being 3.52 higher than
that of GCN, and the F1 value being 0.046 lower than that of GCN; it may be possible
to further enhance the performance of rarely used devices by expanding the training
sample size and improving the topology map construction strategy. On other devices,
there may be two reasons for the better performance of our proposed method. First, the
global features acquired by DynamicGCM and the context details extracted by AGM form
a complementary relationship, enhancing the features’ representation and making the
method more efficient. Paying attention to the state of less-operated equipment, secondly,
the designed weighted loss function, by updating network parameters to keep detailed
information in time, improves the performance of less commonly used electrical equipment,
such as kettles. In addition, the proposed AttG-BDGNets method takes devices as graph
nodes and all the attributes of each device as node features to construct the topology graph.
The edge weights between them highlight the direct differences between different devices
and improve the final performance.

(2) The two most competitive methods are LDwA and GCN, and their average MAEs
on UK-Dale are 9.64 and 22.31, respectively. Among them, GCN also realizes prediction
and classification by gathering node information—while LDwA is encoding. The decoding
structure, CNN, is used to obtain local features, and LSTM models the global semantics,
thus prompting the network to improve the performance of less-operated devices. Similarly,
our method is better than SGN on most devices, which means that our method is very
beneficial for establishing complementary features for representation. At the same time, it
also shows that this local attention guidance method can significantly refine features while
improving power consumption estimation and load classification, which improves the
overall performance. In more detail, compared with SGN, CNN, and BERT for the dataset
REDD, the refrigerator MAE of our proposed AttG-BDGNets is reduced by 6.55, 17.01,
and 11.24, respectively. On the f1 score, the classification performance of the refrigerator
improved by 0.179, 0.178, and 0.076, respectively. In addition, our method outperformed
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DAE on all datasets, such as the dishwasher’s F1 value, which improved by 0.155 and
0.153, respectively.

4.6. Discussion

Regardless of whether the designed NILM method is effective, the model complexity
is an important indicator. The NILM method of AttG-BDGNets proposed by us still
has a substantial competitive advantage in terms of time efficiency while obtaining the
best prediction and classification accuracy. Figure 3 shows the operating efficiency and
parameter quantity of different NILM methods. Among them, FLOPS represents the
number of floating-point operations per second, and the unit is GB; “Parm” represents the
number of model parameters; it is worth noting that the larger the value of FLOPS, the
higher the performance of the model.

Figure 4 demonstrates the power prediction of different electrical equipment using
the NILM method of our proposed AttG-BDGNets on the REDD and UK-Dale datasets.
The sampling time predicted in REDD is May 2011 (instances include fridge, microwave,
and light). The predicted sampling time points in the UK-Dale data are from January to
April 2014 (examples include fridge, kettle, and light).

Figure 3. The operating efficiency and parameter quantity of different NILM methods.
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Figure 4. Visual presentation of our models: (a) indicates the REDD dataset; and (b) indicates the
UK-Dale dataset. The blue line of ‘preds’ represents the predicted value of our proposed method,
and the yellow line of ‘Gts’ represents the ground truth.

5. Conclusions and Future Research

This paper designs a new attention-guided bidirectional dynamic graph IndRNN
method (AttG-BDGNets) for NILM problems. This enables us to include the device-under-
test and unmetered device-specific power usage. The bidirectional independent recurrent
neural network promotes the extraction of contextual features from both positive and
negative directions. At the same time, the local attention guidance layer is used to integrate
the dynamic graph’s global features and contextual semantics to form a complementary
relationship and promote the network to learn more compelling features. The method is
evaluated and verified on two open source baseline datasets, namely REDD and UK-DALE.
The final experimental results show that our proposed method is better than other popular
NILM methods in terms of all devices’ load recognition accuracy and prediction ability.

During the construction and training of the topology map, we found two shortcomings
of this method. First, the structure of the topology map directly affects the load recognition
accuracy; that is to say, the better the topology map structure, the higher the recognition
accuracy. Second, compared with the straightforward NILM method, the execution effi-
ciency of our proposed method needs to be improved. In the following research, we will
start from these two points and develop a faster and more concise dynamic semantic graph
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model to reduce the complexity of the model and further improve the load identification
accuracy and prediction ability.
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